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Abstract

With recent advancing of wearable devices and Internet
of Things (1oTs), it becomes very attractive to implement the
deep convolutional neural networks (DCNNs) onto embedded
and portable systems. Presently, executing the software-based
DCNN s requires high-performance server clusters in practice,
restricting their widespread deployment on the personal and
mobile devices. In order to overcome this issue, considerable
research efforts have been conducted in the context of devel-
oping highly-parallel and specific DCNN hardware, utilizing
GPGPUs, FPGAs, and ASICs.

Stochastic Computing (SC), which uses a bit-stream to rep-
resent a number within [-1, 1] by counting the number of ones
in the bit-stream, has high potential for implementing DCNNs
with high scalability and ultra-low hardware footprint. Since
multiplications and additions can be calculated using AND
gates and multiplexers in SC, significant reductions in power
(energy) and hardware footprint can be achieved compared
to the conventional binary arithmetic implementations. The
tremendous savings in power (energy) and hardware resources
bring about immense design space for enhancing scalability
and robustness for hardware DCNNs.

This paper presents the first comprehensive design and opti-
mization framework of SC-based DCNNs (SC-DCNNs), using
a bottom-up approach. We first present the optimal designs of
function blocks that perform the basic operations, i.e., inner
product, pooling, and activation function, in DCNN. Then we
propose the optimal design of four types of combinations of ba-
sic function blocks, named feature extraction blocks, which are
in charge of extracting features from input feature maps. Be-
sides, weight storage methods are proposed and investigated
to reduce the area and power (energy) consumption for storing
weights. Finally, the whole SC-DCNN implementation is opti-
mized, with feature extraction blocks carefully selected, to min-
imize area and power (energy) consumption while maintaining
a high network accuracy level. Experimental results indicate
that the proposed SC-DCNN implementing LeNet5 consumes
only 17 mm?* area and 1.53 W power, and achieves throughput
of 781250 images/s, area efficiency of 45946 images/s/mm?,
and energy efficiency of 510734 images/J.

1. Introduction

In the recent decade, deep learning, or deep structured learn-
ing, has emerged as a new area of machine learning research,
which enables a system to automatically learn complex in-
formation and extract representations at multiple levels of
abstraction [1]. Deep Convolutional Neural Network (DCNN),
one of the most promising types of artificial neural networks
taking advantage of deep learning, has been recognized as the
dominant approach for almost all recognition and detection
tasks [2]. Specifically, DCNN has achieved significant success
in a wide range of machine learning applications, such as im-
age classification [3], natural language processing [4], speech
recognition [5], and video classification [6].

High-performance server clusters are usually required
for executing software-based DCNNSs since software-based
DCNN implementations involve a large amount of compu-
tations so as to achieve outstanding performance. However,
the use of server clusters implies high power (energy) con-
sumptions and large hardware volumes, and is therefore in-
appropriate for low-power applications in personal and mo-
bile devices, which are playing an increasingly important
role in our everyday life and exhibit a notable trend of be-
ing “smart”. To overcome the limitation of low-power and
low-hardware footprint implementations of DCNNS, utilizing
highly-parallel or dedicated hardware has attracted much aca-
demic and industrial attention in recent years, including the
works utilizing General-Purpose Graphics Processing Units
(GPGPUs), Field-Programmable Gate Array (FPGAs), and
Application-Specific Integrated Circuit (ASICs) to implement
DCNNs [7-18]. Despites the performance and power (energy)
efficiency gains, a large margin of improvement still exists due
to the inherent inefficiency in implementing DCNNs using
conventional computing methods or using general-purpose
computing devices [19,20].

Novel computing paradigms need to be investigated in order
to provide the ultra-low hardware footprint and therefore the
highest possible energy efficiency and scalability. Stochastic
Computing (SC), which represents a probability number using
a bit-stream [21], has the potential to implement DCNNs with
significantly reduced hardware resources and achieve high
power (energy) efficiency, and therefore can potentially trigger



a revolutionary reshaping of hardware design of large-scale
deep learning systems. To be more specific, in SC, key arith-
metic calculations such as multiplications and additions can
be implemented as simple as AND gates and multiplexers
(MUX), respectively [22]. Considering the large number of
multiplications and additions in DCNN, the efficient imple-
mentations using stochastic computing save a large design
space for further improvements on the parallelism degree.

Inspired by the promising characteristics, in this paper,
we propose the first comprehensive design and optimiza-
tion framework of SC-based DCNNs (SC-DCNNSs), using
a bottom-up approach. The proposed SC-DCNN fully utilizes
the advantages of SC technology, and could achieve ultra-low
hardware footprint, low power and energy consumption, while
maintaining high network accuracy level. Besides the SC-
DCNN architecture itself, key contributions in the proposed
design and optimization framework are listed as follows:

e Basic function blocks and hardware-oriented max pool-
ing. We first design and investigate the function blocks that
perform the basic operations, i.e., inner product, pooling,
and activation functions, in DCNN. More specifically, we
present a novel hardware-oriented max pooling design for
effectively implementing (approximate) max pooling in SC
domain. We thoroughly investigate the pros and cons of
different types of function block implementations.

e Joint optimizations for feature extraction blocks. We
propose the optimal designs of four types of combinations
of basic function blocks, named feature extraction blocks,
which are in charge of extracting features from input feature
maps. The function blocks inside the feature extraction
block are jointly optimized through both analysis and ex-
periments with respect to input bit-stream length, function
block structure, and function block compatibilities.

o Weight storage schemes. We present effective designs and
optimizations on weight storage to reduce the corresponding
area and power (energy) consumptions, including efficient
filter-aware SRAM sharing, effective weight storage meth-
ods, and layer-wise weight storage optimizations.

e Overall SC-DCNN optimization. We conduct thorough
optimizations on the overall SC-DCNN, with feature extrac-
tion blocks carefully selected, to minimize area and power
(energy) consumption while maintaining a high network
accuracy level. The optimization procedure leverages the
important observation that hardware inaccuracies in differ-
ent layers in DCNN have different effects on the overall
network accuracy, therefore different designs may be ex-
ploited to minimize area and power (energy) consumptions.

e Ultra-low hardware footprint and low power (energy)
consumptions. Overall, the proposed SC-DCNN achieves
the lowest hardware cost and energy consumption in imple-
menting LeNet5 compared with reference works.

