
Copyright © 2012 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics

Vol. 8, 1–16, 2012

Low Power Task Scheduling and Mapping for
Applications with Conditional Branches on
Heterogeneous Multi-Processor System

Yang Ge1�∗, Yukan Zhang1, Parth Malani2, Qing Wu3, and Qinru Qiu1
1Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 13210, USA

2Intel Corporation, Santa Clara, CA, 95054, USA
3Air Force Research Laboratory, Rome, NY, 13441, USA

Many real time applications demonstrate uncertain workload that varies during runtime. One of the
major influences of the workload fluctuation is the selection of conditional branches which activate
or deactivate a set of instructions belonging to a task. In this work, we capture the workload dynam-
ics using Conditional Task Graph (CTG) and propose a set of algorithms for the optimization of task
mapping, task ordering and dynamic voltage/frequency scaling of CTGs running on a heteroge-
neous multi-core system. Our mapping algorithm balances the latency and the energy dissipation
among heterogeneous cores in order to maximize the slack time without significant energy increase.
Our scheduling algorithm considers the statistical information of the workload to minimize the mean
power consumption of the application while maintaining a hard deadline constraint. The proposed
DVFS algorithm has pseudo linear complexity and achieves comparable energy reduction as the
solutions found by mathematical programming. Due to its capability of slack reclaiming, our DVFS
technique is less sensitive to the slight change in hardware or workload and works more robustly
than the conventional DVFS techniques.

Keywords: Dynamic Voltage and Frequency Scaling, Multiprocessor System-on-Chip, Processor
Scheduling, Workload Variation.

1. INTRODUCTION

The Multiprocessor System-on-Chip (MPSoC) has become
a major system design platform for general purpose and
real-time applications, due to its low design cost and high
performance. Power consumption, which has already been
a roadblock for current single core systems, will continue
to be a major design concern for MPSoC. There have been
continuous design efforts targeting at energy reduction of
MPSoC. Dynamic Voltage and Frequency Scaling (DVFS),
which allows the processor to dynamically alter its speed
and voltage at run time, is one of the most popular energy
reduction techniques at system level.
Many techniques have been proposed that perform

power aware task mapping, ordering and DVFS for appli-
cations with fixed workload.1∼3 However, they may not
achieve their best performance with real life applications
that demonstrate workload variations.
This paper considers task scheduling and voltage

selection of applications with variable workload on a

∗Author to whom correspondence should be addressed.
Email: yage@syr.edu

heterogeneous multiprocessor system-on-chip. We focus
on the set of applications which can be decomposed into
repeated tasks with relatively constant execution time. The
uncertainty of the workload is reflected by the random
activation and deactivation of certain tasks during run-
time and it is captured by branch selections among tasks.
We assume that such branch information is observable to
the scheduling software to assist runtime scheduling and
power management of the system. Examples of such task
level branching include branches that enable or disable
IDCT function during MPEG decoding or branches that
select different modulation schemes for preamble and pay-
load based on 802.11b physical layer standard. We model
an application with dynamic branch selections using a con-
ditional task graph (CTG).4∼8

Although instruction level branch prediction is a com-
mon practice in high performance processors, the predic-
tion is not perfect. The task graphs that we are working
with are high level abstraction of large applications. The
selection of conditional branches depends mostly on the
input data, which are random variables. This makes accu-
rate branch prediction even more difficult. Techniques that

J. Low Power Electron. 2012, Vol. 8, No. 5 1546-1998/2012/8/001/016 doi:10.1166/jolpe.2012.1214 1

Low Power Task Scheduling and Mapping for Applications with Conditional Branches Ge et al.

dynamically assign confidence levels9 or probabilities10 to
the conditional branches have been proposed by previous
research works. For many applications, the branch prob-
ability exhibits strong temporal correlations and can be
predicted based on history. Such information will be used
by the proposed scheduling algorithm for expected energy
minimization.
We study the power aware task mapping and schedul-

ing techniques for the CTGs with a particular interest in
their performance on the heterogeneous multi-core system.
It is important to investigate the low power techniques for
the heterogeneous multi-core system, not only because it
is the architecture of many embedded computing systems
such as the Pasta sensor node,15 the LEAP system,16 and
the mPlatform,17 but also because, due to the within-die
variation and transistor wear-out, a homogenous multi-core
system will exhibit heterogeneity over time.18

The proposed framework optimizes the task mapping,
task ordering and dynamic voltage/frequency scaling of
CTGs running on a heterogeneous multi-core system. Due
to the probabilistic branching, the execution of CTG is a
random process. Our goal is to minimize the mean power
consumption instead of the worst case power consump-
tion of the application while meeting the hard real-time
constraint. Our mapping algorithm balances the latency
and the energy dissipation among heterogeneous cores
in order to maximize the slack time without signifi-
cant energy increase. Our scheduling algorithm minimizes
the mean power consumption of the application while
maintaining a hard deadline constraint. Our DVFS algo-
rithm dynamically distributes slacks during runtime, and
achieves comparable energy reduction as the solutions
found by non-linear mathematical programming. Due to its
capability of slack reclaiming, our DVFS technique is less
sensitive to the slight change in hardware or task execu-
tion and works more robustly than the conventional DVFS
techniques. Please note that to minimize the power con-
sumption of an application with hard real-time constraint
is equivalent to minimize the energy consumption, because
the energy is the product of power and execution time.
To the best of our knowledge, this is the first paper

that addresses low power scheduling of conditional task
graphs on heterogeneous multi-core platform. Compared
to the existing works, the uniqueness of our approach can
be summarized as the following.
The proposed framework optimizes task mapping and

scheduling simultaneously. We modify the Dynamic Level
based Scheduling (DLS) algorithm11 to find mapping and
scheduling of CTGs on a heterogeneous platform. The
complexity of task mapping and ordering is O�MN�
where M is the number of processing elements (PEs) in
the system and N is the number of tasks in the task
graph.
We consider the application with conditional execu-

tion as a random procedure in which the branch selection
probabilities can be profiled (or measured). Our algorithm

utilizes such statistical information in each optimization
step to reduce the mean power consumption.
The proposed slack reclaiming based DVFS algorithm

has pseudo-linear complexity with the respect to the num-
ber of tasks in the CTG. It also performs more robustly than
the DVFS solution found by mathematical programming.
More generalized hardware and software models are

targeted in this work. The hardware platform consists of
heterogeneous processing elements with different power-
performance tradeoff characteristics. The only assumption
that is required by our DVFS algorithm is a convex relation
between the power and performance for each PE, which
is usually true for many devices. The software application
consists of a set of tasks with data and control dependen-
cies and hard deadline constraint.
The rest of the paper is organized as follows: Section 2

introduces the existing works in related area. Section 3
introduces the application and hardware architecture mod-
els; Sections 4 and 5 present in detail the underlying
scheduling, mapping and DVFS algorithms. Section 6
gives the experimental results. Finally, Section 7 concludes
the paper.

2. RELATED WORKS

Task mapping, ordering, and DVFS for CTGs have been
studied in many literatures. In Ref. [4], Dolif et al. pro-
pose an exact analytic formulation of the stochastic objec-
tive function for conditional task mapping and scheduling
based on task graph analysis. Their approach considers
stochastic branching probabilities and improves the over-
all performance by optimizing the bus activity. In Ref. [5],
Eles et al. present an approach to minimize the worst
case delay, which considers the communication workload
and branch control. A recursive algorithm is proposed to
generate the schedule table, which stores the start time
of each task at different execution scenarios. In Ref. [6],
Xie et al. propose a task mapping and scheduling algo-
rithm which is sensitive to mutually exclusive tasks in
the CTG. Their algorithm exploits the processor sharing
for mutually exclusive tasks to minimize the worst case
delay of the CTG. All these works do not minimize energy
dissipations.
Wu et al.7 utilize a scheduling table for runtime DVFS.

The slack time of each task can be derived from the table.
A genetic algorithm based task mapping algorithm is pro-
posed for further energy savings. An implicit assumption
of this technique is that all the conditional branches will be
selected with equal probability, which might not be realis-
tic for a real system. Furthermore, the GA based task map-
ping algorithm has very high complexity because the inner
loop of this algorithm needs to perform the task ordering
and stretching for the entire CTG.
Shin et al.8 proposed an algorithm for task scheduling

and DVFS of CTG which considers the run-time behavior.
The algorithm is based on a modified list scheduling and

2 J. Low Power Electron. 8, 1–16, 2012

Ge et al. Low Power Task Scheduling and Mapping for Applications with Conditional Branches

non-linear programming (NLP) based voltage/frequency
optimization. Because the algorithm schedules a task with
different start time and speed under different branch selec-
tion scenarios, it is referred as condition aware scheduling.
However, their task mapping is assumed to be fixed.
In Refs. [13 and 14] we proposed a Communica-

tion Aware Probability-based (CAP) scheduling algorithms
for CTGs on a DVFS enabled multiprocessor platform.
However, the algorithm assumes that all the PEs have
the same energy-performance characteristics. Furthermore,
its DVFS algorithm relies on evaluating all the paths,
which has exponential complexity. In this paper, we
completely revised the CAP algorithm and consider a
heterogeneous system where each PE has unique power-
performance characteristics. The complexity of the DVFS
algorithm is also significantly reduced.
Power aware task mapping, scheduling and DVFS tech-

niques for heterogeneous multiprocessor system has been
studied in Refs. [19∼25]. In Ref. [19], a two-phase
algorithm is proposed for distributed real-time embedded
system. A static scheduling algorithm first generates the
schedule for all tasks in the CTG, and then a dynamic
scheduling algorithm determines the speed ratio for mutual
exclusive tasks during the runtime. In Ref. [20], the authors
focus on the critical paths and distribute the slack time
over the tasks on the critical path to achieve energy sav-
ings. Both works assume that only processors have DVFS
capability and their power-performance characteristics are
identical. References [21 and 22] study the energy-efficient
software partition in heterogeneous multiprocessor sys-
tem. In Ref. [21], Goraczko et al. formulate the software
partitioning problem as an integer linear programming
(ILP) constrained by the deadline. The solution of the
ILP gives the number of processors needed by the sys-
tem and task mapping information. In Ref. [22], Yang
et al. present an approximate algorithm for task partition to
find near-optimal task mapping and scheduling with min-
imum energy consumption. In both these works, tasks are
assumed to be independent to each other. A leakage aware
DVFS algorithm is proposed in Ref. [23]. Unlike our work,
it only considers heterogeneous system with only 2 types
of processing elements (PE), one with high performance
and high power consumption while the other with low
performance and low power consumption. The objective
is to maximize the number of tasks mapped on the PEs
with low performance while satisfy the deadline constraint.
Deadline Monotonic (DM) rule is used in the task schedul-
ing while Random Algorithm (RA), First-Fit Decreasing
Density (FFDD), Genetic Algorithm (GA) and Simulated
Annealing (SA) are used for task mapping. In Ref. [24],
Azevedo et al. propose to do intra task DVS based on the
program checkpoint, while in Ref. [25], Yang et al. rely
the Pareto curve profiling for a task graph to do online
task mapping and scheduling. Both of these works do not
consider energy and performance heterogeneity of the mul-
tiprocessor platform.

