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Abstract – In this paper we present three efficient DVS 
techniques for a MPEG decoder. Their energy reduction is 
comparable to that of the optimal solution. A workload 
prediction model is also developed based on the block level 
statistics of each MPEG frame. Compared with previous 
works, the new model exhibits a remarkable improvement in 
accuracy of the prediction. The experimental results show 
that, with the new prediction model, the presented DVS 
techniques achieve more energy reduction than previous 
works while delivering the same Quality of Service (QoS). 
 

I. Introduction 

The ever increasing computing power of battery operated 
portable devices opens a new era for mobile multimedia 
applications. It is important to develop techniques to reduce 
the energy dissipation of such applications so that the life 
time of the battery can be extended [1]-[5]. One of the 
representative examples of multimedia application is 
MPEG decoding. The processing time of MPEG decoding 
varies significantly due to different frame types and 
variation between scenes. We call this processing time as 
workload. Dynamic Voltage Scaling (DVS), which allows 
the processor dynamically alter its speed and voltage at run 
time, is one of the most popular energy reduction techniques 
for the applications that have large workload variations [9].  

Using DVS will impact the QoS of the MPEG decoder in 
several ways. The first to consider is the frame dropping rate. 
The decoder displays decoded frames at a constant rate. 
Each frame must be decoded before its display deadline. 
Otherwise, it will be dropped. The DVS algorithm has the 
potential to intensify frame dropping. Another impacting 
factor is the buffer size. Buffers are usually used with DVS 
to even the workload. Input buffers and output buffers can 
be inserted before and after the MPEG decoder. They 
provide the opportunity to “borrow” or “steal” processing 
time among adjacent frames so that a constant voltage can 
be used for decoding [1][4][5]. However, increasing the 
buffer adds the hardware cost. Careful trade-off decision 
should be made. Finally, the decoding time for each frame is 
different when using DVS, however, the frame input and 
display rate remain constant. To guarantee a smooth and 
continuous display, the decoding and displaying of the first 
frame need to be delayed, which we refer as decoding 
latency. Input buffers are needed to store the incoming 
frames before they entering the decoder. The buffer size is 
proportional to the length of the latency. 

In this paper, we measure the quality of DVS strategy 
with its energy reduction, the buffer usage, the frame 
dropping rate and the decoding latency. Three DVS schemes 
for MPEG decoding are proposed, all of which achieve 
comparable energy reduction as the optimal solution. 

Global-Grouping is an offline algorithm whose energy 
consumption is on average the most close to that of the 
optimal solution, i.e. decoding all the frames on the lowest 
possible and constant speed, among all three proposed 
approaches. With certain decoding latency and some 
input/output buffers, the Global-Grouping guarantees a 
continuous display at a constant rate without frame 
dropping, provided that the workload information of each 
frame is accurate. Two online heuristic algorithms, 
Dynamic-Grouping and GOP-optimal, are also proposed 
with different energy reductions and buffer requirements. 

For most DVS techniques to achieve a good performance, 
it is important to predict the workload of each task as 
accurate as possible. In this paper we develop a linear model 
to predict the decoding workload of each frame. To the best 
of our knowledge, this is the first prediction model that 
penetrates into the layered structure of video stream and 
utilizes the information lying at block level instead of frame 
level or macro block level. It gives more than 50% reduction 
in prediction error compared with some of the best known 
approaches. 

 The rest of this paper is organized as follows. Section II 
describes the background of MPEG and related works in 
this area. In Section III we discuss our prediction model and 
its implementation in detail. Our scheduling methods are 
given in Section IV. We represent our experimental results 
and discussion in Section V. Finally, the conclusions are 
given in Section VI. 

II. Background and Related Works 
A. Background of MPEG 

MPEG is a video compression standard which represents 
the video stream as a series of still images [3]. These images, 
also called frames, are displayed sequentially at constant 
rate (e.g. 25 fps or frames per second). There are three types 
of frames defined in MPEG standard. I-frames or 
intra-coded frames are encoded as a whole image i.e. it does 
not depend on any other picture. P-frames or predictive 
coded frames are encoded using past I or P frame as a 
reference. Finally there are B-frames also called as 
bi-directionally predictive coded frames which use both past 
and future I or P frames as references. The MPEG encoder 
always sends the encoded frames in a rearranged order so 
that the MPEG decoder can decompress the frames with 
minimum frame buffering [7]. For example, a movie with 
frame order of IBBPBBP will be rearranged in the output 
sequence as IPBBPBB. 

