

Architectural Design and Complexity Analysis of Large-Scale
Cortical Simulation on a Hybrid Computing Platform

Qing Wu *, Qinru Qiu *, Daniel Burns **, Michael Moore **, Dennis Fitzgerald **, Richard Linderman **

* Department of Electrical and Computer
Engineering

Binghamton University
Binghamton, NY 13902

001-607-777-4918, 001-607-777-4536
qwu@binghamton.edu, qqiu@binghamton.edu

** Air Force Research Laboratory, Rome Site
26 Electronic Parkway

Rome, NY 13441
001-315-330-2335, 001-315-330-4920

Daniel.Burns@rl.af.mil, Michael.Moore.ctr@rl.af.mil
Dennis.Fitzgerald@rl.af.mil, Richard.Linderman@rl.af.mil

Abstract – The research and development in modeling and
simulation of human cognizance functions requires a high-
performance computing platform for large-scale
mathematical models. Traditional computing architecture
cannot fulfill the needs in arithmetic computation and
communication bandwidth. In this work, we propose a novel
hybrid computing architecture for the simulation and
evaluation of large-scale associative neural memory models.
The proposed architecture achieves very high computing and
communication performances by combining the technologies
of hardware-accelerated computing, parallel distributed data
operation and the publish/subscribe protocol. Analysis has
been done on the computation and data bandwidth demands
for implementing a large-scale Brain-State-in-a-Box (BSB)
model. Comparing to the traditional computing architecture,
the proposed architecture can achieve at least 100X speedup.

I. INTRODUCTION
With the recent ongoing research in human intelligence,
more attention has been paid to the autoassociative and
heteroassociative neural memory models [2] because in
many aspects, their working mechanisms are very similar to
the functionality of the cerebral cortex, i.e., neocortex. To
evaluate the feasibility and performance of using these
models for a complete cognitive function, for example vision,
we need to build and simulate a large-scale model that may
consist of hundreds of thousands of individual models and
massive amount of connections among them. Traditional
computing architecture, i.e., “general-purpose CPU plus
centralized memory” cannot fulfill the arithmetic
computation and data bandwidth demands to simulate large-
scale cortical models.
More and more researchers intend to agree on that the
neocortex follows a hierarchical architecture. On the bottom
of the hierarchy is the neuron; multiple neurons forming
cortical mini-columns; multiple mini-columns forming
cortical columns; pattern repeated at higher level to
implement the functional blocks thought to underlie
cognizance operations in the human brain [3].

To artificially realize the operations in this hierarchical
architecture/functionality of the brain, different
mathematical models have been studied. The Brain-State-in-
a-Box (BSB) attractor models [2], is one of the promising
solutions to the problem. The BSB model is usually used to
model the functionality of a mini-column. Multiple BSB
models can be connected to model a cortical column, and
eventually to model a complete cognitive function of the
brain, for example, vision.
In this paper, we present a novel high-performance hybrid
computing architecture for large-scale BSB models. Key
contributions of the work can be summarized as follows.
1. The proposed high-performance, reconfigurable

computing architecture can be applied to the research
and development in computing models of the neocortex.
Comparing to conventional architectures, the new
architecture will accelerate the computing speed by at
least 100X.

2. The proposed hardware architecture is targeted at
highly-connected hybrid computer clusters, which may
consist of 50 to 100 workstations communicating with
each other through high-speed interconnect networks.
Within each workstation, there are custom boards with
field programmable gate array (FPGA) devices. The
proposed architecture is general and scalable so that it
can be adapted to different hybrid platforms.

3. With the proposed architecture and design, we can run
more than 100,000 BSB models with dimensionality of
up to 128, simultaneously, with reaction time of less
than 100 milliseconds.

4. In the proposed architecture, the computational
algorithms of the models will be implemented on the
FPGA devices. There will be up to 1,000 models to
share the same FPGA device and run in a time-
multiplexed way. Parallel local memory banks are used
for high communication bandwidth demands.