3. APPLICATION AND ARCHITECTURE
MODELING

The CTG that we are using is similar to the one specified
in Ref. [8]. A CTG is a directed acyclic graph �V �E�.
Each vertex � ∈ V represents a task. An edge e= ��i� �j� in
the graph represents that the task �i must complete before
task �j can start. A conditional edge e is associated with
a condition C�e�. The tail node of a conditional edge is
called branch fork node. We use prob(e� to denote the
probability that the condition C�e� is true; and we use
succ��� and pred��� to denote the set of successors and
predecessors of a task � . We assume that all tasks have
the same deadline.
A node is activated when all its predecessors are com-

pleted and the conditions of the corresponding edges are
satisfied. The condition that the task �i is activated is called
the activation condition and denoted as X��i�. It can be
written as ∨�k∈pred��i��C��k� �i�∧X��k��, where “∧” and
“∨” represent logic operations “AND” and “OR”.
A minterm m is a possible combination of all condi-

tions of CTG. We use M to denote the set of all possible
minterms of CTG. A task � is associated with a minterm
m if X(�) is true when m is evaluated to be 1. The set of
minterms with which � is associated is referred as activa-
tion set of � and denoted as � (�). Two tasks �i and �j are
mutually exclusive if they cannot be activated at the same
time, i.e., ���i�∩ ���j� = �. The set of all unique ����,
∀ � ∈ V , is called activation space and denoted as T .
The amount of data that pass from one task to another

is also captured by the CTG. Each edge (�i� �j� in the
CTG associates with a value Comm(�i� �j� which gives
the communication volume. Finally, we assume a periodic
graph and use a common deadline for the entire CTG.

Example 1. Figure 1 shows an example of a CTG. The
edges coming out from �3 and �5 are conditional edges
therefore nodes �3 and �5 are branch fork nodes. The
symbol marked beside a conditional edge denotes the
condition under which the edge will be activated. For
example C��3� �4� = a1. There are total of 4 minterms
in the CTG and M = �a1b1� a1b2� a2b1� a2b2�. We have
���1� = ���2� = ���3� = �a1� b1� a1� b2� a2� b1� a2� b2�,
���4� = ���8� = �a1� b1� a1� b2�, ���5� = �a2� b1� a2� b2�,
���6� = �a2� b1�, ���7� = �a2� b2�. The execution profile
and communication volume are given beside the CTG.

τ1

τ8

τ3

τ6

τ5

τ2

τ7

a1
a2

b1
b2

prob(a1) = 0.8
prob(a2) = 0.2
prob(b1) = 0.5
prob(b2) = 0.5

Execution Profile

comm(τ1, τ2) = 1kB
comm(τ2, τ8) = 2kB
comm(τ3, τ4) = 0.1kB
comm(τ3, τ5) = 10kB
comm(τ5, τ6) = 0.5kB
comm(τ5, τ7) = 0.5kB
comm(τ4, τ8) = 0.8kB

Communication
Volume

τ4

τ1

τ8

τ55

7

1

,
,

τ

4

Fig. 1. An example of a CTG.

J. Low Power Electron. 8, 1–16, 2012 3

Low Power Task Scheduling and Mapping for Applications with Conditional Branches Ge et al.

The activation space is:

T = {
�a1b1� a1b2� a2b1� a2b2�� �a1b1� a1b2��

�a2b1� a2b2�� �a2b1�� �a2b2�
}

�

The hardware platform consists of a set of N PEs PE =
�p1� p2� 	 	 	 � pN . We use WCET ��i� pj�, �i ∈ V � pj ∈ PE,
to denote the worst case execution time of task �i on pro-
cessor pj . WCET ��i� pj� is expressed in the number of
clock cycles. We use BW�pipj� to denote the transmission
bandwidth of the communication links between pi and pj .
A PE pi in the hardware platform is DVFS enabled.

Without loss of generality, we assume that its dynamic
cycle energy Ei�dyn, which is the accumulated dynamic
power consumption during a clock cycle, is a convex
and monotonically decreasing function of clock period T ,
and −
 < dEi�dyn�T �/dT < 0� Tmin ≤ T ≤ Tmax. Its over-
all cycle energy, Ei� total is calculated as Ei� total�T � =
Ei� leak�T �+ Ei�dyn�T �. From Ref. [30], leakage current
Ileak has an exponential relation (convex) against Vdd,
while Vdd is inversely proportional (convex) to T , i.e.,
Vdd ∝ f = 1/T . Therefore, Ileak has a convex relation
against T . Furthermore, because Ei� leak = IleakVddT ∝ Ileak,
Ei� total�T � is still a convex function of T

Theorem 1. There is an optimal clock period T ∗ that min-
imizes the Ei� total�T � and Ei� total�T � is a convex and mono-
tonically decreasing function for Tmin ≤ T ≤ T ∗.

Proof. Because Ei� total�T � is a convex function of T ,
due to the property of convex function, there is a T ∗ ∈

Tmin� Tmax� such that T ∗ minimizes Etotal�T � and Etotal�T �
is a decreasing function for Tmin ≤ T ≤ T ∗. �

We refer T ∗ and f ∗
clk = 1/T ∗ as break even clock period

and break even clock frequency. Our DVFS algorithm
explores the convex relation between Etotal and the clock
period. We limit our DVFS algorithms to choose clock
frequencies in the range
f ∗

clk� fmax�, where f ∗
clk and fmax

are break even and maximum clock frequency of the sys-
tem. In this range the total cycle energy will monotonically
decrease as the clock period increases. Note that the proof
of Theorem 1 assumes that the Edyn�T � and Etotal�T � are
continuous functions. In Section 5, we will discuss how to
generalize the proposed DVFS algorithm to discrete volt-
age and frequency scaling.

4. TASK MAPPING AND SCHEDULING

Our task mapping and scheduling is based on a modified
Dynamic Level based Scheduling (DLS)11 algorithm that
finds task mapping and ordering simultaneously. Our goal
is to implement an on-line scheduling, mapping DVFS
algorithm that adaptively change with the branch proba-
bility. That’s why we choose the DL-based approach. The
DLS algorithm is a list scheduling algorithm. It maintains
a ready list that stores tasks whose predecessors have been

scheduled and mapped. For each task �i in the ready list,
the dynamic level DL(�i, pj� is calculated using the fol-
lowing equation:

DL��i� pj�= SL��i�−AT ��i� pj� (1)

where pj is one of the processing elements, SL(�i� is the
static level of task �i, which is equal to the longest distance
from node �i to any of the end nodes in the task graph (i.e.,
the longest remaining execution time), AT ��i� pj� is the
earliest time that task �i can start at processor pj , it is cal-
culated as AT ��i� pj� = max
DA��i� pj�� TF �pj��, where
DA(�i, pj� is the earliest time that all data required by node
�i is available at the jth PE with the consideration of both
computation and communication delay, and TF(pj� is the
time that the last task assigned to the jth PE finishes its
execution. The pair of (�i, pj� which gives the maximum
dynamic level will be selected and the mapping is per-
formed accordingly. The task is scheduled to be started at
the time max
DA��i� pj�� TF �pj��. After that, the ready
list is updated and the dynamic level of each task in the
ready list is re-calculated. The general flow of the DLS
algorithm is given in Algorithm 0. Because we need to
calculate the DL for each task processor pair in the sys-
tem, the complexity of the DLS algorithm is O��V � ∗N�,
where �V � is the number of tasks and N is the number of
PEs in the system.
The original DLS algorithm does not handle mutual

exclusive tasks. Its goal is to minimize the makespan of
the application. Although minimal makespan scheduling
usually enables more aggressive DVFS and hence lower
power consumption in a homogenous multi-core system,
this is not always true in a heterogeneous system. In this
work we adopt the general flow of the DLS algorithm but
modify the way that the dynamic level (DL) is calculated
to consider the mutual exclusiveness among conditional
tasks, the probability of branch selection and the energy
performance heterogeneity among processors.

