
Workload Prediction and Dynamic Voltage Scaling for MPEG Decoding

Abstract – In this paper we present three efficient DVS
techniques for a MPEG decoder. Their energy reduction is
comparable to that of the optimal solution. A workload
prediction model is also developed based on the block level
statistics of each MPEG frame. Compared with previous
works, the new model exhibits a remarkable improvement in
accuracy of the prediction. The experimental results show
that, with the new prediction model, the presented DVS
techniques achieve more energy reduction than previous
works while delivering the same Quality of Service (QoS).

I. Introduction

The ever increasing computing power of battery operated
portable devices opens a new era for mobile multimedia
applications. It is important to develop techniques to reduce
the energy dissipation of such applications so that the life
time of the battery can be extended [1]-[5]. One of the
representative examples of multimedia application is
MPEG decoding. The processing time of MPEG decoding
varies significantly due to different frame types and
variation between scenes. We call this processing time as
workload. Dynamic Voltage Scaling (DVS), which allows
the processor dynamically alter its speed and voltage at run
time, is one of the most popular energy reduction techniques
for the applications that have large workload variations [9].

Using DVS will impact the QoS of the MPEG decoder in
several ways. The first to consider is the frame dropping rate.
The decoder displays decoded frames at a constant rate.
Each frame must be decoded before its display deadline.
Otherwise, it will be dropped. The DVS algorithm has the
potential to intensify frame dropping. Another impacting
factor is the buffer size. Buffers are usually used with DVS
to even the workload. Input buffers and output buffers can
be inserted before and after the MPEG decoder. They
provide the opportunity to “borrow” or “steal” processing
time among adjacent frames so that a constant voltage can
be used for decoding [1][4][5]. However, increasing the
buffer adds the hardware cost. Careful trade-off decision
should be made. Finally, the decoding time for each frame is
different when using DVS, however, the frame input and
display rate remain constant. To guarantee a smooth and
continuous display, the decoding and displaying of the first
frame need to be delayed, which we refer as decoding
latency. Input buffers are needed to store the incoming
frames before they entering the decoder. The buffer size is
proportional to the length of the latency.

In this paper, we measure the quality of DVS strategy
with its energy reduction, the buffer usage, the frame
dropping rate and the decoding latency. Three DVS schemes
for MPEG decoding are proposed, all of which achieve
comparable energy reduction as the optimal solution.

Global-Grouping is an offline algorithm whose energy
consumption is on average the most close to that of the
optimal solution, i.e. decoding all the frames on the lowest
possible and constant speed, among all three proposed
approaches. With certain decoding latency and some
input/output buffers, the Global-Grouping guarantees a
continuous display at a constant rate without frame
dropping, provided that the workload information of each
frame is accurate. Two online heuristic algorithms,
Dynamic-Grouping and GOP-optimal, are also proposed
with different energy reductions and buffer requirements.

For most DVS techniques to achieve a good performance,
it is important to predict the workload of each task as
accurate as possible. In this paper we develop a linear model
to predict the decoding workload of each frame. To the best
of our knowledge, this is the first prediction model that
penetrates into the layered structure of video stream and
utilizes the information lying at block level instead of frame
level or macro block level. It gives more than 50% reduction
in prediction error compared with some of the best known
approaches.

 The rest of this paper is organized as follows. Section II
describes the background of MPEG and related works in
this area. In Section III we discuss our prediction model and
its implementation in detail. Our scheduling methods are
given in Section IV. We represent our experimental results
and discussion in Section V. Finally, the conclusions are
given in Section VI.

II. Background and Related Works
A. Background of MPEG

MPEG is a video compression standard which represents
the video stream as a series of still images [3]. These images,
also called frames, are displayed sequentially at constant
rate (e.g. 25 fps or frames per second). There are three types
of frames defined in MPEG standard. I-frames or
intra-coded frames are encoded as a whole image i.e. it does
not depend on any other picture. P-frames or predictive
coded frames are encoded using past I or P frame as a
reference. Finally there are B-frames also called as
bi-directionally predictive coded frames which use both past
and future I or P frames as references. The MPEG encoder
always sends the encoded frames in a rearranged order so
that the MPEG decoder can decompress the frames with
minimum frame buffering [7]. For example, a movie with
frame order of IBBPBBP will be rearranged in the output
sequence as IPBBPBB.