2. Related Works

Authors in [7,8,23,24] leveraged the parallel computing and
storage resources in GPUs for efficient DCNN implementa-
tions. FPGA-based accelerators, benefited from the advan-
tages of being programmable, high degree of parallelism and
short develop round, is another promising path towards the
hardware implementation of DCNNs [9, 10]. However, these
GPU and FPGA-based implementations still exhibit a large
margin of performance enhancement and power reduction.
This is because (i) GPUs and FPGAs are general-purpose com-
puting devices not specifically optimized for executing DC-
NNs, and (ii) the relatively limited signal routing resources in
such general platforms will restrict the performance of DCNNs
which exhibit high inter-neuron communication requirements.

ASIC-based implementations of DCNNs have been recently
exploited to overcome the limitations of general-purpose com-
puting devices. Two representable recent works on ASIC-
based implementations are DaDianNao [17] and EIE [18].
The former proposes an ASIC “node” which could be con-
nected in parallel to implement a large-scale DCNN, whereas
the latter focuses specifically on the fully-connected layers of
DCNN and achieves high throughput and energy efficiency.

Novel computing paradigms need to be investigated in order
to provide the ultra-low hardware footprint and the highest pos-
sible energy efficiency and scalability. Stochastic computing-
based design of neural networks is an attractive candidate to
meet the above goals and facilitate the widespread of DCNNs
in personal, embedded, and mobile IoT devices. Although
not focusing on deep learning systems, predecessors in [25]
proposed the design of a neurochip using stochastic logic. Ref-
erence [19] utilized stochastic logic to implement a radial basis
function-based neural network, and the neuron design with SC
for deep belief network was presented in [20]. However, there
is no existing work that investigates comprehensive designs
and optimizations of SC-based hardware DCNNs including
both computation blocks and weight storing methods.

3. Overview of DCNN Architecture and Stochas-
tic Computing

3.1. DCNN Architecture Overview

Deep convolutional neural networks are biologically inspired
variants of multilayer perceptrons (MLPs) by mimicking the
animal visual mechanism [26]. An animal visual cortex con-
tains two types of cells and they are only sensitive to a small
region (receptive field) of the visual field. Thus a neuron in a
DCNN is only connected to a small receptive field of its pre-
vious layer, rather than connected to all neurons of previous
layer like traditional fully connected neural networks.

As shown in Figure 1, each layer of DCNN is a 3D vol-
ume that has neurons arranged in three dimensions: height x
width x depth. Height and width refer to the size of one fea-
ture map, while depth represents the number of feature maps.
A whole feature map is covered by tiling receptive fields [26].



A DCNN is in the simplest case a stack of three types
of layers: Convolutional Layer, Pooling Layer, and Fully
Connected Layer. The Convolutional layer is the core building
block of DCNN, and the main operation is the convolution
that calculates the dot-product of receptive fields and a set
of learnable filters (or kernels) [27]. Figure 2 illustrates the
process of convolution operations. Suppose that the size of
the input feature map is 7 x 7, and the size of a filter is 3 x 3,
thus the feature map is divided into nine receptive fields if
the stride is two. The first and ninth elements of the output
feature map are computed by respectively convolving the first
and ninth receptive fields with the filter.

After the convolution operations, the nonlinear down-
samplings are conducted in the pooling layers for reducing the
dimension of data. The most common pooling strategies are
max pooling and average pooling. Max pooling is to pick up
the maximum value from the candidates, and average pool-
ing is to calculate the average value of the candidates. Then
the extracted feature maps after down-sampling operations are
sent to activation functions that conduct non-linear transforma-
tions such as Rectified Linear Unit (ReLU) f(x) = max(0,x),
Sigmoid function f(x) = (1+ e *)—1 and hyperbolic tangent
(tanh) function f(x) = 2= — 1. Finally, the high-level rea-
soning is completed via the fully connected layer. Neurons in
this layer are connected to all activation results in the previous
layer. Finally, the loss layer is normally the last layer of DCNN
and it specifies how the deviation between the predicted and
true labels is penalized in the network training process. Vari-
ous loss functions such as softmax loss, sigmoid cross-entropy
loss and so on may be used for different tasks.

The main operations in DCNNs are inner product, pooling,
and activation function operations, as shown in Figure 3 (a),
(b), and (c), respectively. In convolutional layers, the inner
product operation is performed by a convolutional neuron to
calculate the dot-product of a receptive field (x;’s in Figure
3 (a)) and a filter (w;’s in Figure 3 (a)). Generally, the in-
ner products are then subsampled through pooling operations
performed by pooling neurons, and Figure 3 (b) shows the
average pooling and max pooling which are studied in this
work. The subsampled outputs are transformed by an activa-
tion function shown in Figure 3 (c) to ensure the inputs of the
next layer are within the [-1, 1] range. In the fully connected
layer, x; is the i-th activation output from the previous layer
and w; is a weight of the corresponding link, and they are also
inputs of neurons in the fully connected layer.

The concept of “neuron” is widely used in the soft-
ware/algorithm domain. In the context of DCNNs, a neuron
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Figure 1: The general DCNN architecture.
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Figure 3: Three types of basic operations (function blocks) in
DCNN. (a) Inner Product, (b) pooling, and (c) activation.

may consist of one or multiple basic operations. For exam-
ple, neurons in convolutional layers implement inner product
operations only; those in pooling layers implement pooling
and activation operations; and those in fully connected layers
implement inner product and activation operations. Since this
paper focuses on hardware designs and optimizations, we fo-
cus on the basic operations, i.e., inner product, pooling, and
activation, and the corresponding SC-based designs of these
fundamental operations are termed function blocks. Further-
more, different function blocks (main operations) need to be
jointly optimized with respect to the bit-stream length and
structure compatibilities (e.g., an APC-based inner product
block needs to connect to a Btanh-based activation function
block). The composition of an inner product block, a pool-
ing block, and an activation function block is referred to as
the feature extraction block, which takes charge of extracting
features from feature maps. The design and optimizations of
the basic function blocks and feature extraction blocks will be
discussed in Section 4.

3.2. Stochastic Computing (SC)

Stochastic computing is a technology that represents a proba-
bilistic number by counting the number of ones in a bit-stream.
For instance, the bit-stream 0100110100 contains four ones in
a ten-bit stream, thus it represents P(X = 1) =4/10=0.4. In
addition to this unipolar encoding format, SC can also repre-
sent numbers in the range of [-1, 1] using the bipolar encoding
format. In the scenario of bipolar encoding scheme, a real
number x is processed by P(X = 1) = (x+1)/2, thus 0.4 can
be represented by 1011011101. To represent a number beyond
the range [0, 1] using unipolar format or beyond [-1, 1] using
bipolar format, a pre-scaling operation [28] can be used.