Algorithm 0. General flow of DLS algorithm
Alg. 0: DSL
1. Calculate SL for each task
2. ready_list=�;
3. While (not all tasks have been scheduled) {
4. For each pair (� , p), � is a ready task and

p ∈ PE, calculate DL���p�;
5. Select the pair (�i, pj) with the maximum DL;
6. Map the task �i to processor pj and set its start

time to AT ��i� pj�;
7. ready_list= ready_list∪ �i
8. }

4.1. Minimum Average Makespan CTG Scheduling

Our first step is to modify the DL function to explore the
mutual exclusiveness among conditional tasks and con-
sider the branch selection probability. The goal of such

4 J. Low Power Electron. 8, 1–16, 2012

Ge et al. Low Power Task Scheduling and Mapping for Applications with Conditional Branches

modification is to minimize the average makespan instead
of the worst case makespan of the application. In the mod-
ified algorithm, the static level (SL) of a task � is used
to represent the average remaining execution time when �
has just started.
The static level of a non-branching node is the maxi-

mum static level of its successors plus the average WCET
(denoted as WCETavg� of itself. Let Succ(�i� be the set
of successors of �i, Eq. (2) calculates the SL of a non-
branching node.

SL��i�=WCET avg��i�+max�j SL��j�� �j ∈Succ��i� (2)

The static level of a branch fork node is the mean of the
static level of all its successors plus the WCETavg of itself.
Let cij denote the condition of edge ��i� �j�, Eq. (3) calcu-
lates the static level of a branch fork node.

SL��i�=WCET avg��i�+
∑
j

prob�cij �SL��j��

�j ∈ Succ��i� (3)

where prob�cij � is the probability that condition cij is true.
For a task �i without successors, its static level equals

to its average worst case execution time: SL��i� =
WCET avg��i�.
The dynamic level of task-processor pair (�i, pj� is cal-

culated as the following equation.

DL��i� pj�= SL��i�−AT ��i� pj�+���i� pj� (4)

The term ���i� pj� is the difference between WCETavg(�i�
and WCET ��i� pj� which accounts for the performance
heterogeneity. Adding this offset ensures correct evalua-
tion of a task’s DL for different processors since SL is
computed using the average WCET. AT ��i� pj� is the ear-
liest time that task �i can start on processor pj . It must
satisfy the following two conditions:
1. At time AT ��i� pi� all data required by �i is available
at pi, i.e., AT ��i� pi�≥DA��i� pi�.
2. If a task �j is scheduled during the interval
AT ��i� pi��
AT ��i� pi�+WCET ��i� pi��, then �j and �i are mutually
exclusive. This condition allows two mutually exclusive
tasks to share the same processor at the same time, and
thus making the schedule more efficient.

The data available time of a task �i on processor pj is
calculated as the latest time when its predecessor com-
pleted execution plus the time to transfer the data, i.e.,
DA��i� pj� = max� ′
ET ��

′�+ comm�� ′� �i�/BW�p′� pj��,
∀ � ′ ∈ pred��i�, where p′ is the processor where � ′ is
mapped to and ET(� ′) is the end time of task � ′. Here we
assume point to point communication between two pro-
cessors. Please note that we can extend the framework to
systems with shared communication links by considering
all data communications as separate tasks and all commu-
nication links as separate resources and schedule commu-
nication tasks in the similar way as the computation tasks.

Please note that our DLS algorithm could also handle the
overhead of reconfiguring voltage and frequency by adding
the overhead to the variable AT ��i� pj�.

Example 2. Consider the CTG given in Figure 2(a). The
WCET of each task is marked beside the node. The
branches a1 and a2 are taken with probability 0.9 and 0.1.
The system has 2 PEs. In order to simplify the discus-
sion, we assume that both PEs are identical and the inter-
processor communication is negligible. Figure 2(b) gives
the static level of each task calculated using our modi-
fied DLS and the original DLS. As we can see, SL��4� is
greater than SL��5� and SL��6� in the original DLS while
their relations are reversed in the modified DLS. This is
because the original DLS considers the worst case perfor-
mance, which happens along the path �4–�5, disregarding
the fact that task �5 is rarely activated. Figure 2(c) gives
the schedule found by these two DLS algorithms. In both
cases, �7 and �8 are scheduled to start on the same pro-
cessor at the same time because these two tasks are mutu-
ally exclusive. Using the original DLS, �4 is mapped and
scheduled before �5 and �6 because the SL(�4) is greater
than SL(�5) and SL(�6). This order is reversed in the mod-
ified DLS. The worst case makespan of application sched-
uled using the original and the modified DLS are 11 and
13 respectively. However the average makespan is 11×
0	1+10×0	9= 10	1 for the original DLS and 13×0	1+
9×0	9= 9	4 for the modified DLS. �

4.2. Balancing Energy and Performance in a
Heterogeneous Platform

In a homogenous system, because all PEs are identical in
energy performance characteristics, the total energy dissi-
pation is determined solely by the slowdown ratio. Mini-
mizing the average makespan will generally produce more
slacks for each task and enable a lower execution speed
for more energy reduction. Such monotonic relation does
not exist in heterogeneous system, where the application
energy dissipation does not only depend on the slowdown
ratio, but also on which core the application is mapped to.
There is a fundamental tradeoff between energy and per-

formance in a heterogeneous system. Mapping a task �
to a faster PE could result better performance and shorter
execution time but will incur higher energy consumption.
To compensate the extra energy incurred by task � , later
tasks have to choose slower PEs to run and result longer
latency. The performance gain by running task � at faster
speed will diminish. From this perspective, higher energy
consumption is equivalent to longer execution latency. Our
modified DLS algorithm is already capable of handling
performance heterogeneity among PEs (by introducing
���i� pj� in Eq. (4)), to further consider energy hetero-
geneity in the algorithm, we propose a heuristic method
to convert energy heterogeneity into performance hetero-
geneity, and handle them in a unified way.

J. Low Power Electron. 8, 1–16, 2012 5

Low Power Task Scheduling and Mapping for Applications with Conditional Branches Ge et al.

τ1

τ 2 τ3

τ4

τ8τ7

τ6 τ5

2

3
2

1
3 3

1
5

a1 a2

(a) CTG

SL(τ1) = 7.4
SL(τ2) = 5.4
SL(τ3) = 5.0

SL(τ4) = 2.4
SL(τ5) = 3.0
SL(τ6) = 3.0
SL(τ7) = 1.0
SL(τ8) = 5.0

SL(τ1) = 11.0
SL(τ2) = 9.0
SL(τ3) = 5.0

SL(τ4) = 6.0
SL(τ5) = 3.0
SL(τ6) = 3.0
SL(τ7) = 1.0
SL(τ8) = 5.0

Static level based
on modified DLS

Static level based
on original DLS

(b) Static level calculation

t

τ1 τ2 τ4 τ7

τ8

τ3 τ5 τ6

τ1 τ2

τ4

τ7

τ8

τ3 τ5

τ6

7 8 10 11 13 t

(c) GANTT chart of scheduled results

Scheduling based on original DLS

Scheduling based on modified DLS

PE0

0 9

PE1

PE0

PE1

Fig. 2. Compare modified DLS with original DLS.

In the rest of this sub-section, we use WCET avg��� and
WCET���p� to denote the average WCET of task � and
the WCET of task � on processor p. Etotal�p�T � and
Eavg�T � to denote the overall cycle energy of processor p
and the average cycle energy of all PEs when their clock
period is T . We use prob(�) to denote the probability that
task � is activated. Finally, we use
E���p� to denote the
difference between the energy dissipation of task � run-
ning on p and the mean energy dissipation of � running
on the heterogeneous system:

E���p� =
Etotal�p�Tmin� ·WCET���p�

−Eavg�Tmin� ·WCET avg����∗prob���
Here Tmin = 1/fmax is the period of the fastest clock. Note
that
E���p� represents the extra energy of running task �
on p, and it could be positive or negative. In order to make
up for this extra energy, we must run the entire applica-
tion at a lower clock frequency and lower supply voltage
(or a higher clock frequency and higher supply voltage if

E���p� is negative.) Assume that setting the clock period
to T ′ can balance the energy. Then we have,

E���p�= ∑
� ′∈V

WCET avg��
′�∗
Eavg�Tmin�−Eavg�T

′�� (5)

Here we use
∑

�∈V WCET avg���∗Eavg�T � to approximate
the total energy of the application when all processors are
running at clock frequency 1/T . This is only a rough esti-
mation of the true energy dissipation of the application
because not all tasks have been scheduled and mapped yet.
Solving Eq. (5) we get the T ′:

T ′ = E−1
avg

[
Eavg�Tmin�−

E���p�∑
� ′∈V WCET avg��

′�

]

To make up for the extra energy incurred by mapping �
to processor p, the total execution time of the application
must be extended by �T ′ − Tmin�

∑
� WCET avg���. There-

fore, we adjust the WCET of � and calculate its effective
WCET as:

WCET eff���p� = WCET ���p�

+��T ′ −Tmin�
∑
�

WCET avg��� (6)

The parameter � is introduced to provide a tradeoff
between performance and energy. It will be referred as the
balance factor in the rest of the paper. When � is 0, the
algorithm is reduced to the minimum average makespan
scheduling as we introduced in Section 4.1 regardless of
energy heterogeneity among processors. When � is very
large, the algorithm maps a task to the minimum energy
processor, without making effort to reserve slacks for the
DVFS algorithm which will be applied later.