The MPEG video stream has a hierarchical layered 
structure. From top to bottom, it can be divided into 



sequence, GOP, frame, slice, macro block and block layers. 
A video stream is a sequence of GOPs (Group of Pictures), 
each one of which comprises of several frames (ideally 12 to 
15). Each frame is further divided into vertical strips called 
slices. Each slice contains several macro blocks which are a 
16 by 16 pixel area of the image. There are six blocks per 
macro block amongst which four are luminance (Y) and two 
are chrominance (Cr and Cb) blocks.  

There are different types of macro blocks similar as 
frames. I macro blocks are encoded without using any other 
macro block as a reference. P, B and Bi macro blocks are 
encoded with forward, backward and bi-directional 
references respectively. Further, there can be different types 
of macro blocks within a single frame. The I frame contains 
I macro blocks only. The P frame contains both I and P 
macro blocks and the B frame contains all of the four types 
of macro blocks. 

Three major operations in MPEG decoding, which 
consumes most of the processing time, are Run Length 
Decoding, Inverse Discrete Cosine Transform (IDCT) and 
motion compensation. All of the four types of macro blocks 
require Run Length Decoding during their decoding. I 
macro blocks also require IDCT . P, B and Bi macro blocks 
may require IDCT and in addition also require motion 
compensation.  

A detailed study of the MPEG coding algorithm shows 
that the matching process in motion estimation, which is the 
counter part of motion compensation at the encoder side, is 
done at block level. For example, in process of decoding a P 
macro block there can be a block which does not require 
IDCT and decoded only using motion compensation while 
the other blocks require both. This is the major motivating 
factor for our prediction model.  

B. Related Works 

Generally, previous works on DVS for MPEG decoding 
can be classified into two categories: prediction-based and 
non-prediction-based.  

For the prediction-based scheduling, the accuracy of 
predicted workload plays a significant role in the 
performance of these techniques, either for energy saving 
or for QoS. Most prediction mechanisms utilize the 
correlation between the frame size and the frame decode 
time [2][8][9]. A linear relation is usually depicted between 
these two. The authors of [9] developed three predictors to 
predict decoding workload of each frame. The best one, 
which will be denoted as Frame_Type_Len in the rest of 
the paper, dynamically updates the average decode time for 
each frame type and then adds an offset using a weighted 
factor based on the slope of frame size vs. decode time 
curve. Our experimental results show that, by carefully 
analyzing the input video stream, our predictor gives more 
accurate results than the Fram_Type_Len predictor. 

The prediction accuracy can be improved by considering 
other variables lying in a video stream apart from frame 
size and types. The authors of [1] divide the frame 

decoding time into two parts, frame-dependent (FD) part 
and frame-independent (FI) part. The time of the FD is 
predicted as the moving average of previous FD. The 
decoder in this work is assumed to decode only one frame 
in each display interval, which limits its energy saving. 

There are also some improved DVS techniques that do 
not rely on workload prediction [4][5]. In both of the two 
works, buffers are used to avoid deadline missing. 
Reference [5] introduces an online DVS technique that 
fully utilizes the VST (workload-variation slack time) of 
each task. However, the worst case execution time is 
assumed to be known in advance, which is not very 
practical in real world. Another DVS technique using 
feedback control [4] to adjust the supply voltage based on 
the number of the frames in the output buffer. However, 
they assume that a frame is always ready for decoding. 
Furthermore, it is difficult to control the gain of the 
feedback controller and a slight change in the gain has a 
great impact on the entire performance. Despite of the 
above mentioned limitations, it is still the best existing 
technique we are aware of for both energy reduction and 
deadline missing control. In Section V, we will compare 
our algorithms with this approach.  

III. Workload Prediction 
The decode time of each frame varies primarily with the 

frame size. However, considering only frame size to 
estimate the workload leads to poor prediction accuracy. 
Another operation in decoding process which is 
responsible for introducing workload variation is IDCT. 
We experimentally developed a prediction model based on 
the number of IDCT computations required for each frame. 
This prediction scheme yields better results but still suffers 
from poor correlation.  