The major advantage of stochastic computing is its much
lower hardware cost on a large category of arithmetic calcula-
tions, when compared to conventional binary computing. The
abundant area budget offers immense design space in opti-
mizing hardware performance via efficient tradeoffs between



the area and other metrics, such as power, latency, and paral-
lelism degree, and thus becomes a promising technology for
implementing large-scale DCNNSs.

Multiplication. Figure 4 shows the basic multiplication
components in SC domain. A unipolar multiplication can
be performed by an AND gate since P(A-B=1) = P(A =
1)P(B = 1) (assuming independence of two random variables),
and a bipolar multiplication is performed by means of a XNOR
gate sincec =2P(C=1)—1=2(P(A=1)P(B=1)+P(A=
0)P(B=0))—1=(2P(A=1)—1)2P(B=1)—1)=ab.

Addition. In this paper, four popular stochastic addition
methods are investigated, optimized, and carefully selected
for SC-DCNNs. An OR gate in Figure 5 (a) is the simplest
method that consumes the least hardware footprint to perform
an addition, but this method will introduce much accuracy loss
because the computation “logic 1 OR logic 1" only generates a
single logic 1 and results in inaccuracy. The second component
in Figure 5 is a multiplexer, which is the most popular method
to perform additions in either the unipolar or the bipolar for-
mat [22]. For example, a bipolar addition is performed as
c=2P(C=1)—1=2(1/2(P(A=1)+1/2P(B=1))—1=
1/22PA=1)—1)+(2PB=1)—1))=1/2(a+ D). Ap-
proximate parallel counter (APC) depicted by Figure 5 (¢) is
proposed in [29], and it calculates the summation of inputs by
accumulating the number of ones. It consumes fewer logic
gates when compared with the conventional accumulative par-
allel counter [29,30]. The fourth implementation of stochastic
addition uses two-line representation of a stochastic number,
which is proposed in [31]. The two-line representation con-
sists of a magnitude stream M (X) and a sign stream S(X), in
which 1 represents a negative bit and 0 represents a positive bit.
The value of the represented stochastic number is calculated
by: x= 1 ¥4 ' (1 -25(X;))M(X;), where L is the length of
the bit-stream. As an example, -0.5 can be represented by
M(—0.5):10110001 and S(—0.5) : 11111111.

Hyperbolic Tangent (tanh). The tanh function is highly
suitable for stochastic computing-based implementations, for
the reasons that (i) it can be easily implemented with a K-
state finite state machine (FSM) in the SC domain [22] and
causes less hardware cost when compared to the piecewise
linear approximation (PLAN)-based implementation [32] in
conventional computing domain, and (ii) replacing ReL.U or
sigmoid function by tanh function does not cause accuracy
loss in DCNN [23]. Therefore we choose tanh as the activation
function in SC-DCNNSs in this work. The diagram of the FSM
is shown in Figure 6. It will output a zero when the current
state is on the left half of the diagram, otherwise output a
one. The value calculated by the FSM satisfies Stanh(K,x) =
tanh(%x), where Stanh denotes stochastic tanh.

3.3. Network Accuracy vs. (Hardware) Accuracy

The overall network accuracy (e.g., the overall recognition or
classification rates) is one of the key optimization goals of the
SC-based hardware DCNN. On the other hand, the SC-based
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Figure 5: Stochastic addition. (a) OR gate, (b) MUX, (c) APC,
and (d) two-line representation-based adder.

function blocks and feature extraction blocks exhibit certain
degree of inaccuracy due to the inherent stochastic nature.
The network accuracy and hardware accuracies are different
but correlated, i.e., high accuracies in each function block
will likely lead to a high overall network accuracy. Hence,
the hardware accuracies will be optimized in the design of
SC-based function blocks and feature extraction blocks.

4. Design and Optimization for Function Blocks
and Feature Extraction Blocks in SC-DCNN

In this section, we first perform comprehensive designs and
optimizations in order to derive the most efficient SC-based
implementations for function blocks, including inner prod-
uct/convolution, pooling, and activation function, in terms of
power, energy, and hardware resource, meanwhile maintain-
ing a high accuracy level. Based on the detailed analysis of
pros and cons of each type of basic function block design, we
propose the optimal designs of feature extraction blocks for
SC-DCNNSs through both analysis and experiments.

4.1. Inner Product/Convolution Block Design

As shown in Figure 3 (a), an inner product/convolution block
in DCNNSs is composed of multiplication and addition opera-
tions. Since in SC-DCNNS, inputs are distributed in the range
of [-1, 1], we adopt the bipolar multiplication implementation
(the XNOR gate) for the inner product block design. The
summation of all products is performed by the adder(s). In
the SC domain, the addition operation has various possible
implementations, such as OR gate-based, multiplexer (MUX)-
based, APC-based, and two-line representation-based adders.
Therefore, we present and investigate four types of inner prod-
uct block structures by replacing the summation unit in Figure



Figure 6: Stochastic hyperbolic tangent.

Table 1: Inaccuracies of OR Gate-Based Inner Product Block

Input Size 8 16 24 32
Unipolar inputs  0.16 033 047 0.66
Bipolar inputs 1.04 139 154 1.70

3 (a) with various adder implementations shown in Figure 5.
Their pros and cons are carefully analyzed for the subsequent
step of developing feature extraction blocks in SC-DCNNS.

OR Gate-Based Inner Product Block Design. The idea
of utilizing OR gate to perform addition is straightforward.
For instance, % + % can be performed by "00100101 OR
11001010", which generates "11101111" (%) However, the
first input bit-stream can also be "10011000", which makes the
output of OR gate as "11011010" (%) and results in inaccuracy.
The accuracy loss comes from the fact that "logic 1 OR logic
1" only generates a single logic 1 without a carry bit. To re-
duce the accuracy loss, the input streams should be pre-scaled
to ensure that there are only very few 1’s in the bit-streams.
For the unipolar format bit-streams, the scaling can be easily
performed by dividing the original number by a scaling factor.
Nevertheless, in the scenario of bipolar encoding format, there
are about 50% 1°s in the bit-stream when the original value is
close to 0, which renders the scaling ineffective in reducing
the number of 1’s in the bit-stream.