4.3. Adding Control Edges to the CTG

After task mapping and ordering, the original CTG must
be modified to reflect the new precedence constraints.
Edges representing control dependencies will be inserted.
These control edges will be used to find the execution
paths for DVFS control.
Consider the example in Figure 3. The original CTG is

given in Figure 3(a). It has 2 sets of conditional branches
selected based on conditions a, a′, b and b′. Assume two
PEs are available in the system. The mapping and order-
ing of tasks are given in Figure 3(b). Some of the execu-
tion orders among tasks have already been guaranteed by
the data dependencies specified in the original CTG. For
those tasks that have no data dependencies but are mapped
to the same PEs, new edges must be inserted to specify
their execution order. For example, directed edges between
(�4, �7�, (�3, �5�, and (�5, �6� need to be added. For a con-
ventional task graph, it is not necessary to add the edge
(�2, �7�, because their precedence relation is guaranteed by
the edges (�2, �4� and (�4, �7�. However, in a CTG, node
�4 only exists when condition a is true. When a is false,
both edges (�2, �4� and (�4, �7� do not exist and the prece-
dence information between �2 and �7 is lost. Therefore,
it is necessary to add an edge from �2 to �7 to specify their
order. Note that it is not necessary to add edges (�1, �7� or
(�0, �7�, because if �1 or �0 are activated then �2 will be
activated. Knowing that �1 and �0 are executed before �2
and that �2 is executed before �7 is enough to infer that �1
and �0 are executed before �7. Figure 3(c) gives the modi-
fied CTG. The red edges in the graph are inserted control
edges.

6 J. Low Power Electron. 8, 1–16, 2012

Ge et al. Low Power Task Scheduling and Mapping for Applications with Conditional Branches

τ1

τ2

τ3

τ5

τ4

τ6

τ7

a a′

(c) Modified CTG

b

b′

τ0

τ0

τ2 τ3

τ5τ4
τ6 τ7

1

1
1

1 11 1
a a′

(a) Original CTG

b b′

τ1
1

t

τ1 τ2 τ4 τ7

τ3 τ5 τ6

(b) Task ordering and mapping

PE0

PE1

τ0

Fig. 3. Example of modified CTG with control edges.

The above example shows that a control edge (�i, �j�
must have the following properties:
1. Both �i and �j are mapped to the same PE.
2. Task �i is executed before task �j .
3. If there is another control edge (�k, �j�, then �k and �i
do not have identical activation set, i.e., ���k� �= ���i�.
4. If a task �k is mapped to the same PE as �i and �j ,
and ���k� = ���i�, then �k is executed either after �j or
before �i.

Algorithm 1 gives the algorithm that adds control edges
to the CTG. For each task � and each unique activation
set � , it searches for the latest task whose activation set
is � and is executed before � . Let � denote the number
of unique activation sets in the CTG, the worst case com-
plexity of Algorithm 1 is O�� ∗�V �2�. The modified CTG
will be used by the DVFS algorithm introduced in the next
section.

Algorithm 1. Algorithm for adding control edges to
CTG
Alg. 1: Relink CTG
1. For each task � ∈ V {
2. For each activation set � ∈ T {
3. �link = NULL;
4. For each task � ′ executed before � on the

same PE {
5. If ��� ′�= � and � ′ is executed before

�link then �link = � ′;
6. }
7. If �link NULL then add control edge from

�link to � ;
8. }
9. }

5. DVFS BASED ON SLACK RELCAIMING

Although it gives the optimal solution, solving the above
mentioned NLP is time consuming. In the next, we will
introduce a heuristic DVFS algorithm based on slack
reclaiming (SR). In the rest of the paper, it is referred as

SR_DVFS. In order to apply the slack reclaiming algo-
rithm during the runtime, the following information is
needed for each task: overall average remaining execu-
tion time (ARET�), the maximum remaining execution time
(MxRET� �, the average remaining execution time along
the most critical path on different PEs (ARET_PE� [i],
1≤ i ≤ N�, and a look-up-table of slack distribution rules
(LUT� �. We divide the total available slack into multi-
ple discrete levels. Given the available slack l, the ele-
ment LUT� [l] specifies the amount of slacks (out of l� that
should be distributed to the PE that � is mapped to.

Algorithm 2. Algorithm for ARET, MxRET calculation
Alg. 2: Calc. ARET, MxRET
1. Topological sort the modified CTG;
2. For each task � starting from the lowest topological

order {
3. ARET� = 0;
4. For each minterm m ∈ ����{
5. max_aret= 0;
6. For each successor �i of � with m ∈ ���i� {
7. if�max_aret< ARET�i+ comm�� , �i�/

BW�� , �i��
8. max_aret = ARET�i+ comm�� , �i�/

BW�� , �i�;
9. }
10. ARET� = pr�m�/pr���∗max_aret;
11. }
12. ARET� = ARET� +WCET�� , p��;
13. MxRET� = 0;
14. For each successor �i of � {
15. if�MxRET� <MxRET�i+ comm�� , �i�/

BW�� , �i�+WCET���p���
16. MxRET� =MxRET�i+ comm�� , �i�/

BW��� �i�+WCET�� , p� �;
17. }
18. }

Algorithm 2 gives the algorithm that calculates the val-
ues of ARET and MxRET of each task. The algorithm pro-
cesses the tasks based on the reverse topological order of
the modified CTG. Steps 3 through 10 in the algorithm
calculates the ARET of a task � . For each minterm m, the

J. Low Power Electron. 8, 1–16, 2012 7

Low Power Task Scheduling and Mapping for Applications with Conditional Branches Ge et al.

ARET of � is the maximum value of its successor’s ARET
plus the data communication time. The overall ARET of �
is the sum of the ARETs under each minterm m weighted
by the condition probability that minterm m is true given
that task � is activated (i.e., pr(m�/pr(�)). Finally, the
ARET of task � should include the execution time of �
itself as specified in Step 10. Steps 12 through 17 in the
algorithm calculate the MxRET. It is equal to the largest
MxRET of � ′s successors plus the data communication
time. Let � denote the maximum number of immediate
successors of a task, the worst case complexity of the algo-
rithm is O��� �V ��.
Example 4. We use the CTG given in Figure 4 to demon-
strate the ARET and MxRET calculation. To simply the
discussion, we assume that the WCET of a task is 1
no matter which PE it is mapped to. Also assume that
pr(a�= 0	1, pr(a′�= 0	9, pr(b�= 0	9, pr(b′�= 0	1, and the
communication bandwidth is infinite. We start calculating
ARET from tasks �2 and �7 because they have the lowest
topological order. ARET �2

=WCET ��2� = 1, ARET �7
=

WCET ��7�= 1.

ARET �6
=

(
pr�ab�

pr��6�

)
ARET �2

+
(
pr�a′b�
pr��6�

)
ARET �2

+WCET ��6�= 2�

ARET �3
= �pr�ab�+pr�a′b��ARET �6

+ �pr�ab′�

+pr�a′b′��ARET �7
+WCET ��3�= 2	9�

ARET � = pr�ab�/pr�a�max�ARET�6ARET �2
�

+pr�ab′�/pr�a�ARET �2
+WCET ��4�= 2	9

The ARET for the rest of tasks and their MxRET are
given in the following table. �

The values of ARET and MxRET are used to determine
the remaining slack that will be distributed to the current
task and the following tasks. In a heterogeneous multi-core
system, where each PE has different power-performance
tradeoff characteristics, the slacks will be distributed to
different PEs non-uniformly. Therefore, we need to know

τ0

τ1 τ3

τ5τ4 τ6 τ7

a a′

(a) Original CTG

b b′
τ2

(b) Modified CTG

τ0

τ1

τ5τ4

τ6

τ7

τ3

a a′
b b′

τ2

PE0 PE1

Fig. 4. An example of impact set and speed selection.

Table I. ARET and MxRET of each task in Example 4.

� �0 �1 �2 �3 �4 �5 �6 �7

MxRET 5 4 1 3 3 3 2 1
ARET 4.9 3.9 1 2.9 2.9 2.9 2 1

not only the overall average remaining execution time, but
also the remaining execution time on different PEs.
Based on Algorithm 2, the ARET of a task reflects the

longest path in the modified CTG. For example, the ARET
of �0 in Example 4 reflects the average length of path �0 →
�1 → �4��5�→ �6 → �2, which is the longest path starting
from �0 in the modified CTG. Considering only the longest
path while ignoring the power-performance tradeoff effi-
ciency of each PE will not result the best slack distribution
policy. For example, if PE1 in Example 4 has much higher
power consumption than PE0 and is much more effective
in power-performance tradeoff, then we may want to run
�0 a little faster and reserve more slacks for tasks run-
ning on PE1. Let fEPT �p� denote the energy-performance
tradeoff (EPT) factor of processor p. It is calculated as
fEPT �p�= dEtotal�T �/dT �T=1/fmax

. We choose the path that
has the highest EPT as the most critical path and col-
lect the average remaining execution time on different PEs
along this critical path.
Algorithm 3 gives the algorithm that calculates the vari-

ables ARET_PE[i] for each PE i. For each task � , a
variable AREPT��� is maintained. It records the average
total EPT of the remaining tasks along the most critical
path (i.e., the path with the highest EPT efficiency). The
ARET_PE of a task � under minterm m is determined by
the ARET_PE of its successor that is active under the same
minterm and has the largest remaining EPT. The overall
ARET_PE of a task is the sum of its ARET_PEs under
different minterms weighted by the conditional probability
that the minterm m is active given the condition that the
task � is going to be executed. Similar to Algorithm 2, the
worst case complexity of Algorithm 3 is also O��� �V ��.
Algorithm 3. Algorithm for ARET_PE calculation
Alg. 3: Calc. ARET_PE
1. For each task � starting from the lowest topological

order {
2. ARET_PE�
i�= 0, 0 ≤ i ≤ N ;
3. For each minterm m ∈ ���� {
4. eng= 0;
5. Find �i with the largest eng�I , �I ∈ succ���

and m ∈ ���i�
6. eng� = pr�m�/pr���∗ eng�i ;
7. ARET_PE�
i�= ARET_PE�
i�+pr�m�/pr���

ARET_PE�i

i�, 0 ≤ i ≤ N ;

8. }
9. ARET_PE�
p��= ARET_PE�
p��+

WCET���p��;
10. eng� = eng� +WCET���p��∗Etotal�p��
11. }

8 J. Low Power Electron. 8, 1–16, 2012

Ge et al. Low Power Task Scheduling and Mapping for Applications with Conditional Branches

Example 5. Consider the CTG in Example 4. Assume
that fEPT �PE1� is 10 and fEPT�PE0� is 1, then we have:

ARET _PE�3

PE0�= ARET _PE�6

PE0�∗pr�b�/1= 1	8�

ARET _PE�3

PE1�= ARET _PE�7

PE1�∗
pr�b′�

1

+WCET ��3� PE1�= 1	1�

ARET _PE�0

PE0�= ARET _PE�3

0�

+WCET ��0PE1�= 2	8�

ARET _PE�0

PE1�= ARET _PE�3

1�= 1	1	

As we can see, the ARET_PE shows the computing time
distribution along the path with the highest EPT efficiency.
For example, for �0, this path is �0–�3–�7(�6–�2�. This
information determines how the average available slack
will be distributed. �

Let Epi
�Tclk ·L� denote the energy dissipation over L

clock cycles on processor pi when the clock period is set
to Tclk. We know that Epi

�Tclk ·L�= LEtotal�piTclk
�. Replac-

ing Tclk ·L with a new variable D, Epi
�D� gives the energy

dissipation of pi running for a duration D at clock speed
1/Tclk. D is a linear function of Tclk and Epi

�D� is a con-
vex function of D. Assume that, scaling the voltage and
frequency extends task execution time from D1 to D2. Let
ESi�D1�D2� denote the energy saving, i.e., ESi�D1�D2�=
Epi

�D1�−Epi
�D2�.