The MPEG video stream has a hierarchical layered
structure. From top to bottom, it can be divided into

sequence, GOP, frame, slice, macro block and block layers.
A video stream is a sequence of GOPs (Group of Pictures),
each one of which comprises of several frames (ideally 12 to
15). Each frame is further divided into vertical strips called
slices. Each slice contains several macro blocks which are a
16 by 16 pixel area of the image. There are six blocks per
macro block amongst which four are luminance (Y) and two
are chrominance (Cr and Cb) blocks.

There are different types of macro blocks similar as
frames. I macro blocks are encoded without using any other
macro block as a reference. P, B and Bi macro blocks are
encoded with forward, backward and bi-directional
references respectively. Further, there can be different types
of macro blocks within a single frame. The I frame contains
I macro blocks only. The P frame contains both I and P
macro blocks and the B frame contains all of the four types
of macro blocks.

Three major operations in MPEG decoding, which
consumes most of the processing time, are Run Length
Decoding, Inverse Discrete Cosine Transform (IDCT) and
motion compensation. All of the four types of macro blocks
require Run Length Decoding during their decoding. I
macro blocks also require IDCT . P, B and Bi macro blocks
may require IDCT and in addition also require motion
compensation.

A detailed study of the MPEG coding algorithm shows
that the matching process in motion estimation, which is the
counter part of motion compensation at the encoder side, is
done at block level. For example, in process of decoding a P
macro block there can be a block which does not require
IDCT and decoded only using motion compensation while
the other blocks require both. This is the major motivating
factor for our prediction model.

B. Related Works

Generally, previous works on DVS for MPEG decoding
can be classified into two categories: prediction-based and
non-prediction-based.

For the prediction-based scheduling, the accuracy of
predicted workload plays a significant role in the
performance of these techniques, either for energy saving
or for QoS. Most prediction mechanisms utilize the
correlation between the frame size and the frame decode
time [2][8][9]. A linear relation is usually depicted between
these two. The authors of [9] developed three predictors to
predict decoding workload of each frame. The best one,
which will be denoted as Frame_Type_Len in the rest of
the paper, dynamically updates the average decode time for
each frame type and then adds an offset using a weighted
factor based on the slope of frame size vs. decode time
curve. Our experimental results show that, by carefully
analyzing the input video stream, our predictor gives more
accurate results than the Fram_Type_Len predictor.

The prediction accuracy can be improved by considering
other variables lying in a video stream apart from frame
size and types. The authors of [1] divide the frame

decoding time into two parts, frame-dependent (FD) part
and frame-independent (FI) part. The time of the FD is
predicted as the moving average of previous FD. The
decoder in this work is assumed to decode only one frame
in each display interval, which limits its energy saving.

There are also some improved DVS techniques that do
not rely on workload prediction [4][5]. In both of the two
works, buffers are used to avoid deadline missing.
Reference [5] introduces an online DVS technique that
fully utilizes the VST (workload-variation slack time) of
each task. However, the worst case execution time is
assumed to be known in advance, which is not very
practical in real world. Another DVS technique using
feedback control [4] to adjust the supply voltage based on
the number of the frames in the output buffer. However,
they assume that a frame is always ready for decoding.
Furthermore, it is difficult to control the gain of the
feedback controller and a slight change in the gain has a
great impact on the entire performance. Despite of the
above mentioned limitations, it is still the best existing
technique we are aware of for both energy reduction and
deadline missing control. In Section V, we will compare
our algorithms with this approach.