Table 1 displays the average inaccuracies of OR gate-based
inner product block with different input sizes, in which the
bit-stream length is fixed at 1024 and all average inaccuracy
values are obtained with the most suitable pre-scaling. The
experimental results suggest that the accuracy of unipolar
calculations may be acceptable, but the accuracy is too low
for bipolar calculations and becomes even worse with the
increase of input size. Since it is almost impossible to have
only positive input values and weights, the OR gate-based
inner product block is not appropriate in SC-DCNNS.

MUX-Based Inner Product Block Design. According to
[22], an n-to-1 MUX can sum all inputs together and generate
an output with a scaling down factor % Since only one bit
is selected among all inputs to that MUX at one time, the
probability of each input to be selected is % The selection
signal is controlled by a randomly generated natural number
between 1 and n. Taking Figure 3 (a) as an example, the output
of the summation unit IMUX) is %(xowo + o Xy Wi 1)-

As displayed in Table 2, the average inaccuracies of the
MUX-based inner product block are measured with different
input sizes and bit-stream lengths. The accuracy loss of MUX-
based block mainly comes from the fact that only one input
is selected at one time, and all the other inputs are not used.

Table 2: Inaccuracies of MUX-Based Inner Product Block

Bit stream length

Inputsize —si> 024 1536 2048
8 027 0.19 0.16 0.14
16 0.54 039 0.31 0.28
32 1.18 0.77 0.64 056
40 0100...1011
Bo 1110...010033)‘\ 3
A4 0100...10110 — p—> 2,
B1 1110...0100 . ——> 2
42 0100...1011
B> 1110...0100
45 0100...1011
Bs 1110...0100!

A+ 0100...10110
B+ 1110...01000

4: 0100...1011
B+ 1110...0100 |
45 0100...10110 2
Bs 1110..01000

4> 0100...1011 5
B 1001..1101

Figure 7: 16-bit Approximate Parallel Counter.

The increasing input size causes accuracy reduction because
more bits are dropped, but good enough accuracy can still be
obtained by increasing the bit-stream length.

Two-Line Representation-Based Inner Product Block.
As mentioned above, the MUX-based adder is a down-
scaled adder and the down-scaling is a main source of ac-
curacy loss. Accordingly, reference [31] proposed a two-line
representation-based SC scheme that can be used to construct
a non-scaled adder. Figure 5 (d) illustrates the structure of
a two-line representation-based adder. Since A;, B;, and C;
are bounded as the element of {—1,0,1}, a carry bit may be
missed. Therefore, a three-state counter is used here to store
the positive or negative carry bit.

However, there are two limitations in utilizing the two-line
representation-based inner product block in hardware DCNNG:
(i) because an inner product block generally has more than
two inputs, the overflow problem often occurs in the two-line
representation-based inner product calculation due to its non-
scaling characteristics, which incurs significant accuracy loss,
and (ii) the area overhead is too high compared with other
inner product implementation methods.

APC-Based Inner Product Block. The structure of an 16-
bit APC is shown in Figure 7. Ag — A7 and By — B7 are the
outputs of XNOR gates, i.e., the products of inputs x;’s and
weights w;’s. Suppose the number of inputs is n and the length
of a bit-stream is m, then the products of x;’s and w;’s can
be represented by a bit-matrix of size n x m. The function of
the APC is to count the number of ones in one column and
represent the result in the binary format, thereby the number
of outputs is log, n. Taking a 16-bit APC as an example, the
output should be 4-bit to represent a number between O - 16.
However, please notice that the weight of the least significant
bit is 2! rather than 2° to represent 16. Therefore, the output
of the APC is a bit-matrix with size of log, n x m.

From Table 3, we know that the APC (approximate parallel
counter) only results in less than 1% accuracy degradation
when compared with the conventional accumulative parallel
counter, but it can achieve about 40% reduction of gate count



Table 3: Inaccuracies of the APC-Based Compared with the
Conventional Parallel Counter-Based Inner Product Blocks
Bit stream length

Input size —7g 756 3’4 512
16 T01% 087% 088% 0.84%
32 0.70% 061% 058% 0.57%
64 049% 044% 044%  0.42%

[29]. This observation illustrates the significant advantage for
the goal of implementing an efficient inner product block in
terms of power, energy, and hardware resource.

4.2. Pooling Block Designs

Pooling (or down-sampling) operations are performed by pool-
ing function blocks in DCNNSs to significantly reduce (i) inter-
layer connections and (ii) the number of parameters and com-
putations in the network, meanwhile maintaining the transla-
tion invariance of the extracted features [27]. Average pool-
ing and max pooling are two widely used pooling strategies.
Average pooling is straightforward to implement in the SC
scheme, while max pooling, which exhibits higher perfor-
mance in general, requires high hardware resources. In order
to overcome this limitation, we propose and investigate a novel
hardware-oriented max pooling with high performance and
high compatibility to SC scheme. Details are discussed next.

Average Pooling Block Design. Figure 3 (b) shows how
the feature map is average pooled with 2 x 2 filters. Since
average pooling is used to calculate the mean value of entries
in a small matrix, the inherent down-scaling property of the
MUX can be utilized. Therefore, the average pooling can be
performed by the structure as shown in Figure 5-(b) with a
very small hardware footprint.

Hardware-Oriented Max Pooling Block Design. The
max pooling operation has recently shown higher performance
in practice when compared with the average pooling operation
[27]. However, in the stochastic domain, we can find out the
bit-stream with the maximum value among four candidates
only after counting the total number of 1’s through the whole
bit-streams, which will inevitably result in a long latency and
notable energy consumption.

To overcome this limitation, we propose a novel SC-based
hardware-oriented max pooling scheme. The idea behind this
design is that once a set of bit-streams are sliced into segments,
the globally largest bit-stream (among the four candidates) has
the highest probability to be the locally largest one in each set
of bit-stream segments. This is because all 1’s are randomly
distributed in the stochastic bit-streams. Accordingly, all input
bit-streams of the hardware-oriented max pooling block are
sliced into segments with a fixed length c, e.g., 16 bits, and one
segment is selected from each set (one set has four segments)
to be sent to the output. To determine the selected segment
in a set, all segments in a set are counted on the number of
1I’s in parallel, and the maximum counted result is utilized to
determine the next c-bit segment that to be sent to the output of
the pooling block. In other words, the currently selected c-bit
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Figure 8: The Proposed Hardware-Oriented Max Pooling.