Theorem 2. The energy savings of the optimal continu-
ous DVFS is incremental, i.e., ESi�D�D+ Y � = ESi�D�
D+X�+ESi�D+X�D+Y �, ∀X ∈ �0� Y �. Furthermore,
the energy saving ESi�D�D+X��X > 0 is a decreasing
function of D.

Proof. The first part of the theorem can be proved from
the definition of the function ES(). An optimal DVFS with
continuous voltage and frequency levels will set the Tclk
to be D/L. The left side of the equation is:

ESi�D�D+Y �= CEtotal�D/L�−CEtotal��D+Y �/L�

The right side of the equation is:

ESi�D�D+X�+ESi�D+X�D+Y �

=CEtotal�D/L�−Etotal��D+X�/L�+CEtotal��D+X�/L�

−CEtotal��D+Y �/L�

The left and right sides equal to each other.

To prove the second part of the theorem, we only need
to prove that ESi�D�D+X�−ESi�D+Y �D+Y +X�> 0,
∀X�Y > 0.

The left part of the inequality is:

ESi�D�D+X�−ESi�D+Y �D+Y +X�

=Epi
�D�−Epi

�D+X�−Epi
�D+Y �+Epi

�D+Y +X�

Because Epi
� � is a convex function, we know that:

Epi
�D�+Epi

�D+Y +X�≥ Epi
�D+X�+Epi

�D+Y �	

The second part of the theorem is also proved. �

Based on these properties, we design the algorithm
that generates the slack distribution table shown in Algo-
rithm 4. The input of the algorithm is the average remain-
ing execution time (i.e., ARET� �, the remaining execution
time on different PEs (i.e., ARET_PE� [i], 1≤ i ≤ N�, the
energy saving characteristics of each PE, ESi(), and the
maximum slow down ratio Si of each PEi. The algorithm
increases the slack allocation to each PE with uniform
time step and records the corresponding energy saving in
an array ESi[] (Steps 2∼4). This procedure ends when the
maximum slow down ratio is reached. The value of ESi[j]
tell us the energy saving of extending the total execution
time of all tasks on PEi from D+ j − 1 to D+ j , where
D is the minimum execution time. Based on Theorem 2,
the array ESi[] is decreasing. Using the information in
ESi[], in Steps 7∼11, we distributed slacks one unit by
one unit to the PEs that has the highest energy saving.
The amount of slacks distributed to p� is stored in array
LUT� [idx]. The ith element of LUT� [] gives the amount
of slacks p� receiving when the total available slack is i.
Let � denote the minimum time steps in slack distribu-
tion. The maximum length of each LUT array is bounded
by deadline ·Smax/� . The worst case complexity of Algo-
rithm 4 is O�N ·deadline ·Smax/� �.

Algorithm 4 Slack distribution LUT generation
Alg. 4: Generate slack distribution table for task
1. Input: ARET� , ARET_PE�
i�, ESi� �,

Smax(maximum slow down ratio)
2. For each PE i with non-zero ARET _PE�
i� {
3. ESi
l�= ESi�ARET _PE�
i�+ l,

ARET _PE�
i�+ l+1),
1≤ l <min(deadline, Smax ∗ARET _PE�
i��;}

4. Clear LUT� [], idx = 0, slack = 0;
5. While (not all Esi[] arrays are empty) {
6. Compare the leading elements in ESi
� arrays,

1≤ i ≤ N ;
7. Assume the largest value located in the

pth array (i.e., ESp
0��;
8. If p = p� then LUT�
idx++�=++slack;
9. else LUT�
idx++�= slack;
10. delete the leading element in ESp
� and point to

the next one;
11. }

Example 6. Consider the critical path given in Figure 5(a).
Assume tasks �0 and �2 are mapped to PE0 while tasks
�1 and �3 are mapped to PE1. Also assume the WCET of
each task is 1 under maximum clock frequency. The energy
delay characteristic is given in Figure 5(b). The maximum
slow down ratio for both processors is 3. Obviously PE1 is

J. Low Power Electron. 8, 1–16, 2012 9

Low Power Task Scheduling and Mapping for Applications with Conditional Branches Ge et al.

(a) Critical Path

τ0

τ1

τ3

τ4

PE0

PE1

PE0

PE1

1

1

1

1

(b) Energy delay characteristics

0

5

10

15

20

0 2 4 6 8
E

ne
rg

y
Delay (D)

E0(D)

E1(D)

ES(2,3) ES(3,4) ES(4,5) ES(5,6)
ES0 4 1.8 0.7 0.5
ES1 8 4 1.5 0.9

(c) Energy saving arrays

Fig. 5. An example of LUT generation.

more efficient in DVFS based energy performance trade-
off. The energy saving arrays are presented in Figure 5(c)
and they are calculated directly from the energy delay char-
acteristics. If the execution time of �0 and �2 is 2, then
allocating one unit of slack to PE1 will give 8 units of
energy savings. However, if the execution time of �0 and
�2 has already been slowed down to 4, then allocating one
more unit of slack to PE1 will only generate 1.5 units of
energy savings. The slack distribution table for task �0 is:
LUT �0

1∼8� = �0�0�1�1�2�2�3�4�. Which means that if
the overall slack is less than 3, no slack should be given
to PE0 (i.e., the PE where �0 is mapped to); if the overall
slack is greater than 2 and less than 5, then 1 slack should
be allocated to PE0; if the overall slack is greater than 4
and less than 7, then 2 slacks should be allocated to PE0.
If there are 7 and 8 overall slacks, then PE0 should receive
3 and 4 slacks respectively. �

Algorithm 5 gives the SR_DVFS algorithm. It is
executed during runtime. Before executing a task � ,
the SR_DVFS algorithm calculates the available slack
(Step 1), then it uses the look-up-table to determine how
many slacks should be distributed to the current PE where
task � is mapped to (Step 2). The execution speed (i.e.,
s�� is calculated in Step 3 of the algorithm. We then check
the longest path to see if this solution violates the deadline
constraint (Step 4). If the answer is false, the algorithm
returns, otherwise we recalculate the available slack by
considering only the longest path (Step 5) and repeat the
previous steps. Note that Algorithm 5 has a constant com-
plexity; however, it must be executed each time before a
task is executed.

Algorithm 5 SR_DVFS algorithm
Alg. 5: SR_DVFS ��� t�: �—current task id,

t—current time
1. Calculate the available slack tsl =

deadline− t−ARET� ;
2. The slack distributed to p� is tsl���= LUT �tsl�;

3. s� = �tsl���+ARET _PE��/ARET _PE� ;
4. if (WCET �� , p��∗ �s� −1�+MxRET�+

t > deadline� {
5. tsl = deadline− t−MxRET� ;
6. tsl���= LUT �tsl�;
7. s� = �tsl���+ARET _PE��/ARET _PE� ;
8. }

If the application consists of single path across different
PEs, then the SR_DVFS gives the optimal solution. How-
ever, parallel execution paths usually exist in a multi-core
system and there are synchronization events among these
execution paths. Therefore, the SR_DVFS is only a greedy
heuristic. Our experimental results show that compared to
the NLP based DVFS, the system using SR_DVFS algo-
rithm consumes 4.1% more energy in average.
The effectiveness of the SR_DVFS relies on two impor-

tant conditions: (1) the power consumption of a PE must
be a convex function of its clock period; (2) the PEs must
support continuous voltage and frequency scaling. The first
condition can be satisfied by most existing microproces-
sors with support of DVFS. The second assumption is not
quite realistic, because many real life microprocessors only
support discrete DVFS. However, it has been pointed out
in Ref. [26] that using intra-task DVFS, we can approx-
imate any voltage and frequency setting using 2 discrete
voltage and frequency levels. Even if the intra-task DVFS
is not available, the SR-DVFS algorithm works fine under
discrete voltage–frequency because it reclaims the slack
that cannot be utilized by previous tasks due to the voltage
(frequency) round up. Note that the NLP based approach
cannot handle discrete voltage (frequency) level due to the
high complexity. As we will show in Section 6, compared
to a DVFS choice that simply rounds up the voltage and
frequency solution of the NLP to the nearest level, the
slack reclaiming algorithm reduces the energy by 41.37%.