III. Workload Prediction
The decode time of each frame varies primarily with the

frame size. However, considering only frame size to
estimate the workload leads to poor prediction accuracy.
Another operation in decoding process which is
responsible for introducing workload variation is IDCT.
We experimentally developed a prediction model based on
the number of IDCT computations required for each frame.
This prediction scheme yields better results but still suffers
from poor correlation.

We carefully analyzed the MPEG encoding/decoding
algorithm and realized that different blocks inside the same
macro block may require different decoding operations (i.e.
IDCT and motion compensation). Some of them may need
only motion compensation while others need both. It is
because the matching process in motion estimation at the
encoder side is done at block level and some blocks have a
zero remaining energy after motion estimation (not
requiring a DCT operation) while others have a non-zero
remaining energy. Further, the processing times for
forward, backward and bi-directional motion compensation
are different.

Table 1 Relation between the macro blocks and the blocks

I P B Bi

IDCT only M1 X X X X
IDCT + FW Motion M2 X

FW Motion only M3 X
IDCT + BW Motion M4 X

BW Motion only M5 X
IDCT + Bi Motion M6 X

Bi Motion only M7 X
No IDCT No Motion M8 X X X

Macro Block Block Type

% Absolute Error

0

20

40

60

80

100

bobo
flo

wer

hak
inne

n red

al_
sm

as
h

ca
nyo

n

hubb
le

air
wolf2 sk

i

Blaz
er

Ave
rag

e

frame_avg
frame_type_len
Our Approach

For example, the bi-directional motion compensation
takes the longest time because it needs to consider two
references. Finally, in P, B and Bi macro blocks, there are a
large number of skipped blocks which are copied directly
from the reference block. No IDCT or motion
compensation is needed for these blocks. The processing
time for these skipped blocks is simply the time for
memory read and write. Based on the above observations
we divide the MPEG blocks into 8 different types given in
the first column of Table 1. Different types of blocks
require different processing during the decoding. Not all of
the 8 types of blocks can co-exist in a macro block. The
relation between the macro blocks and different types of
blocks are summarized in Table 1. The variable Mi, 1 ≤ i ≤
8, is used to represent the number of type i blocks in a
frame. The method to extract these values will be discussed
later.

Our analysis shows that a considerable variation still
exists for the decoding time of the I frames, although they
have the same number of type 1 blocks. It means that the
processing of the Run Length Decoder is not negligible.
Further study shows that the processing time of the Run
Length Decoder is proportional to the size of the data.
Therefore, another variable, M9, is introduced to account
for the size of the frame.

Equation (1) shows our prediction model based on these
nine variables. The coefficients w0, w1, …, w9 are obtained
using linear regression analysis.

∑ ≤≤ ⋅+= 910__ i ii Mwwtimedecodeframe (1)
 For the same MPEG decoder, the processing time of
Run Length Decoding, IDCT and motion compensation on
a single block is the same for different types of movies.
With the above formulation of the frame decoding time, we
can derive one set of regression coefficients that works for
all types of movies. Hence, only one predictor is needed
for each decoder. Most regression analysis based prediction
model need to have several sets of regression coefficients
for different types of movies.

We carefully trained the prediction model and then
applied it to a variety of movies including animated movies,
high motion and low motion scenes from actual movies.
The length of these movie clips ranges from 150 frames up
to 3000 frames. The target decoder is the Berkeley MPEG
decoder [7] running on Pentium IV 2.6GHz processor. We
simulated and compared our prediction results with that of
two other predictors given by reference [1], which to the
best of our knowledge are the most efficient amongst all
contemporary approaches. The Frame_Avg approach
predicts the decoding time as the moving average of
previous decoding time for each type. The
Frame_Type_Len approach improves the Frame_Avg
approach by adding an offset to account for the frame size.
The Frame_Type_Len approach is also trained with the
same set of movies to obtain a fair comparison. Fig. 1
depicts the comparison of the Prediction Errors (PE) of
three predictors.

Fig. 1. Comparison of prediction errors

The PE is calculated as
a

ap

T
TT

n
PE

−
=

1 , where Tp and

Ta are predicted and actual decoding time respectively. As
can be seen from the figure our predictor has an average of
66% improvement in the prediction error compared to both
approaches.