Table 4: Relative Result Deviation of Hardware-Oriented Max
Pooling Block Compared with Software-Based Max Pooling
Bit-stream length

Inputsize — 5556 334 512
3 0.127 0081 0066 0.059
9 0.147 0099 0086 0.074
16 0.166 0.108 0097 0.086

segment is determined by the counting results of the previous
set. Please notice that the c-bit segment from the first set of
bit-stream segments is randomly chosen to reduce the latency.
This strategy will incur zero extra latency and will only cause
a negligible accuracy loss when c is a sufficiently small value
compared with the bit-stream length.

Figure 8 illustrates the structure of the hardware-oriented
max pooling block, where the output from max_out put ap-
proximately equals to the largest bit-stream. The four input
bit-streams sent to the multiplexer are also connected to four
counters, and the outputs of the counters are connected to a
comparator to determine the largest segment. Then the output
of the comparator is used to control the selection of the four-
to-one MUX. Suppose in the previous set of segments, the
second line is the largest, then MUX will output the second
bit-stream for the current c-bit segment.

Table 4 shows the result deviations of the hardware-oriented
max pooling design compared with the software-based max
pooling implementation. The length of a bit-stream segment
is 16. In general, the proposed pooling block can provide a
sufficiently accurate result even with a large input size.

4.3. Activation Function Block Designs

Stanh. Reference [22] proposed a K-state FSM-based design
(i.e., Stanh) in the SC domain for implementing the tanh func-
tion, and also describes the relationship between Stanh and
tanh as Stanh(K,x) = tanh(5x). When the input stream x is
distributed in the range [-1, 1], i.e., %x is distributed in the
range [—%, %], this equation works well, and higher accuracy
can be achieved with the increased state number K.

However, Stanh cannot be applied directly in our framework
for three reasons. First, as shown in Figure 9 and Table 5 (with
bit-stream length fixed at 8192), when the input variable of
Stanh (i.e., %x) is distributed in the range of [-1, 1], the inaccu-
racy is quite notable and is not suppressed with the increasing
of K. Second, the equation works well when x is precisely



Table 5: The Relationship Between State Number and Relative
Inaccuracy of Stanh

State Number 8 10 12 14 16 18 20
Relative Inaccuracy (%) 10.06 827 743 736 7.51 8.07 855
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Figure 9: Output comparison of Stanh vs tanh.

represented. However, when the bit-stream is not impracti-
cally long (less than 2!¢ according to our experiments), the
equation should be adjusted with a consideration of bit-stream
length. Third, in the practice of implementing SC-DCNNs, we
usually need to proactively down-scale the inputs since a bipo-
lar stochastic number cannot reach beyond the range [-1, 1].
Besides, the stochastic number may be sometimes passively
down-scaled by certain components, like a MUX-based adder
or an average pooling block. A scaling-back process is thus
imperative to obtain an accurate result. Based on the above
reasons, the design of Stanh needs to be optimized together
with other function blocks to achieve high accuracy for differ-
ent bit-stream lengths and meanwhile provide a scaling-back
function, with more details in Section 4.4.

Btanh. Btanh is specifically designed for the APC-based
adder to perform a scaled hyperbolic tangent function. Instead
of using FSM, a saturated up/down counter is used here to
convert the binary outputs of the APC-based adder back to a
bit-stream. The implementation details and the determination
of state number can be found in reference [20].

4.4. Design & Optimization for Feature Extraction Blocks

In this section, we propose and investigate the optimal de-
signs of feature extraction blocks, which are in charge of
extracting features from input feature maps. Based on the
above analysis results, the MUX-based and APC-based inner
product/convolution blocks, average pooling and hardware-
oriented max pooling blocks, Stanh and Btanh blocks are se-
lected as candidates for constructing feature extraction blocks,
which are in charge of extracting features from input feature
maps in SC-DCNNs (as shown in Figure 10). Instead of sim-
ply composing the basic function blocks, a series of joint
optimizations are performed on each type of feature extraction
block to achieve the optimal performance. In the SC domain,
factors like input size, bit-stream length, and the inaccuracy
introduced by the previous connected block can make a sig-
nificant difference on the overall performance of a feature
extraction block. Therefore, separate optimizations on each
individual basic function block cannot guarantee to achieve
the best performance for the entire feature extraction block.
For example, the most important advantage of the APC-based

Xi : -
W ‘Activation|

Figure 10: The structure of a feature extraction block.

inner product block is high accuracy and thus the bit-stream
length can be reduced; and the most important advantage of
MUX-based inner product block is low hardware footprint
and the accuracy can be improved by increasing the bit-stream
length. Accordingly, in this work, we design feature extrac-
tion blocks with a consideration of fully making use of the
advantages of each of the building blocks.

For the convenience of following discussions, we define
that MUX/APC represents the MUX-based or APC-based
inner product/convolution blocks; Avg/Max represents the av-
erage or hardware-oriented max pooling blocks; Stanh/Btanh
represents the corresponding activation function blocks. For
instance, MUX-Avg-Stanh means that four MUX-based inner
product blocks, one average pooling block, and one Stanh
activation function block are cascade-connected.

MUX-Avg-Stanh. As mentioned in Section 4.3, when
Stanh is utilized, the state number needs to be carefully se-
lected with a comprehensive consideration of the scaling fac-
tor, bit-stream length, and accuracy requirement. Below is the
empirical equation that is extracted from our comprehensive
experiments to obtain the approximately optimal state number
K to achieve a high accuracy:

logy Lx N

K=f(L,N)~2xlogy,N
f( ) 0g> +a><10g2N7

M
where the nearest even number of the result calculated by the
above equation is assigned to K, N is the input size, L is the
bit-stream length, and empirical parameter o¢ = 33.27.