6. EXPERIMENTAL RESULTS

We assume that there are three different kinds of PEs
in the system. They are XScale 80500, XScale PXA255
and PowerPC processors. These processors operate at
different voltage and frequency, and they have differ-
ent power/performance characteristics. We obtained their
cycle energies under different voltage and frequencies from
Refs. [27, 28 and 29] respectively. We use curve fitting to
approximate the cycle energy as a continuous function of
the cycle period and use this model to predict the cycle
energy for any cycle period which is between the maxi-
mum and minimum supported frequency. We summarize
the processors’ parameters in Table II and plot the cycle
energy curves in Figure 6.
To account for different graph structures and complexi-

ties which resemble numerous real applications, we carried
experiments on CTGs modified from random task graphs
generated by TGFF.12 The MPSoC consists of either 3 PEs

10 J. Low Power Electron. 8, 1–16, 2012

Ge et al. Low Power Task Scheduling and Mapping for Applications with Conditional Branches

Table II. Processor parameters.

Type Max_V (Volt) Max_f (MHz) Min_V (Volt) Min_f (MHz)

PPC 1	9 333 1 33
Xscale 1	49 733 0.91 333
PXA255 1	3 400 0.85 100

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5

0 0.005 0.01 0.015

cy
cl

e
en

er
gy

 (
nJ

)

cycle period (us)

Xscale 80500

PPC

PXA255

Fig. 6. Processor cycle energy curves.

(one of each aforementioned mentioned type) or 4 PEs
(with an additional Xscale 80500 processor). Table III
gives the summary of some statistics of the 6 test cases
including the number of tasks, the number of PEs, and the
number of branch fork nodes in the CTG. The first row
of the table gives the ID of each test case, which will be
used in the rest of the paper.
In addition to these 6 cases, and in order to test the scal-

ability of the proposed algorithms and its performance on
large applications and systems, we also construct a large
CTG with 86 tasks and allocate them on a 16-PE MPSoC
system. We call the test case CTG-large.
Furthermore, we apply our algorithm on a real-world

application, i.e., the MPEG decoder. The MPEG decod-
ing process keeps varying according to the contents of
the visual scene. Each video frame in the encoded video
stream is composed of various macroblocks that repre-
sents 16× 16 pixel area of the image. The macroblocks
are further classified into I , P and B blocks. Different
types of macroblock require different decoding procedure.
For example, the I-blocks will perform the IDCT func-
tion while the B-blocks may skip the IDCT. The CTG
for MPEG decoding process have 46 tasks. Among these
tasks, 9 of them are branch nodes. Due to space limitations
we cannot show the whole graph of the decoding process.

Table III. Summary of generated test cases.

Test case ID 0 1 2 3 4 5

Number of nodes in CTG 12 25 16 15 15 25
Number of PEs 3 3 3 4 4 4
Number of branch fork nodes 1 3 1 2 1 3
Probability of each branch fork nodes �0	9�0	1� �0	9�0	1� �0	9�0	1� �0	9�0	1� �0	8�0	1�0	1� �0	8�0	2�

�0	9�0	1� �0	9�0	1� �0	8�0	2� �0	8�0	2�
�0	9�0	1�

We map the MPEG decoding CTG to a system consists of
6 PEs. We call the test case CTG-mpeg.
We define the system utilization as U =∑
�i∈V WCET��i�/�D ·N� where D is the application

deadline and N is the number of PEs. Obviously, the effec-
tiveness of the low power scheduling algorithm should
change as the system utilization varies.
We refer to our algorithm as Balanced Energy Slack

Scheduling (BESS) as it considers both the energy and
performance in a heterogeneous system. For each CTG,
the algorithm generates a task mapping, a schedule and
a voltage/frequency selection. We call the combination a
Solution.
Sometime, the mapping between tasks and PEs are pre-

determined. We can extend BESS to find the task execu-
tion order for the CTGs with fixed mapping by considering
only those given task-PE pairs in DL calculation. We
refer to this degenerated version of BESS as BESS-FM
(BESS with Fixed Mapping). For comparison purpose, we
implemented NLP based DVFS similar to the algorithm
described in Ref. [8]. By default, the BESS algorithm uses
NLP based DVFS. We use BESS-SR to refer to the BESS
algorithm utilizing the slack reclamation based DVFS.
One of the major questions of BESS is how to deter-

mine the value of � in Eq. (6). When � is 0, the algo-
rithm degenerates into the minimum average make span
scheduling; and when � is very large, the algorithm maps
a task to the minimum energy processor without consider-
ing the slacks for the DVFS algorithm. Strictly speaking,
the optimum value of � is a function of many parameters,
including the topology of the CTG, the branch probability,
the performance and power characteristics of the multi-
core system, and the system utilization, etc. For those 8
test cases, we vary their branch probability and deadline
(which consequently affects the system utilization) and
generate a large number of different scenarios. For each
scenario, we sweep � to find its optimal value. We found
that (1) the best value of � is always within a small range
for majority of the scenarios; (2) some values of � con-
sistently outperform other values for all system utilization
and branch probability settings, and the difference between
these local maximum points is not significant.
As an example, Figure 7 shows the energy as a function

of � for CTG0 under different system utilization from 20%
to 70%. Please note that not all � have feasible solutions
for all system utilizations, for example, there is feasible

J. Low Power Electron. 8, 1–16, 2012 11

Low Power Task Scheduling and Mapping for Applications with Conditional Branches Ge et al.

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

0 1 2 3 4 5 8 10 20 50 80 100

20% 30%
40% 50%
60% 70%

Utilization

Fig. 7. The effect of � on energy consumption.

schedule when the system utilization is at 70% and �
is-between 1 and 8. As shown in the figure, most of the
energy curves have two local minima. The first one occurs
at � ∈ Refs. [2, 5] while the second occurs at � = 10.
The first local maximum has slightly higher energy than
the second local maximum. However, overall, both local
minima give much lower energy than other data points in
the energy curve. Similar trend is observed for other test
cases. Based on this observation, we use a fixed � for each
CTG in our experiments. It is set to be the best value that
minimizes the energy of the CTG at 50% utilization and
equal branch selection probability. As we will show later,
the task mapping obtained by BESS algorithm outperforms
the best random mapping in 10,000 samples. Given the
limited range of the optimal value of �, searching for the
best � is much easier than searching for the best mapping
directly.

6.1. Comparison with Random Mapping

In the first experiment, we evaluate the quality of the task
mapping function in BESS. For each test case, large num-
bers of random mappings are generated and scheduled
using BESS-FM. The best result is compared to the result
found by the original BESS, which optimizes both task
mapping, ordering and DVFS.
Table IV compares the system energy dissipation of

running the solution generated by BESS, the best results

Table IV. Comparison to random mapping.

Best of 10,000 random Average of 10,000
mapping (mJ) random mapping (mJ)

CTG# BESS (mJ) BESS-FM Impr. (%) BESS-FM Impr. (%)

CTG0 157	38 163	97 4	02 291	54 46	02
CTG1 101	01 120	88 16	44 158	72 36	36
CTG2 196	99 378	24 47	92 763	07 74	18
CTG3 298	25 320	77 7	02 506	21 41	08
CTG4 512	08 558	99 8	39 829	40 38	26
CTG5 918	38 1042	85 11	94 1250	61 26	57
CTG-large 1114	44 2604	5 57	21 3686	68 69	77
CTG-mpeg 92	99 110	29 15	69 162	92 42	92

and average results of 10,000 random mappings sched-
uled using BESS-FM and the improvement of BESS over
the best and average random mapping. As we can see,
even with 10,000 random samples, we cannot find a task
mapping that is as energy efficient as the one found by
BESS.

6.2. Energy Consumption Under
Different System Utilization

In the following experiments, we will demonstrate the
necessity of considering delay and energy jointly during
every step of the resource management algorithm, and will
compare the solution of our algorithm with four other
scheduling algorithms: the Minimum Make Span (MMS),
the Minimum Energy (MNRG), the Earliest Start Time
(EST), and one of the previous works in Ref. [2]. These
4 algorithms are very similar to BESS. The only deviation
is how the dynamic level (i.e., DL) is calculated. The MMS
algorithm uses the original WCET instead of the effective
WCET that converts energy heterogeneity to performance
heterogeneity. Therefore, it maps tasks to minimize the
average make span as stated in Section 4.1. Please note that
the MMS algorithm is equivalent to the CAP algorithm.13�14

The MNRG algorithm calculates the dynamic level as:
DL��i� pj� = −WCET ��i� pj�×Etotal�pj� fmax�; therefore,
it maps a task to the PE that is the most energy efficient for
this task. Finally the EST algorithm calculates the dynamic
level as: DL��i� pj�=−AT ��i� pj�, therefore, it maps tasks
to where they can start the earliest.
To the best of our knowledge, there is no existing work

that considers the exact same problem as this paper (i.e.,
task mapping, scheduling and DVFS for CTG in a het-
erogeneous multiprocessor platform.) In order to compare
with existing work, we modified the algorithm proposed by
Zhang et al. in Ref. [2] to consider conditional branches.
Their algorithm is modified so that the slack is replaced
by average slack and mutually exclusive tasks can share
the same PE at the same time.
Figure 8 shows the energy consumption of the 8 test

cases under those 5 scheduling algorithms. In those figures
X-axis represents the percentage system utilization and
Y -axis represents the energy consumption. Please note that
not all scheduling algorithms have feasible solutions for all
system utilizations. As we expected, when the system uti-
lization increases, the energy consumptions also increase
because tasks have to run at higher speed to guarantee the
deadline.
As shown in the figure, in general, MNRG is ineffective

as it cannot find feasible solution for most of the test cases.
The BESS algorithm is able to find better solutions than
other four algorithms in all cases because it is not only able
to leave enough slack for DVFS but also able to explore
the energy heterogeneity. Because Ref. [2] approach does
not consider power/performance heterogeneity, it could
not achieve the same energy savings as BESS. Overall,