In addition to the lower prediction error, the new
predictor gives better correlation with the actual value. Fig.
2 gives the scatter plot of the predicted workload vs. actual
workload for those three approaches. Fig. 3 gives the
comparison of the correlation coefficients.

(a) Frame_Avg (b) Frame_Type_Len

(a) Our approach

Fig. 2. Predicted workload vs. actual workload

Correlation Coefficient (R2)

0

0.4

0.8

1.2

1.6

bo
bo

flo
wer

ha
kin

ne
n

re
d

al_
sm

as
h

ca
ny

on

hu
bb

le

air
wolf

2
sk

i

Blaz
er

Ave
ra

ge

frame_avg
frame_type_len
our approach

Fig. 3. Comparison of correlation coefficients

At the last of this section, we go back to the layered
structure of MPEG video stream and explain how to

2 4 6 8 10 12 14

x 10
-4

2

4

6

8

10

12

14

16
x 10

-4

Predicted decode time by our model (sec)

Ac
tu

al
 D

ec
od

e
Ti

m
e

(s
ec

)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
-3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3

Predicted decode time by frame avg approach (sec)

Ac
tu

al
 d

ec
od

e
tim

e
(s

ec
)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
-3

4

5

6

7

8

9

10

11

12

13

14
x 10

-4

Predicted decode time by frame type len approach (sec)

Ac
tu

al
 d

ec
od

e
tim

e
(s

ec
)

extract the variables M1~M8. There is a fix sized header at
each hierarchy level of a MPEG stream, which contains
important information needed for decoding. The
information used by our model resides in the macro block
header which contains a start code and 6 bits of
information. The value of these bits is used as an index for
a look up table stored in the decoder and each 9 bits entry
in this table contains four fields as illustrated in Fig. 4. The
flag mb_intra indicates whether the given macro block is
intra coded or not. The CBP (coded block pattern) is a six
bit code that indicates whether the IDCT operation is
needed for each block. The Motion FW and Motion BW
flags indicate the existence of forward and backward
motion compensations. By combining these parameters we
can easily count the number of each categorized block for
our model.

Fig. 4. Format of macro block header

IV. Dynamic Voltage Scaling
In this section, we introduce three DVS methods for

MPEG decoding. For these approaches, continuous
frequency/voltage scaling capabilities are assumed. Also,
since the time needed to switch between different voltage
settings is less than 1% of the time needed for decoding
each frame [1], and some newer processors may even
lower this percentage, we assume that the switch time is
negligible. It is also assumed that the input and display of
the MPEG decoder are at a constant rate whose period is T.

Given a MPEG stream with n frames, the optimal
constant decoding voltage Vopt can be calculated as:

max

1

load
V

i
load

V full
n
i i

opt ⋅= ∑ = ,

where loadi is the workload of the ith frame, loadmax is the
largest workload and Vfull is the level of supply voltage
which finishes processing the loadmax within T . Using the
Vopt the video stream can be decoded within n*T time and
the energy dissipation is minimal. We call this approach as
optimal-VS. There are several limitations with the
optimal-VS. 1) it requires that the workload of each frame
is known in advance 2) It decodes the frame at a constant
speed without considering the frame incoming time or
output deadline. As a result a large input/output buffer is
needed; otherwise, there will be a QoS penalty. The
following three DVS algorithms are developed to resolve
these two problems.

A. GOP-optimal DVS

The GOP-optimal algorithm buffers all the frames in a

GOP, estimates their workload, and decodes the entire
GOP using a constant voltage that is calculated similar as
Vopt. This is an on-line heuristic that is based on
Optimal-VS. It does not need the workload information of
the entire video stream before decoding. However, it does
not consider the frame incoming time and display deadline
either. The first frame in a GOP is always an I frame,
which usually has larger workload than other frames in the
GOP and needs longer decoding time. To guarantee that
there is always a frame ready to be displayed, the simplest
way is to start displaying the first frame after the entire
GOP has been decoded. As a result, the output buffer of the
decoder should be large enough to hold all of the frames in
a GOP. Furthermore, the input frames come in at a constant
rate. Because the first frame in a GOP takes the longest
decoding time, extra buffers are needed to store the
incoming frames. In the worst case, the input buffer needs
to be two GOP long. Note that these are only conservative
estimations of the buffer size. The actual buffer usage
could be less.