MUX-Max-Stanh. The hardware-oriented max pooling
block shown in Figure 8 in most cases generates an output
that is slightly less than the maximum value. In this design of
feature extraction block, the inner products are all scaled down
by a factor of n (n is the input size), and the subsequent scaling
back function of Stanh will enlarge the inaccuracy, especially
when the positive/negative sign of the selected maximum inner
product value is changed. For instance, 505/1000 is a positive
number, and 1% under-counting will lead the output of the
hardware-oriented max pooling unit to be 495/1000, which is
a negative number. Thereafter, the obtained output of Stanh
may be -0.5, but the expected result should be 0.5. Therefore,
the bit-stream has to be long enough to diminish the impact
of under-counting, and the Stanh needs to be re-designed to
fit the correct (expected) results. As shown in Figure 11, the
redesigned FSM for Stanh will output zero when the current
state is at the left 1/5 of the diagram, otherwise output a one.
The optimal state number K is calculated through the following



Figure 11: Structure of optimized Stanh for MUX-Max-Stanh.

empirical equation derived from experiments:

p

(04
log, N logsL’

K= f(L,N)~2x (logyN+log, L) (2)
where the nearest even number of the result calculated by the
above equation is assigned to K, N is the input size, L is the
bit-stream length, @ = 37, and empirical parameter § = 16.5.
APC-Avg-Btanh. When the APC is used to construct the
inner product block, conventional arithmetic calculation com-
ponents, such as full adders and dividers, can be utilized to
perform the averaging calculation, because the output of APC-
based inner product block is a binary number. Since the design
of Btanh initially aims at directly connecting to the output of
APC, and an average pooling block is now inserted between
APC and Btanh, the original formula proposed in [20] for
calculating the optimal state number of Btanh needs to be
reformulated as: N
K=f(N)~ 7 3
from our experiments. In this equation N is the input size, and
the nearest even number to % is assigned to K.
APC-Max-Btanh. Although the output of APC-based in-
ner product block is a binary number, the conventional binary
comparator cannot be directly utilized to perform max pool-
ing. This is because the output sequence of APC-based inner
product block is still a stochastic bit-stream. If the maximum
binary number is selected at each time, the pooling output is
always greater than the actual maximum inner product result.
Instead, the proposed hardware-oriented max pooling design
should be utilized here, and the counters should be replaced by
accumulators for accumulating the binary numbers. Benefited
from the high accuracy provided by accumulators in selecting
the maximum inner product result, the original Btanh design
presented in [20] can be directly utilized without adjustment.

5. Weight Storage Scheme and Optimization

As introduced in Section 4, the main computing task of an
inner product block is to calculate the inner products of x;’s
and w;’s. x;’s are input by customers, but w;’s are weights
obtained by training using software and should be stored in
the hardware-based DCNNSs. Static random access memory
(SRAM) is the most appropriate circuit structure for weight
storage due to its high reliability, high speed, and small area.
And specifically optimized SRAM placement schemes and
weight storage methods are imperative for further reductions
of area and power (energy) consumptions. In this section, we
present optimization techniques including efficient filter-aware
SRAM sharing, weight storage method, and layer-wise weight
storage optimizations.

SRAM

Figure 12: Filter-Aware SRAM Sharing Scheme.
5.1. Efficient Filter-Aware SRAM Sharing Scheme

Since all receptive fields of a feature map share one filter (a
matrix of weights), all weights functionally can be separated
into filter-based blocks and each block of weights are shared by
all inner product/convolution blocks using the corresponding
filter. Inspired by this fact, we propose an efficient filter-aware
SRAM sharing scheme, with structure illustrated in Figure
12. The scheme divides the whole SRAM into small blocks
to mimic filters. Besides, all inner product blocks can also be
separated into feature map-based groups, and each group of
inner product blocks takes charge of extracting one feature
map. Therefore, a local SRAM block is shared by all the
inner product blocks of the corresponding group, and then the
weights of the corresponding filter are stored into the local
SRAM block of this group. This scheme can significantly
reduce the routing overhead and wire delay.

5.2. Weight Storage Method

Except for the reduction on routing overhead, the size of
SRAM blocks can also be reduced by trading off accuracy
and hardware resources. The trading off is implemented by
eliminating certain least significant bits of a weight value to
reduce the SRAM size. Accordingly, we present a weight
storage method for significantly reducing the SRAM size with
little accuracy loss.

Baseline: High Precision Weight Storage. In general,
DCNN will be trained with single floating point precision.
Thus on hardware, up to 64-bit SRAM is needed for storing
one weight value in the fixed point format to maintain its orig-
inal high precision. This scheme can provide high accuracy
as there is almost no information loss of weights. However, it
also brings about high hardware consumptions in that the size
of SRAM and its related read/write circuits is increasing with
the increasing of precision of the stored weight values.

Low Precision Weight Storage Method. According to
our software-level experiments, many least significant bits far
from the decimal point only have a very limited impact on the
overall network accuracy, thus the number of bits for weight
representation in the SRAM block can be significantly reduced.
We propose a mapping equation that converts a weight in the
real number format to the binary number stored in SRAM to
eliminate the proper numbers of least significant bits. Suppose
the weight value is x, and the number of bits to store a weight
value in SRAM is w (which is defined as the precision of
the represented weight value in this paper), then the binary
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Figure 13: The impact of inaccuracies at each layer on the
overall SC-DCNN network accuracy.

number to be stored for representing x is:

Int(25L x2v)

y= 2W ’ (4)

where Int() means only keeping the integer part. Figure
14 illustrates the network error rates when the reductions of
weights’ precision are performed at a single layer or all layers.
The precision loss of weights at Layer0 (consisting of a convo-
lutional layer and pooling layer) has the least impact, while the
precision loss of weights at Layer2 (a fully connected layer)
has the most significant impact. The reason is that Layer2
is the fully connected layer, which has the largest number of
weights. On the other hand, when w is set equal to or greater
than seven, the network error rates are low enough and almost
not decreasing with the further increasing of precision. There-
fore, our proposed weight storage method can significantly
reduce the size of SRAMs and their read/write circuits through
decreasing the precision. The area savings achieved by this
method based on estimations from CACTI 5.3 [33] is 10.3 x.

5.3. Layer-wise Weight Storage Optimization

As shown in Figure 13, the inaccuracies at different layers
have different impacts on the overall accuracy of the network.
LayerO is the most sensitive to inaccuracies, and Layer2 is
the least sensitive to inaccuracies. Interestingly, this is the
opposite to the sensitivity to precision as shown in Figure 14.
Combining the observations from Figure 13 and Figure 14,
we propose a layer-wise weight storage scheme, which sets
different weight precisions at different layers. More specif-
ically, we set the weights at Layer2 to be a relatively low
precision but higher than four, while setting the weights of the
previous layers with a relatively high precision to compensate
the accuracy loss, so as to maintain the overall high network
accuracy. This method is effective to obtain savings in SRAM
area and power (energy) consumptions because Layer2 has the
most number of weights compared with the previous layers.
For instance, when we set weights as 7-7-6 at the three layers
of LeNet5, the network error rate is 1.65%, which has only
0.12% accuracy degradation compared with the error rate ob-
tained on software. However, 12 x improvements on area and
11.9x improvements on power consumptions are achieved
for the weight representations (from CACTI 5.3 estimations),
comparing with the baseline without any reduction in weight
representation bits.
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Figure 14: The impact of precision of weights at different lay-
ers on the overall SC-DCNN network accuracy.