12 J. Low Power Electron. 8, 1–16, 2012

Ge et al. Low Power Task Scheduling and Mapping for Applications with Conditional Branches

100

300

500

700

20 30 40 50 60 70

CTG0

50

70

90

110

130

150

20 30 40 50 60 70

CTG1

100

300

500

700

20 30 40

CTG2

200

400

600

800

20 30 40 50 60

CTG3

300

400

500

600

700

800

20 30 40 50

CTG4

400

600

800

1000

1200

1400

20 30 40 50 60

CTG5

0

1000

2000

3000

4000

20 30 40 50 60

CTG-large

80

100

120

140

20 30 40 50 60

CTG-mpeg

x-axis: utilization, y-axis: energy consumption (mJ)

BESS MMS MENG EST Ref[2]

Fig. 8. Energy consumption under different system utilization.

comparing to BESS, MMS, MNRG, EST and Ref. [2] con-
sume 25.3%, 85.7%, 69.8% and 70.3% more energy for
test case 0–5 respectively.
Please note that because the search spaces of test case

CTG-large and CTG-mpeg are too large, the NLP based
DVFS is not able to find a solution within a reasonable
time, while our SR algorithm only takes several seconds.
Therefore, we integrate the SR based DVFS to all the map-
ping and scheduling algorithms in CTG-large and CTG-
mpeg test case. As shown in this figure, in CTG-large case,
BESS algorithm outperforms MMS, EST and Ref. [2] by
21.6%, 73.0%, 69.9%. In CTG-mpeg case, MMS, EST
and Ref. [2] algorithm have very similar energy con-
sumption, while the BESS algorithm outperforms them
by 11.64%.

100

150

200

250

300

350

400

20 30 40 50 60 70 20 30 40 50 60 70

CTG0

50

60

70

80

90

100

110

120
CTG1

100
120
140
160
180
200
220
240
260
280

20 30 40

CTG2

250

300

350

400

450

500

550

20 30 40 50 60

CTG3

300

350

400

450

500

550

600

20 30 40 50

CTG4

400

500

600

700

800

900

1000

20 30 40 50 60

CTG5

x-axis utilization, y-axis energy consumption(mJ)

NLP SR

Fig. 9. Comparison of NLP and SR based DVFS.

6.3. The Effectiveness of Slack Reclaiming Algorithm

In order to evaluate the performance of our slack reclama-
tion (SR) based DVFS heuristic, we developed a fast per-
formance evaluation framework based on OMNeT++.31

OMNeT++ is a discrete event simulation environment,
and its simulation kernel is written in C++. Users can
define the behavior of their own components in the net-
work and describe the network topology and communica-
tion overhead using a high level language provided by the
OMNeT++.
We again vary the system utilization from 20% to 70%

and compare the quality of DVFS solutions found by the
SR and NLP algorithm. The results are shown in Figure 9.
The same task mapping and ordering found by BESS are
used for both DVFS algorithms.

J. Low Power Electron. 8, 1–16, 2012 13

Low Power Task Scheduling and Mapping for Applications with Conditional Branches Ge et al.

Table V. Comparison of continuous and discrete DVFS.

Continuous DVFS (mJ) Discrete DVFS (mJ)

CTGs NLP SR NLP SR

CTG 0 192	64 202	66 415	29 218	92
CTG 1 73	19 80	34 183	86 92	82
CTG 2 253	59 268	27 321	29 270	44
CTG 3 377	38 394	75 614	2 418	48
CTG 4 464	83 492	13 859	52 491	86
CTG 5 697	23 721	79 1985	3 775	60

As shown in these figures, the SR algorithm tracks the
NPL based DVFS algorithm very well and gives close
energy consumptions. In average, systems using SR based
DVFS method only consume 4.1% more energy than the
system using NLP based DVFS.
Table V shows the comparison between the continuous

and discrete DVFS. As shown in the table, the perfor-
mance of NLP based DVFS is severely degraded when
only discrete voltage and frequency level is supported by
the system, while the SR algorithm dynamically adjusts
the slowdown ratio based on current remaining slack. On
average, the discretized slack reclaiming algorithm reduces
the energy dissipation by 41.37% comparing to discretized
NLP algorithm. Please note that for test case CTG-large
CTG-mpeg, the only feasible DVFS algorithm is Slack
Reclaiming based algorithm, thus in this subsection, we
do not have results for them.
In the next experiment we restrict the PE’s voltage and

frequency to those discrete levels specified in Table II.
With NLP based DVFS, in order to guarantee deadline, the
voltage and frequency are always round up to the nearest
level. With SR based DVFS, the extra slack generated by
rounding up of current task will be reclaimed by future
tasks.

6.4. Sensitivity to Branch Probability Change

In previous experiments, we assume that the branch prob-
abilities are known and fixed during run time. In the next
set of experiments, we examine the sensitivity of BESS to
the change of branch probability. The results will help us
to understand the performance of BESS under inaccurate
software model or insufficient profiling information.
The solution of BESS consists of 3 parts: task mapping,

task ordering and voltage/frequency selection. When the
branch probability of an application changes from � to
� during the runtime, we have 4 options: (1) Continue
using the initial scheduling found based on branch prob-
ability �. This option will be referred as “No update” as
it updates nothing. (2) Continue using the original task
mapping and ordering, but update the voltage and fre-
quency selection using the new branch probability �. This
option will be referred as “DVFS only.” (3) Continue
using the original task mapping, but update the task order-
ing and voltage/frequency selection. It will be referred as

“DVFS+SCH.” (4) Update everything in solution includ-
ing task mapping, ordering and voltage/frequency selec-
tion. We refer to this option as “All update.” In the rest
of the paper, we refer to the original branch probabil-
ity � as the “biased branch probability” and the updated
branch probability � as the “actual branch probability.”
We refer to the first 3 scheduling options that update none
or only part of the solution as biased scheduling and the
last scheduling option as the unbiased scheduling.
We use CTG0 to illustrate the impact of branch proba-

bility on the quality of solution. We set the actual branch
probability � to �0	1�0	9�. Figure 10 shows the energy
dissipation of the system under 3 biased scheduling algo-
rithms with the biased probability � varying from (0.1,
0.9) to (0.9, 0.1). All 3 curves give the same best result
when the biased probability � equals to the actual branch
probability �, which stands for the unbiased scheduling
option (i.e., “ALL”) that updates everything in the solution.
From this figure, we can see that the more accurate

probability information we use in scheduling, the more
energy savings we can achieve. We also observe that when
the biased probability is close to the actual probability,
the performance of the biased scheduling and the unbi-
ased scheduling are close to each other. For example, when
the biased probability goes from �0	1�0	9� to �0	6�0	4�,
the energy difference between the biased and the unbi-
ased solution is less than 4%. On the other hand, when
the biased probability is far from the real probability, the
energy difference between the biased and the unbiased
solution can be as large as 25%. The above observation
implies that if the branch probability changes during run
time, as long as the difference between the actual prob-
ability and the biased probability is small, the energy
consumption will not significantly deviate from the opti-
mum value. Therefore, we do not need to rerun the entire
scheduling process (which can be very time consuming for
systems with large number of tasks and PEs) to adapt the
probability change.
The similar trend is found for other CTGs. First,

we define the Bias Distance to quantify the difference
between the actual branch probability and the biased

250

260

270

280

290

300

310

320

330

(0
.1

, 0
.9

)

(0
.2

, 0
.8

)

(0
.3

, 0
.7

)

(0
.4

, 0
.6

)

(0
.5

, 0
.5

)

(0
.6

, 0
.4

)

(0
.7

, 0
.3

)

(0
.8

, 0
.2

)

(0
.9

, 0
.1

)

en
er

gy
 (

m
J)

Biased Probability (A)

NONE

DVFS only

DVFS + SCH

Fig. 10. Energy consumption under inaccurate branch probability.

14 J. Low Power Electron. 8, 1–16, 2012

Ge et al. Low Power Task Scheduling and Mapping for Applications with Conditional Branches

Table VI. Solution quality degradation as the bias distance increases.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Bias distance (%) (%) (%) (%) (%) (%) (%) (%)

DVFS+SCH 0.14 0.30 0.69 1.12 1.71 2.33 3.16 5.12
DVFS only 0.22 0.34 0.74 1.19 1.79 2.44 3.32 5.12
No update 0.27 0.54 1.06 1.72 2.57 3.54 4.85 7.47

probability. Assume a CTG has n conditional edges and
the actual branch probabilities for these branches are B =
�b1� b2� 	 	 	 � bn�, the biased branch probabilities are A =
�a1� a2� 	 	 	 � an�. Then the distance between A and B is
defined as the L1-norm of the vector A−B, i.e., D�A�B�=∑n

i=1 �ai −bi�. A large bias distance means that the biased
probability used for optimization is far from the actual
probability during runtime, which, intuitively, could induce
low quality solution. This trend is shown in Table VI.
For each CTGs, we select one branch fork node and
vary its real branch probabilities to generate test cases
whose biased distance ranging from 0.2 to 1.6. For each
test case, the energy dissipation of the system under 3
biased scheduling algorithms is recorded. Table VI gives
the percentage energy increase of biased solutions over
the unbiased solution. As expected, when the bias dis-
tance increase, the solution quality degrades and energy
consumption increases. Furthermore, performing “DVFS
only” and “DVFS+ SCH” give very similar results in
terms of energy savings. This indicates that without correct
task mapping, updating the task ordering does not make
much difference.