B. Global-Grouping

Let the display time of the ith frame denoted as Di. The
time to decode a n frame MPEG stream can be divided into
n intervals (0, D1), (D1, D2), …, (Dn-1, Dn). The
Global-Grouping gathers consecutive intervals into groups.
It divides the decoding time into m groups G1, G2, …, Gm.
Inside the jth group, a constant voltage Vj is used. Vj is
selected such that all frames whose display time is within
Gj can be decoded before its display deadline. Note that the
Global-Grouping is applicable to the general applications
with deadlines.

During the grouping procedure, the average workload in
the time zones (D0, D1), (D0, D2), …,, (D0, Dn) will be
tested and the intervals in the time zone that has the
maximum average workload will be grouped together.
After that a new search will start on the rest of the intervals.
The pseudo code of the Global-Grouping algorithm is
given in Fig. 5, where Ci is the decoding workload of
frame i, which should be displayed at time Di.

As mentioned in section II, a B frame has two reference
frames. Both of them are received before the B frame and
they also should be decoded before the B frame. While the
forward reference frame is displayed before the B frame,

Fig. 5. Global-Grouping algorithm

Start code Information
field

mb_intra CBP Motion
FW

Motion
BW

1 2 7 8 9 …

1. Set size as the total number of frames;
2. index = 0, j = 0;
3. while index < size
4. for k = index+1 to k = size

5. find out the value of k, which makes

k
ii index

k i

C
D D

=

−
∑

maximum;
6. make workload from index+1 to k group Gj;
7. index = k, j++, return to step 3;

Display
deadline

10 32 54 76 98

Decoding end
1 32 54 76 98

4 65 87 109 1211
Input arrival

Decoding latency
(input buffering)

Displaying lag
(output buffering)

0

3

Table 2 Workload rearrangement
index 1 2 3 4 5 6 7 8
receive order I1 P2 B3 B4 P5 B6 B7 I8
display order I1 B3 B4 P2 B6 B7 P5 I8
Workload (Ci) I1 P2+B3 B4 0 P5+B6 B7 0 I8

the backward reference frame is display after the B frame.
Therefore, care should be used when calculating the
workload Ci. Table 2 shows the relationship of receiving
order, display order and rearranged decoding workload in
each display interval. Note that the Global-Grouping
enables the decoder to borrow the time from the previous
interval; therefore the time to decode Ci could be larger
than one T.

The result of Global-Grouping has some interesting
characteristics as Theorem 1 and 2 states. The proof is
straightforward and will be skipped due to the space
limitation.

Theorem 1: For each group Gj, we can always find a
constant voltage Vj, under which the decoding of each
frame can be finished before its display deadline and the
idle time of the processor is 0. Vj is monotonically
decreasing as j increases and it is proportional to the

average workload in this group:
∑

∑
−−

=
i ii

i i
avg DD

C
C

)(1
,

where (Di-1, Di)∈Gj.

Theorem 2: The last frame of a group has the largest
workload amongst the frames within this group. Its
decoding is finished right at its display deadline. Other
frames are decoded before their display deadline provided
that the workload information is accurate.

Input and output buffers are needed for the
Global-Grouping to guarantee that there is always a frame
available for decoding or displaying. An example is
illustrated in Fig. 6. In order for each frame to be ready
before their decoding starts, the receiving procedure must
start 3T earlier than the decoding procedure. A buffer at the
input side must be used to store the incoming frames
during this 3T delay period. Therefore, the size of the
buffer is 3 frames. Furthermore, since there is a displaying
lag, output buffers are needed to store those that finish
decoding before their display deadline. In the example, a
buffer of 2 frames is needed. It is obvious that the input
buffer size (IB) and the output buffer size (OB) always
have the following relation 1±= OBIB .