We carefully analyzed the MPEG encoding/decoding 
algorithm and realized that different blocks inside the same 
macro block may require different decoding operations (i.e. 
IDCT and motion compensation). Some of them may need 
only motion compensation while others need both. It is 
because the matching process in motion estimation at the 
encoder side is done at block level and some blocks have a 
zero remaining energy after motion estimation (not 
requiring a DCT operation) while others have a non-zero 
remaining energy. Further, the processing times for 
forward, backward and bi-directional motion compensation 
are different.  

Table 1 Relation between the macro blocks and the blocks  
 

 
I P B Bi

IDCT only M1 X X X X 
IDCT + FW Motion M2  X   

FW Motion only M3  X   
IDCT + BW Motion M4   X  

BW Motion only M5   X  
IDCT + Bi Motion M6    X 

Bi Motion only M7    X 
No IDCT No Motion M8  X X X 

Macro Block Block Type



% Absolute Error

0

20

40

60

80

100

bobo
flo

wer

hak
inne

n red

al_
sm

as
h

ca
nyo

n

hubb
le

air
wolf2 sk

i

Blaz
er

Ave
rag

e

frame_avg
frame_type_len
Our Approach

For example, the bi-directional motion compensation 
takes the longest time because it needs to consider two 
references. Finally, in P, B and Bi macro blocks, there are a 
large number of skipped blocks which are copied directly 
from the reference block. No IDCT or motion 
compensation is needed for these blocks. The processing 
time for these skipped blocks is simply the time for 
memory read and write. Based on the above observations 
we divide the MPEG blocks into 8 different types given in 
the first column of Table 1. Different types of blocks 
require different processing during the decoding. Not all of 
the 8 types of blocks can co-exist in a macro block. The 
relation between the macro blocks and different types of 
blocks are summarized in Table 1. The variable Mi, 1 ≤ i ≤ 
8, is used to represent the number of type i blocks in a 
frame. The method to extract these values will be discussed 
later.  

Our analysis shows that a considerable variation still 
exists for the decoding time of the I frames, although they 
have the same number of type 1 blocks. It means that the 
processing of the Run Length Decoder is not negligible. 
Further study shows that the processing time of the Run 
Length Decoder is proportional to the size of the data. 
Therefore, another variable, M9, is introduced to account 
for the size of the frame. 

Equation (1) shows our prediction model based on these 
nine variables. The coefficients w0, w1, …, w9 are obtained 
using linear regression analysis.  

∑ ≤≤ ⋅+= 910__ i ii Mwwtimedecodeframe      (1) 
 For the same MPEG decoder, the processing time of 
Run Length Decoding, IDCT and motion compensation on 
a single block is the same for different types of movies. 
With the above formulation of the frame decoding time, we 
can derive one set of regression coefficients that works for 
all types of movies. Hence, only one predictor is needed 
for each decoder. Most regression analysis based prediction 
model need to have several sets of regression coefficients 
for different types of movies. 

We carefully trained the prediction model and then 
applied it to a variety of movies including animated movies, 
high motion and low motion scenes from actual movies. 
The length of these movie clips ranges from 150 frames up 
to 3000 frames. The target decoder is the Berkeley MPEG 
decoder [7] running on Pentium IV 2.6GHz processor. We 
simulated and compared our prediction results with that of 
two other predictors given by reference [1], which to the 
best of our knowledge are the most efficient amongst all 
contemporary approaches. The Frame_Avg approach 
predicts the decoding time as the moving average of 
previous decoding time for each type. The 
Frame_Type_Len approach improves the Frame_Avg 
approach by adding an offset to account for the frame size. 
The Frame_Type_Len approach is also trained with the 
same set of movies to obtain a fair comparison. Fig. 1 
depicts the comparison of the Prediction Errors (PE) of 
three predictors. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Comparison of prediction errors 

The PE is calculated as 
a

ap

T
TT

n
PE

−
=

1 , where Tp and 

Ta are predicted and actual decoding time respectively. As 
can be seen from the figure our predictor has an average of 
66% improvement in the prediction error compared to both 
approaches.  

In addition to the lower prediction error, the new 
predictor gives better correlation with the actual value. Fig. 
2 gives the scatter plot of the predicted workload vs. actual 
workload for those three approaches. Fig. 3 gives the 
comparison of the correlation coefficients. 
 