7. CONCLUSION

In this paper, we proposed a framework for simultaneous
task mapping and ordering followed by DVFS of con-
trol intensive real-time applications modeled as probabilis-
tic conditional task graph. The goal of our scheduling
algorithm is to minimize the mathematical expectation of
the energy by utilizing the branch selection probability.
The proposed mapping and scheduling algorithm balances
the energy and performance of tasks running on a hetero-
geneous multi-core platform. The proposed slack reclaim-
ing DVFS algorithm effectively distributes the slack based
on current branch selection at run time and achieves sim-
ilar energy reduction as mathematical programming based
DVFS with much lower complexity.
We compared our proposed mapping and ordering algo-

rithm with the minimum makespan, the minimum energy,
the earliest start time and the mapping and ordering algo-
rithm proposed in Ref. [2] on 8 CTGs, and the pro-
posed algorithm can reduce 25.3%, 85.7%, 69.8% and
70.3% energy consumption respectively. The proposed
Slack Reclaiming DVFS algorithm could find good solu-
tion which only consumes 4% more energy compared to
the solution found by Nonlinear Mathematical Program-
ming based DVFS when the operating voltage can be

adjusted continuously. When the operating voltage is dis-
crete, our Slack Reclaiming DVFS algorithm reduces the
energy dissipation by 41.37% comparing to discretized
NLP algorithm.

References

1. J. Luo and N. K. Jha, Static and dynamic variable voltage schedul-
ing algorithms for real-time heterogeneous distributed embedded
systems. Proc. International Conference on VLSI Design, January
(2002), pp. 719–726.

2. Y. Zhang, X. Hu, and D. Z. Chen, Task scheduling and voltage selec-
tion for energy minimization. Proc. Design Automation Conference,
June (2002), pp. 183–188.

3. J. Hu and R. Marculescu, Energy-aware communication and task
scheduling for network-on-chip architectures under real-time con-
straints. Proc. Conference and Exhibition on Design, Automation and
Test in Europe, February (2004), pp. 234–239.

4. E. Dolif, M. Lombardi, M. Ruggiero, M. Milano, and L. Benini,
Communication-aware stochastic scheduling framework for condi-
tional task graphs in multi-processor systems-on-chip. Proc. Inter-
national Conference on Embedded Software, September (2007),
pp. 47–56.

5. P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, Scheduling
of conditional process graphs for the synthesis of embedded systems.
Proc. Conference and Exhibition on Design, Automation and Test in
Europe, February (1998), pp. 132–139.

6. Y. Xie and W. Wolf, Allocation and scheduling of conditional
task graph in hardware/software co-synthesis. Proc. Conference and
Exhibition on Design, Automation and Test in Europe, March (2001),
pp. 620–625.

7. D. Wu, B. M. Al-Hashimi, and P. Eles, Scheduling and mapping
of conditional task graph for the synthesis of low power embedded
systems. IEEE Proceedings of Computers and Digital Techniques,
September (2003), Vol. 150, pp. 262–273.

8. D. Shin and J. Kim, Power-aware scheduling of conditional task
graphs in real-time multiprocessor systems. Proc. International Sym-
posium on Low Power Electronics and Design, August (2003),
pp. 408–413.

9. E. Jacobsen, E. Rotenberg, and J. E. Smith, Assigning confidence to
conditional branch predictions. Annual International Symposium on
Microarchitecture, November (1996), pp. 142–152.

10. A. K. Uht and V. Sindagi, Disjoint eager execution: An optimal
form of speculative execution. Proc. International Symposium on
Microarchitecture, November (1995), pp. 313–325.

11. G. C. Sih and E. A. Lee, A compile time scheduling heuris-
tic for interconnection-constrained heterogeneous processor archi-
tecture. IEEE Transactions on Parallel and Distributed Systems,
February (1993), Vol. 4, pp. 175–187.

12. R. P. Dick, D. L. Rhodes, and W. Wolf, TGFF: Task graphs for
free. Proc. International Workshop on Hardware/Software Codesign
March (1998), pp. 15–18.

13. P. Malani, P. Mukre, Q. Qiu, and Q. Wu, Adaptive scheduling
and voltage scaling for multiprocessor real-time applications with
non-deterministic workload. Proc. Design Automation and Test in
Europe, March (2008).

14. P. Malani, P. Mukre, and Q. Qiu, Power optimization for conditional
task graphs in DVS enabled multiprocessor systems. Proc. Interna-
tional Conference on VLSI-SoC, October (2007).

15. B. Schott, M. Bajura, J. Czarnaski, J. Flidr, T. Tho, and L. Wang,
A modular power-aware microsensor with >1000× dynamic power
range. Proc. Information Processing in Sensor Networks, April
(2005).

16. D. McIntire, K. Ho, B. Yip, A. Singh, W. Wu, and W. J. Kaiser,
The low power energy aware processing (leap) embedded networked

J. Low Power Electron. 8, 1–16, 2012 15

Low Power Task Scheduling and Mapping for Applications with Conditional Branches Ge et al.

sensor system. Proc. International Conference on Information Pro-
cessing in Sensor Networks (2006).

17. D. Lymberopoulos, B. Priyantha, and F. Zhao, Mplatform, A recon-
figurable architecture and efficient data sharing mechanism for mod-
ular sensor nodes. Proc. Information Processing in Sensor Networks
(2007).

18. D. Roberts, R. G. Dreslinski, E. Karl, T. Mudge, D. Sylvester, and
D. Blaauw, When homogeneous becomes heterogeneous—Wearout
aware task scheduling for streaming applications. Proc. Workshop
on Operationg System Support for Heterogeneous Multicore Archi-
tectures, September (2007).

19. J. Luo and N. Jha, Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded sys-
tems. Proc. Asia and South Pacific Design Automation Conference
(2002).

20. Y. Liu, B. Veeravalli, and S. Viswanathan, Novel critical-path based
low-energy scheduling algorithms for heterogeneous multiprocessor
real-time embedded systems. Proc. 13th International Conference
on Parallel and Distributed Systems (2007).

21. M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao, Energy-optimal software partitioning in heterogeneous mul-
tiprocessor embedded systems. Proc. Design Automation Conference
(2008).

22. C. Y. Yang, J. J. Chen, T. W. Kuo, and L. Thiele, An approx-
imation scheme for energy-efficient scheduling of real-time tasks
in heterogeneous multiprocessor systems. Proc. Design, Automation
and Test in Europe Conference and Exhibition (2009).

Yang Ge
Yang Ge received his B.S. degree in telecommunication engineering from Zhejiang University, China in 2007, and M.S. degree from
the department of Electrical and Computer Engineering of Binghamton University, USA in 2009. He is currently working on his Ph.D.
degree in Department of Electrical Engineering and Computer Science in Syracuse University, USA. His research interests include
power and thermal analysis and optimization for multi and many-core system.

Yukan Zhang
Yukan Zhang received her B.S. degree in electrical engineering from Nankai University, China in 2006, and M.S. degree from the
department of Electrical and Computer Engineering of Binghamton University, USA in 2009. She is currently working on her Ph.D.
degree in Department of Electrical Engineering and Computer Science in Syracuse University, USA. Her research interests include
energy harvesting and management for embedded systems.

Qinru Qiu
Qinru Qiu received her M.S. and Ph.D. degrees from the department of Electrical Engineering at University of Southern California
in 1998 and 2001 respectively. She received her B.S. degree from the department of Information Science and Electronic Engineering
at Zhejiang University, China in 1994. Dr. Qiu is currently an associate professor at the Department of Electrical Engineering and
Computer Science in Syracuse University. Before joining Syracuse University, she has been an assistant professor and then an associate
professor at the Department of Electrical and Computer Engineering in State University of New York, Binghamton. Her research
areas are energy efficient computing systems, energy harvesting real-time embedded systems, and neuromorphic computing. She has
published more than 50 research papers in referred journals and conferences. Her works are supported by NSF, DoD and Air Force
Research Laboratory.

Qing Wu
Qing Wu received his Ph.D. degree from the department f Electrical Engineering at University of Southern California in 2002. He
received his B.S. and M.S. degrees from the department of Information Science and Electronic Engineering at Zhejiang University
(Hangzhou, China) in 1993 and 1995, respectively. Dr. Wu is currently a Senior Electronics Engineer at the United States Air Force
Research Laboratory (AFRL), Information Directorate (RI). Before joining AFRL, he was an Assistant Professor in the Department
of Electrical and Computer Engineering at State University of New York, Binghamton. His research interests include large-scale
computational intelligence models, high-performance computing architectures, circuits and systems for energy-efficient computing. He
has published more than forty research papers in international journals and conferences.

23. J. Goossens, D. Milojevic, and V. Nelis, Power-aware real-time
scheduling upon dual CPU type multiprocessor platforms. Proc.
12th International Conference on Principles of Distributed Systems
(2008).

24. A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum,
and A. Nicolau, Profile-based dynamic voltage scheduling using pro-
gram checkpoints. Proc. DATE (2002).

25. P. Yang and F. Catthoor, Pareto-optimization-based run-time
task scheduling for embedded systems. Proc. CODES + ISSS
(2003).

26. T. Ishihara and H. Yasurra, Voltage scheduling problem for dynami-
cally variable voltage processors. Proc. International Symposium on
Low Power Electronics Design, August (1998).

27. K. Choi, W.-C. Cheng, and M. Pedram, Frame-based dynamic volt-
age and frequency scaling for an MPEG player. J. Low Power Elec-
tron. 1, 27 (2005).

28. G. Dhiman and T. Rosing, Dynamic voltage frequency scaling for
multi-tasking systems using online learning. Proc. Intern. Symp. on
Low Power Electronics Design, August (2007).

29. J. Lu and Q. Qiu, Scheduling and mapping of periodic tasks on
multi-core embedded systems with energy harvesting. Proc. Inter-
national Green Computing Conference, July (2011).

30. Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
Hotleakage: A temperature-aware model of subthreshold and gate
leakage for architects. University of Virginia, Department of Com-
puter Science Technical Report (2003).

31. OMNeT++: http://www.omnetpp.org/.

16 J. Low Power Electron. 8, 1–16, 2012