Fig. 6. Input and output buffering

The IB can be calculated as the following equation

))](([maxmax __
,

∑ =−= i
Gofstartk

javg

k
ij j C

CflooriIB , (2)

where Cavg,j is the average workload of group Gj. The
experiments show that, although the Global-Grouping
needs fewer buffers than the Optimal-VS, the amount is
still quite considerable.

The Global-Grouping is an offline strategy and it needs
the workload profile of the entire video stream. Compared
with the optimal solution, it requires less buffer while
achieves a comparable energy reduction with less display
latency. This algorithm is useful if the processor decodes
and displays certain movie clips repeatedly. It can also be
applied at the encoder side where the workload profile is
available given the condition that the encoder can
communicate with the decoder about the grouping and
voltage selection results.

C. Dynamic-Grouping

The Dynamic-Grouping is an online heuristic based on
Global-Grouping. It buffers the input frames up to a certain
window size (e.g. a GOP size). The workload of each
frame inside the window is predicted and grouping is
applied within this window. When a new frame comes in,
the decoder first predicts its workload loadi then updates
the grouping dynamically as described in Fig. 7. Here, M is
the number of groups in current window and Cavg, j is the
average workload of the jth group.

The size of the input buffer for the Dynamic-Grouping
is equal to the size of the window while the size of the
output buffer can be calculated using equation (2).
Compared with GOP-optimal, Dynamic-Grouping gives
better trade-off between energy and buffer size.

Fig. 7. Dynamic group update

V. Experimental Results and Discussion
The presented DVS algorithms are tested on several

different movie clips. The statistics of these clips is given
in Table 3.

We simulated and compared the proposed DVS
algorithms with three other algorithms. 1) Frame-based,
which decodes one and only one frame in each display
interval, 2) Feedback control based [4] and 3) Optimal-VS.

1. M = index of the last group in the current window;
2. set the incoming frame to be group M+1;
3. for l = M+1 to 1
4. if (Cavg,l > Cavg,l-1)
5. merge group l and l-1
6. set the index of the new group as l – 1
7. else
8. stop
9. end

Table 3 Characteristics of MPEG clips
MPEG clips

name index
Frame
type

of
frames

GOP
size

hakkinen 1 I,P,B 799 12

bobo 2 I,P,B 679 90

ski 3 I,P,B 1513 15

blazer 4 I,P,B 2998 12

wg 5 I,P 130 6

The energy values are reported as the percentage
degradation over the optimal-VS approach. The buffer
sizes are the size of display buffer in the unit of frames.
Note that for the Global-Grouping and Optimal-VS, the
input buffer size is the same as that of the output buffer
plus or minus 1. For Dynamic-Grouping and GOP-optimal,
input buffers of at most one GOP and two GOPs long are
used, respectively. Some input buffers are also needed in
feedback approach to guarantee that there is always a
frame available to decode whenever the previous one
finishes decoding. For all algorithms, the decoding latency
is proportional to the input buffer size.

Table 4 gives the energy and buffer usage of different
DVS algorithms when the workload prediction is perfect. It
shows that while the Global-Grouping always gives similar
energy reduction as the optimal one, it does not have much
reduction in the buffer requirements. The
Dynamic-Grouping gives the best balance between the
energy reduction and the buffer requirements.

Table 5 gives the energy and the buffer usage when the
workload prediction is not perfect. The workload
prediction is given by our prediction model discussed in
Section III. The accuracy of prediction has a great impact
on the performance of DVS techniques, in terms of
deadline missing and buffer usage, however, not so large
impact on the energy dissipation. Since a frame will be
dropped if it misses the decoding deadline, this causes
unfair energy comparison. We scaled up the predicted
workload by 5%, which is enough to make sure that the
deadline miss rate is zero. For some cases, this scale
increases the buffer usage however decrease the energy
dissipation. The results show that both Global-Grouping
and Dynamic-Grouping are pretty robust when working
with our workload predictor.