5. The inter-model connection/communication problem
will be solved by both hardware and software. Within

the same workstation, hardware circuits will be
designed for sending outputs of one model to another.
For the communication across different workstations,
high-level asynchronous communication protocols such
as the publish/subscribe protocol is used.

The remainder of the paper is organized as follows. In
Section II, we will give a brief introduction to the BSB
model and a hybrid computing platform. The proposed
architecture and design are introduced in Sections III and IV.
An analysis on the computation and data bandwidth needs
by large-scale BSB model is also discussed in Section IV.
The summaries of the paper are given in Section V.

II. BACKGROUND
A) The Brain-State-in-a-Box attractor model
The mathematical model of a BSB attractor can be
represented in the following form.

x(t+1) = S(alpha*A*x(t) + lambda*x(t) + gamma*x(0)) (1)

where, x(t+1) and x(t) are N dimensional real vectors;
A is an N×N connection matrix;
alpha is a scalar constant feedback factor;
lambda is an inhibition decay constant;
gamma is a nonzero constant if there is a need to

maintain the input stimulation;
x(0) is the input stimulation;
S() is the “squash” function: S(y) = 1 if y>1; -1 if

y<-1; y otherwise.
There are two main BSB operations: Training and Recall.
Equation (1) is used in the recall operation. The training
operation will use the following equations to determine the
weight coefficients in A.

 ∆A = l_rate * (x – A*x) ⊗ x (2)

 A = A + ∆A (3)

where, x is the normalized input training pattern, a N
dimensional real vector;

l_rate is the learning rate of the training operation;
 ⊗ is the operator for the outer product of two
vectors.
The BSB attractor model discussed above is an
autoassociative neural memory model. There are other
autoassociative and heteroassociative models that have been
studied extensively [1]. Different Hebbian learning
algorithms have been studied too. These models and learning
algorithms have many similarities with the BSB model and
training algorithm.

B) The hybrid computer cluster platform
The proposed hardware architecture is targeted at highly-
connected hybrid computer clusters, which consist of a large
number of workstations communicating with each other
through high-speed interconnect networks. Within each

workstation, in addition to traditional architecture with
general-purpose processors, there are custom boards with
field programmable gate array (FPGA) devices and local
memories [4].
Figure 1 shows the components and system structure of the
high-performance computing (HPC) cluster at the Air Force
Research Lab, Rome, New York. The HPC cluster consists
of about 50 computing nodes that are connected through a
high-speed interconnect network. Each node in the cluster
consists of a general-purpose workstation with Intel’s
Pentium Xeon processors running Linux operating system,
and a WILDSTAR II PCI card [4] in the workstation’s PCI
slot.

Figure 1 The components and system structure of the
HPC cluster at RomeLab.

Figure 2 The block diagram of half of the WILDSTAR II

PCI card.

Figure 2 shows half of the detailed block diagram of the
WILDSTAR II PCI card [4]. There are two Xilinx Virtex II
XC2V6000 FPGA [5] processing elements (PEs) on each
card. For each PE, it connects to 6 parallel local memory
banks, which provides high bandwidth (5.5 GBytes/second)
for data read/write operations. These high-performance
FPGA cards are the key enabling technology for the
proposed computing architecture.

III. PROPOSED HYBRID COMPUTING
ARCHITECTURE

A) Research challenges
Major research challenges in hardware architecture and data
communication can be summarized as follows:
1. High computational demand. A large-scale

autoassociative/heteroassociative memory model
consists of a large amount (in the order of 100,000) of
highly connected individual models. For example, the
BSB models for entire visual cortex may require
floating point multiplications and additions in the order
of 1,000,000,000, for each cognizance task (e.g. 1 recall
for each of the 100,000 BSB models). While the
arithmetic resources in any hardware platform are
limited, a good architecture must effectively utilize
these resources to achieve required performance.

2. Heavy data traffic. A large-scale model is also data-
intensive. On any platform, the data communication can
become the bottleneck of the system performance. For
example, for a 128-neuron BSB model, the weight
matrix has 16,384 32-bit numbers. Even if we have high
bandwidth between the system memory and the
processing element (PE), we are not going to get good
performance if the PE has to fetch the weight matrix
from the memory for each operation of training or recall.
A good architecture must provide an effective method
of utilizing the on-chip memory and the local memory
banks to achieve high communication bandwidth.