6. Overall SC-DCNN Optimizations and Results

In this section, we first present optimizations of feature ex-
traction blocks along with comparison results with respect to
accuracy, area’hardware footprint, power (energy) consump-
tion, etc. Based on the results, we perform thorough optimiza-
tions on the overall SC-DCNN to construct LeNet5 structure,
which is one of the most well-known large-scale deep DCNN
structure, to minimize area and power (energy) consumption
while maintaining a high network accuracy level. Compre-
hensive comparison results are provided among SC-DCNN
designs (with different target network accuracy levels) and
with existing hardware platforms. The hardware performance
of the SC-DCNNSs regarding area, path delay, power and en-
ergy consumptions are obtained by: (i) synthesizing with the
45nm Nangate Open Cell Library [34] using Synopsys Design
Compiler, (ii) estimating using CACTT 5.3 [33] for the SRAM
blocks. Key peripheral circuitry in the SC domain, e.g., the
random number generators, are developed using the design in
[35] and synthesized using Synopsys Design Compiler.

6.1. Optimization Results on Feature Extraction Blocks

We present optimization results of feature extraction blocks un-
der different structures, input sizes, and bit-stream lengths on
accuracy, area/hardware footprint, power (energy) consump-
tion, etc. Figure 15 illustrates the accuracy performance of four
types of feature extraction blocks: MUX-Avg-Stanh, MUX-
Max-Stanh, APC-Avg-Btanh, and APC-Max-Btanh. The hor-
izontal axis represents the input size that increases logarith-
mically from 16 (2%) to 256 (2%). The vertical axis represents
the hardware inaccuracies of feature extraction blocks. Three
bit-stream lengths are tested and their impacts are shown in the
figure. Figure 16 illustrates the comparisons among four fea-
ture extraction blocks with respect to area, path delay, power,
and energy consumptions, and the horizontal axis represents
the input size that increases logarithmically from 16 (2%) to
256 (2%). The bit-stream length is fixed at 1024.
MUX-Avg-Stanh. From Figure 15-(a), we know that it has
the worst accuracy performance among the four structures.
Because MUX-based adder as mentioned in Section 4 is a
down-scaling adder and incurs inaccuracy because of informa-
tion loss. Besides, average pooling is performed with MUXes,
thus the inner products are further down-scaled and more in-
accuracies are incurred. As a result, this structure of feature
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extraction blocks.

extraction block is only appropriate for dealing with receptive
fields with a small size. On the other hand, it also possesses
advantages in that it is the most area and energy efficient de-
sign with the smallest path delay. Hence, it is appropriate for
scenarios with tight limitations on area and delay.

MUX-Max-Stanh. Figure 15-(b) shows that it has a better
performance in terms of accuracy when compared with the
MUX-Avg-Stanh. The reason is that the mean of four numbers
is generally closer to zero than the maximum value of the four
numbers. As mentioned in Section 4, minor inaccuracies on
the stochastic numbers near zero can cause significant inac-
curacies on the outputs of feature extraction blocks. Thus the
structures with hardware-oriented pooling are more resilient
than the structures with average pooling. In addition, the accu-
racy can be significantly improved by increasing the bit-stream
length, thus this structure can be applied for dealing with the
receptive fields with both small and large sizes. With respect
to area, path delay, and energy, its performance is just second
to the MUX-Avg-Stanh and close enough. Despite its rela-
tively high power consumption, the power can be remarkably
reduced by trading-off with the path delay.

APC-Avg-Btanh. Figure 15-(c) and 15-(d) illustrate the
hardware inaccuracies of APC-based feature extraction blocks.
The results imply that they significantly outperform the MUX-
based feature extraction blocks in terms of accuracy, since the
APC-based inner product blocks maintain most information
of inner products and thus generate results with high accuracy,
which is the drawback of the MUX-based inner product blocks.
On the other hand, APC-based feature extraction blocks con-
sume more hardware resources and result in much longer path
delays as well as energy consumptions. The long path delay
is also the reason that their power consumptions are lower
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than MUX-based designs. Therefore, the APC-Avg-Btanh
is appropriate for DCNN implementations that have a tight
specification on the accuracy performance and have a relative
loose hardware resource constraint.

APC-Max-Btanh. Figure 15-(d) indicates that this feature
extraction block design has the best accuracy performance
since: First, it is an APC-based design. Second, the average
pooling in the APC-Avg-Btanh causes more information loss
than the proposed hardware-oriented max pooling. To be more
specific, the fractional part of the number after average pool-
ing is dropped, e.g., the mean of (2, 3, 4, 5) is 3.5, but it will
be represented as 3 in binary format, thus some information
is lost during the average pooling. Generally, the increase of
input size will incur significant inaccuracies except for APC-
Max-Btanh. The reason that APC-Max-Btanh performs better
with more inputs is: more inputs will make the four inner prod-
ucts sent to the pooling function block more distinct from one
another, i.e., more inputs result in higher accuracy in selecting
the maximum value. The drawbacks of APC-Max-Btanh are
also distinct. It has the highest area and energy consump-
tions, and its path delay is just second to and very close to
the APC-Avg-Btanh. Besides, its power consumption is just
second to and close to the MUX-Max-Stanh. Accordingly,
this design is appropriate for the applications that have a very
tight requirement on the accuracy performance.