Table 4 Energy and buffer usage of DVS algorithm with perfect
workload prediction

MPEG clips 1 2 3 4 5
Energy (%) 200.3 65.1 88.6 118.2 55.8Frame-based Buffer 1 1 1 1 1
Energy(%) 3.3 18.1 20.2 13.4 17.7Feedback Buffer 9 10 9 10 9
Energy(%) 1.4 4.5 11.8 5.6 10 GOP

optimal Buffer 3 9 3 5 2
Energy(%) 2.2 2.4 10.1 4.1 10 Dynamic

grouping Buffer 3 12 4 2 2
Energy(%) 2.1 2.0 2.1 0.5 9.8Global

grouping Buffer 8 15 71 56 7
Energy(%) 0 0 0 0 0 Optimal Buffer 26 26 97 77 9

Table 5 Energy and buffer usage of DVS algorithm with
imperfect workload prediction

Global grouping Dynamic
grouping Clips Energy

(%)
Buffer

size
Energy

(%)
Buffer

size
1 0.78 32 2.8 3
2 0.99 18 1.4 12
3 2.7 79 11.8 5
4 0.3 66 10.7 7
5 0.4 9 4.6 4

VI. Conclusions

In conclusion of our work, we present a workload
prediction model, which is motivated by detailed analysis
of MPEG decoding procedure. The predictor utilizes the
block level statistics of each MPEG frame and gives highly
accurate prediction results. Three DVS algorithms are
further presented. All of which gives comparable energy
reduction as the optimal voltage scaling and work robustly
with our predictor. The experimental results show that the
Dynamic-Grouping algorithm gives the best trade-off
between energy reduction and the quality of decoding.

References

[1] K. Choi, K. Dantu, W. Cheng and M. Pedram, “Frame-based

dynamic voltage scaling for a MPEG decoder,” ICCAD’02 –
A give the CM/IEEE Int’l Conf. on Computer Aided Design,
2002, pp. 732-737

[2] M. Mesarina and Y. Turner, “Reduced energy decoding of
MPEG streams,” Proc. of Multimedia Computing and
Networking, San Jose, CA 2002.

[3] D. Son, C. Yu, and H. Kim, “Dynamic voltage scaling on
MPEG decoding,” International Conference of Parallel and
Distributed System (ICPADS), June 2001.

[4] Z. Lu, J. Lach, M. Stan, and K. Skadron, “Reducing
multimedia decode power using feedback control,” In
Proceedings of the 21st International Conference on
Computer Design (ICCD’03), 2003.

[5] C. Im, S. Ha, and H. Kim, “Dynamic voltage scheduling with
buffers in low-power multimedia applications,” ACM
Transactions on Embedded Computing Systems, Vol. 3, pp
686-705, November 2004.

[6] Y. Lu, L. Benini, and G. D. Micheli, “Dynamic frequency
scaling with buffer insertion for mixed workloads,” IEEE
Transactions on computer-aided design of integrated circuits
and systems, 21(11), pp. 1284-1305, November 2002.

[7] http://bmrc.berkeley.edu/frame/research/mpeg/mpeg_overvie
w.html

[8] E. Nurvitadhi, B. Lee, C. Yu and M. Kim, “A comparative
study of dynamic voltage scaling for low-power video
decoding,” Int’l Conf. on Embedded Systems and
Applications, June 23-26, 2003.

[9] A. Bavier, A. Montz, and L. Peterson, “Predicting MPEG
execution times,” SIGMETRICS / PERFORMANCE ’98,
Int’l Conf. On Measurement and Modeling of Computer
Systems, 1998, pp. 131-140.

[10] L. Benini, G. De Micheli, “System-level power optimization:
techniques and tools,” International Symposium on Low
Power Electronics and Design, 1999.