 

 

 

 

(a) Frame_Avg              (b) Frame_Type_Len 
 
 
 
 
 
 

(a) Our approach  

Fig. 2. Predicted workload vs. actual workload 
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Fig. 3. Comparison of correlation coefficients 

At the last of this section, we go back to the layered 
structure of MPEG video stream and explain how to 
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extract the variables M1~M8. There is a fix sized header at 
each hierarchy level of a MPEG stream, which contains 
important information needed for decoding. The 
information used by our model resides in the macro block 
header which contains a start code and 6 bits of 
information. The value of these bits is used as an index for 
a look up table stored in the decoder and each 9 bits entry 
in this table contains four fields as illustrated in Fig. 4. The 
flag mb_intra indicates whether the given macro block is 
intra coded or not. The CBP (coded block pattern) is a six 
bit code that indicates whether the IDCT operation is 
needed for each block. The Motion FW and Motion BW 
flags indicate the existence of forward and backward 
motion compensations. By combining these parameters we 
can easily count the number of each categorized block for 
our model. 

 
Fig. 4. Format of macro block header 

IV. Dynamic Voltage Scaling 
In this section, we introduce three DVS methods for 

MPEG decoding. For these approaches, continuous 
frequency/voltage scaling capabilities are assumed. Also, 
since the time needed to switch between different voltage 
settings is less than 1% of the time needed for decoding 
each frame [1], and some newer processors may even 
lower this percentage, we assume that the switch time is 
negligible. It is also assumed that the input and display of 
the MPEG decoder are at a constant rate whose period is T. 

Given a MPEG stream with n frames, the optimal 
constant decoding voltage Vopt can be calculated as: 

max

1

load
V

i
load

V full
n
i i

opt ⋅= ∑ = , 

where loadi is the workload of the ith frame, loadmax is the 
largest workload and Vfull is the level of supply voltage 
which finishes processing the loadmax within T . Using the 
Vopt the video stream can be decoded within n*T time and 
the energy dissipation is minimal. We call this approach as 
optimal-VS. There are several limitations with the 
optimal-VS. 1) it requires that the workload of each frame 
is known in advance 2) It decodes the frame at a constant 
speed without considering the frame incoming time or 
output deadline. As a result a large input/output buffer is 
needed; otherwise, there will be a QoS penalty. The 
following three DVS algorithms are developed to resolve 
these two problems. 

A. GOP-optimal DVS 

The GOP-optimal algorithm buffers all the frames in a 

GOP, estimates their workload, and decodes the entire 
GOP using a constant voltage that is calculated similar as 
Vopt. This is an on-line heuristic that is based on 
Optimal-VS. It does not need the workload information of 
the entire video stream before decoding. However, it does 
not consider the frame incoming time and display deadline 
either. The first frame in a GOP is always an I frame, 
which usually has larger workload than other frames in the 
GOP and needs longer decoding time. To guarantee that 
there is always a frame ready to be displayed, the simplest 
way is to start displaying the first frame after the entire 
GOP has been decoded. As a result, the output buffer of the 
decoder should be large enough to hold all of the frames in 
a GOP. Furthermore, the input frames come in at a constant 
rate. Because the first frame in a GOP takes the longest 
decoding time, extra buffers are needed to store the 
incoming frames. In the worst case, the input buffer needs 
to be two GOP long. Note that these are only conservative 
estimations of the buffer size. The actual buffer usage 
could be less. 

B. Global-Grouping 

Let the display time of the ith frame denoted as Di. The 
time to decode a n frame MPEG stream can be divided into 
n intervals (0, D1), (D1, D2), …, (Dn-1, Dn). The 
Global-Grouping gathers consecutive intervals into groups. 
It divides the decoding time into m groups G1, G2, …, Gm. 
Inside the jth group, a constant voltage Vj is used. Vj is 
selected such that all frames whose display time is within 
Gj can be decoded before its display deadline. Note that the 
Global-Grouping is applicable to the general applications 
with deadlines. 

During the grouping procedure, the average workload in 
the time zones (D0, D1), (D0, D2), …,, (D0, Dn) will be 
tested and the intervals in the time zone that has the 
maximum average workload will be grouped together. 
After that a new search will start on the rest of the intervals. 
The pseudo code of the Global-Grouping algorithm is 
given in Fig. 5, where Ci is the decoding workload of 
frame i, which should be displayed at time Di. 