6.2. Overall Optimizations and Results on SC-DCNNs

Based on the results on feature extraction blocks, we perform
thorough optimizations on the overall SC-DCNN to construct
the LeNet 5 DCNN structure, to minimize area and power (en-
ergy) consupmtion while maintaining a high network accuracy.
The four types of feature extraction blocks, the basic function
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Table 6: Comparison among Various SC-DCNN Designs Implementing LeNet 5

No. Pooling Bit Configuration Performance
Stream Layer 0 Layer 1 Layer 2 Inaccuracy (%) Area (mmz) Power (W) Delay (ns) Energy (1J)
1 1024 MUX MUX APC 2.64 19.1 1.74 5120 8.9
2 MUX APC APC 223 229 2.13 5120 10.9
3 Max 512 APC MUX APC 1.91 32.7 3.14 2560 8.0
4 APC APC APC 1.68 36.4 3.53 2560 9.0
5 256 APC MUX APC 2.13 32.7 3.14 1280 4.0
6 APC APC APC 1.74 36.4 3.53 1280 4.5
7 1024 MUX APC APC 3.06 17.0 1.53 5120 7.8
8 APC APC APC 2.58 22.1 2.14 5120 11.0
9 Average 512 MUX APC APC 3.16 17.0 1.53 2560 39
10 APC APC APC 2.65 22.1 2.14 2560 55
11 256 MUX APC APC 3.36 17.0 1.53 1280 2.0
12 APC APC APC 2.76 22.1 2.14 1280 2.7
Table 7: Comparison with Existing Hardware Platforms
Network Platform  Area  Power Accuracy Throughput AreaEfficiency  Energy Efficiency
Platform Dataset Type Year Type (mm?) (W) (%) (Images/s) (Images/s/mm?) (Images/J)
SC-DCNN (No.6) 2016 ASIC 36.4 3.53 98.26 781250 21439 221287
SC-DCNN (No.11) CNN 2016 ASIC 17.0 1.53 96.64 781250 45946 510734
2 xIntel Xeon W5580 2009 CPU 263 156 98.46 656 2.5 4.2
Nvidia Tesla C2075 MNIST 2011 GPU 520 202.5 98.46 2333 4.5 32
Minitaur [36] ANN 2014 FPGA N/A <1.5 92.00 4880 N/A >3253
SpiNNaker [37] DBN? 2015 ARM N/A 0.3 95.00 50 N/A 166.7
TrueNorth [38,39] SNN? 2015 ASIC 430 0.18 99.42 1000 2.3 9259
DaDianNao [17] ImageNet CNN 2014 ASIC 67.7 15.97 N/A 147938 2185 9263
EIE-64PE [18] CNN layer 2016 ASIC 40.8 0.59 N/A 81967 2009 138927

blocks, and the weight storage schemes are carefully com-
pared and selected in the procedure. The (max pooling-based
or average pooling-based) LeNet 5 is a widely-used DCNN
structure [40] with a configuration of 784-11520-2880-3200-
800-500-10. The SC-DCNNs are evaluated with the MNIST
handwritten digit image dataset [41], which consists of 60,000
training data and 10,000 testing data.

The baseline error rates of the max pooling-based and aver-
age pooling-based LeNet5 DCNNs using software implemen-
tations are 1.53% and 2.24%, respectively. In the optimization
procedure, we set a threshold on the error rate difference as
1.5%, i.e., the network accuracy degradation of the SC-DCNNs
cannot exceed 1.5% compared with the error rates when tested
using software. We set the maximum bit-stream length as
1024 to avoid over-long delays. In the optimization procedure,
for the configurations that achieve the target network accuracy,
the bit-stream length is reduced by half in order to reduce
energy consumptions. Configurations are removed if they fail
to meet the network accuracy goal. The process is iterated
until no configuration is left.

Table 6 displays some selected typical configurations and
their comparison results (including the consumptions of
SRAMs and random number generators). Configurations No.1-
6 are max pooling-based SC-DCNNs, and No.7-12 are average
pooling-based SC-DCNNS. It can be observed that the config-
urations involving more MUX-based feature extraction blocks
achieve less hardware footprint, and those involving more
APC-based feature extraction blocks achieve higher network
accuracy. For the max pooling-based configurations, No.1 is
the most area efficient as well as power efficient configuration,
and No.5 is the most energy efficient configuration. With re-
gard to the average pooling-based configurations, No.7, 9, 11
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are the most area efficient and power efficient configurations,
and No.11 is the most energy efficient configuration.

Table 7 displays the comparison of our proposed SC-
DCNNs with software implementations using Intel Xeon Dual-
Core W5580 or Nvidia Tesla C2075 GPU as well as existing
hardware platforms. For example, EIE [18]’s performance
was evaluated on a fully connected layer of AlexNet [23]; the
state-of-the-art platform DaDianNao [17] proposed an ASIC
“node” that could be connected in parallel to implement a
large-scale DCNN; and other hardware platforms implement
different types of hardware neural networks such as spiking
neural network or deep-belief network. Configurations No.6
and No.11 are selected for comparison, since No.6 is the most
accurate max pooling-based configuration and No.11 is the
most energy efficient average pooling-based configuration.

When comparing with software implementation on CPU
server or GPU, the proposed SC-DCNNs are much more area
efficient, with improvements up to 30.6x by comparing SC-
DCNN (No.11) with Nvidia Tesla C2075. Besides, our pro-
posed SC-DCNNSs also have outstanding performance in terms
of throughput, area efficiency, and energy efficiency. The
proposed SC-DCNN (No.11) achieves 15625x throughput
improvements and 159604 x energy efficiency improvements,
comparing with Nvidia Tesla C2075. Regarding the refer-
ence hardware platforms, although not directly comparable
to some extent due to the difference in neural network types
and structures, the proposed SC-DCNN achieves the lowest
hardware footprint, the highest throughput, and the highest
energy efficiency. Despite the fact that the power performance
of SC-DCNNSs is not the best, it is still comparable with other

TANN: Artificial Neural Network; 2DBN: Deep Belief Network; 3SNN:
Spiking Neural Network




ASIC platforms like DaDianDao, EIE and Minitaur.

7. Conclusion

In this paper, a comprehensive SC-DCNN architecture is ex-
plored to achieve high power (energy) efficiency and low
hardware footprint. First, various function blocks involving
inner product calculations, pooling operations, and activa-
tion functions are investigated. Then four types of feature
extraction blocks, which are constructed with the carefully
selected function blocks, are proposed and jointly optimized
to achieve the optimal accuracy. And three weight storage op-
timization schemes are investigated for reducing the area and
power (energy) consumptions of SRAM. Experimental results
demonstrate that our proposed SC-DCNN achieves ultra-low
hardware footprint and low energy consumptions. It achieves
the throughput of 781250 images/s, area efficiency of 45946
images/s/mm?, and energy efficiency of 510734 images/J.
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