As mentioned in section II, a B frame has two reference 
frames. Both of them are received before the B frame and 
they also should be decoded before the B frame. While the 
forward reference frame is displayed before the B frame,   

 

 

 

 

 

 

 

 

Fig. 5. Global-Grouping algorithm 

Start code Information 
field 

mb_intra CBP Motion 
FW 

Motion 
BW 

1 2 7 8 9 … 

1. Set size as the total number of frames; 
2. index = 0, j = 0; 
3. while index < size 
4. for k = index+1 to k = size 

5. find out the value of k, which makes 

k
ii index

k i

C
D D

=

−
∑

 

maximum; 
6. make workload from index+1 to k group Gj; 
7. index = k, j++, return to step 3; 



Display 
deadline

10 32 54 76 98

Decoding end
1 32 54 76 98

4 65 87 109 1211
Input arrival

Decoding latency 
(input buffering) 

Displaying lag 
(output buffering) 

0

3

Table 2  Workload rearrangement 
index 1 2 3 4 5 6 7 8
receive order I1 P2 B3 B4 P5 B6 B7 I8
display order I1 B3 B4 P2 B6 B7 P5 I8
Workload (Ci) I1 P2+B3 B4 0 P5+B6 B7 0 I8

the backward reference frame is display after the B frame. 
Therefore, care should be used when calculating the 
workload Ci. Table 2 shows the relationship of receiving 
order, display order and rearranged decoding workload in 
each display interval. Note that the Global-Grouping 
enables the decoder to borrow the time from the previous 
interval; therefore the time to decode Ci could be larger 
than one T. 

The result of Global-Grouping has some interesting 
characteristics as Theorem 1 and 2 states. The proof is 
straightforward and will be skipped due to the space 
limitation.  

Theorem 1: For each group Gj, we can always find a 
constant voltage Vj, under which the decoding of each 
frame can be finished before its display deadline and the 
idle time of the processor is 0. Vj is monotonically 
decreasing as j increases and it is proportional to the 

average workload in this group: 
∑

∑
−−

=
i ii

i i
avg DD

C
C

)( 1
, 

where (Di-1, Di)∈Gj.   

Theorem 2: The last frame of a group has the largest 
workload amongst the frames within this group. Its 
decoding is finished right at its display deadline. Other 
frames are decoded before their display deadline provided 
that the workload information is accurate. 

Input and output buffers are needed for the 
Global-Grouping to guarantee that there is always a frame 
available for decoding or displaying. An example is 
illustrated in Fig. 6. In order for each frame to be ready 
before their decoding starts, the receiving procedure must 
start 3T earlier than the decoding procedure. A buffer at the 
input side must be used to store the incoming frames 
during this 3T delay period. Therefore, the size of the 
buffer is 3 frames. Furthermore, since there is a displaying 
lag, output buffers are needed to store those that finish 
decoding before their display deadline. In the example, a 
buffer of 2 frames is needed. It is obvious that the input 
buffer size (IB) and the output buffer size (OB) always 
have the following relation 1±= OBIB .  

 

 

 

 

 

 

Fig. 6. Input and output buffering 

The IB can be calculated as the following equation 

))](([maxmax __
,

∑ =−= i
Gofstartk

javg

k
ij j C

CflooriIB ,  (2) 

where Cavg,j is the average workload of group Gj. The 
experiments show that, although the Global-Grouping 
needs fewer buffers than the Optimal-VS, the amount is 
still quite considerable. 

The Global-Grouping is an offline strategy and it needs 
the workload profile of the entire video stream. Compared 
with the optimal solution, it requires less buffer while 
achieves a comparable energy reduction with less display 
latency. This algorithm is useful if the processor decodes 
and displays certain movie clips repeatedly. It can also be 
applied at the encoder side where the workload profile is 
available given the condition that the encoder can 
communicate with the decoder about the grouping and 
voltage selection results. 

C. Dynamic-Grouping 

The Dynamic-Grouping is an online heuristic based on 
Global-Grouping. It buffers the input frames up to a certain 
window size (e.g. a GOP size). The workload of each 
frame inside the window is predicted and grouping is 
applied within this window. When a new frame comes in, 
the decoder first predicts its workload loadi then updates 
the grouping dynamically as described in Fig. 7. Here, M is 
the number of groups in current window and Cavg, j is the 
average workload of the jth group. 

The size of the input buffer for the Dynamic-Grouping 
is equal to the size of the window while the size of the 
output buffer can be calculated using equation (2). 
Compared with GOP-optimal, Dynamic-Grouping gives 
better trade-off between energy and buffer size.  

 

 

 

 

 

 

Fig. 7. Dynamic group update 
 

V. Experimental Results and Discussion 
The presented DVS algorithms are tested on several 

different movie clips. The statistics of these clips is given 
in Table 3.  

We simulated and compared the proposed DVS 
algorithms with three other algorithms. 1) Frame-based, 
which decodes one and only one frame in each display 
interval, 2) Feedback control based [4] and 3) Optimal-VS. 

 

1. M = index of the last group in the current window; 
2. set the incoming frame to be group M+1; 
3. for l = M+1 to 1 
4.     if (Cavg,l > Cavg,l-1)  
5.         merge group l and l-1  
6.         set the index of the new group as l – 1 
7.     else 
8.         stop 
9. end 



Table 3 Characteristics of MPEG clips 
MPEG clips 

name index 
Frame 
type 

#  of 
frames 

GOP 
size 

hakkinen 1 I,P,B 799 12 

bobo 2 I,P,B 679 90 

ski 3 I,P,B 1513 15 

blazer 4 I,P,B 2998 12 

wg 5 I,P 130 6 

The energy values are reported as the percentage 
degradation over the optimal-VS approach. The buffer 
sizes are the size of display buffer in the unit of frames. 
Note that for the Global-Grouping and Optimal-VS, the 
input buffer size is the same as that of the output buffer 
plus or minus 1. For Dynamic-Grouping and GOP-optimal, 
input buffers of at most one GOP and two GOPs long are 
used, respectively. Some input buffers are also needed in 
feedback approach to guarantee that there is always a 
frame available to decode whenever the previous one 
finishes decoding. For all algorithms, the decoding latency 
is proportional to the input buffer size.  

Table 4 gives the energy and buffer usage of different 
DVS algorithms when the workload prediction is perfect. It 
shows that while the Global-Grouping always gives similar 
energy reduction as the optimal one, it does not have much 
reduction in the buffer requirements. The 
Dynamic-Grouping gives the best balance between the 
energy reduction and the buffer requirements.  

Table 5 gives the energy and the buffer usage when the 
workload prediction is not perfect. The workload 
prediction is given by our prediction model discussed in 
Section III. The accuracy of prediction has a great impact 
on the performance of DVS techniques, in terms of 
deadline missing and buffer usage, however, not so large 
impact on the energy dissipation. Since a frame will be 
dropped if it misses the decoding deadline, this causes 
unfair energy comparison. We scaled up the predicted 
workload by 5%, which is enough to make sure that the 
deadline miss rate is zero. For some cases, this scale 
increases the buffer usage however decrease the energy 
dissipation. The results show that both Global-Grouping 
and Dynamic-Grouping are pretty robust when working 
with our workload predictor. 

Table 4 Energy and buffer usage of DVS algorithm with perfect 
workload prediction 

MPEG clips 1 2 3 4 5 
Energy (%) 200.3 65.1 88.6 118.2 55.8Frame-based Buffer 1 1 1 1 1 
Energy(%) 3.3 18.1 20.2 13.4 17.7Feedback Buffer 9 10 9 10 9 
Energy(%) 1.4 4.5 11.8 5.6 10 GOP 

optimal Buffer 3 9 3 5 2 
Energy(%) 2.2 2.4 10.1 4.1 10 Dynamic 

grouping Buffer 3 12 4 2 2 
Energy(%) 2.1 2.0 2.1 0.5 9.8Global 

grouping Buffer 8 15 71 56 7 
Energy(%) 0 0 0 0 0 Optimal Buffer 26 26 97 77 9 

Table 5 Energy and buffer usage of DVS algorithm with 
imperfect workload prediction 

Global grouping Dynamic 
grouping Clips Energy 

(%) 
Buffer 

size 
Energy 

(%) 
Buffer 

size 
1 0.78 32 2.8 3 
2 0.99 18 1.4 12 
3 2.7 79 11.8 5 
4 0.3 66 10.7 7 
5 0.4 9 4.6 4 

 

VI. Conclusions 

In conclusion of our work, we present a workload 
prediction model, which is motivated by detailed analysis 
of MPEG decoding procedure. The predictor utilizes the 
block level statistics of each MPEG frame and gives highly 
accurate prediction results. Three DVS algorithms are 
further presented. All of which gives comparable energy 
reduction as the optimal voltage scaling and work robustly 
with our predictor. The experimental results show that the 
Dynamic-Grouping algorithm gives the best trade-off 
between energy reduction and the quality of decoding.  
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