B) A parallel architecture for high-performance
computing
To address the first challenge, we have developed a new
method that implements BSB operations on field
programmable gate array (FPGA) [5] chips. This
architecture parallelizes the multiplications and additions by
utilizing the large amount of multipliers and adders on the
FPGA. For example, there are 144 18-bit integer multipliers
on an XC2V6000 FPGA [5], which provides the capability
of performing 144 integer multiplications in the same clock
cycle.
In our initial study, we have developed the FPGA design of
a 32-neuron BSB recall function to illustrate the proposed
approach. The detailed PE data-path design is shown in the
Figure 3.
In Figure 3, Xi (i=0, 1, …, 31) is a 16-bit 2’s complement
integer stored in a register. In this design, we use 16-bit
signed integer number to represent real number in the range

of [-1.0, +1.0]. Therefore, 0x7FFF (32767) is for +1.0 and
0x8001 (-32767) for -1.0. We use the same conversion
method for other real numbers in Equations (1), (2) and (3).

Figure 3 The datapath design of a 32-neuron BSB recall

function.
In this experimental design, values of Xi and Ai,j will be
loaded from the memory to FPGA in sequential manner, i.e.,
one data per clock cycle. It requires 1,024 clock cycles to
shift-in the weight matrix, however this is only a fixed non-
recurring overhead.
For above design, the throughput is 32 clock cycles per BSB
recall function. If the FPGA chip runs at 100MHz, which is
achievable by appropriate pipelining, the throughput would
be 320ns per BSB recall. Meanwhile the time for a 2.4GHz
PC to do one BSB recall has been measured to be about
12,000ns. The hardware versus software speedup is around
12,000/320 ≈ 40X.
We estimate that for a 128-neuron BSB model, the speedup
is about 160X. Please note here that we have ignored the

A 3
1,

0
A 3

1,
0

A
30

,0
A 3

0,
0

A
0,

0
A

0,
0

A 3
1,

1
A 3

1,
1

A
30

,1
A

30
,1

A
0,

1
A

0,
1

A
31

,3
1

A
31

,3
1

A 3
0,

31
A

30
,3

1
A 0

,3
1

A 0
,3

1

w
_s

hi
ft_

in
w

_u
pd

at
e

w
_u

pd
at

e

w
_u

pd
at

e

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n

x_
up

da
te

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n
x_

up
da

te

×× ×× ××X
0

X
1

X
31

++ ++

++

A
dd

er
 T

re
e

A
dd

er
 T

re
e

××

al
ph

a

++

××

la
m

bd
a

S
()S
()

X
N

31
X

N
31

X
N

30
X

N
30

X
N

0
X

N
0

A 3
1,

0
A 3

1,
0

A
30

,0
A 3

0,
0

A
0,

0
A

0,
0

A 3
1,

1
A 3

1,
1

A
30

,1
A

30
,1

A
0,

1
A

0,
1

A
31

,3
1

A
31

,3
1

A 3
0,

31
A

30
,3

1
A 0

,3
1

A 0
,3

1

w
_s

hi
ft_

in
w

_u
pd

at
e

w
_u

pd
at

e

w
_u

pd
at

e

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n

x_
up

da
te

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n
x_

up
da

te

A 3
1,

0
A 3

1,
0

A
30

,0
A 3

0,
0

A
0,

0
A

0,
0

A 3
1,

1
A 3

1,
1

A
30

,1
A

30
,1

A
0,

1
A

0,
1

A
31

,3
1

A
31

,3
1

A 3
0,

31
A

30
,3

1
A 0

,3
1

A 0
,3

1

w
_s

hi
ft_

in
w

_u
pd

at
e

w
_u

pd
at

e

w
_u

pd
at

e

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n

x_
up

da
te

X
31X
31

X
30X
30

X
0X
0

x_
sh

ift
_i

n
x_

up
da

te

×× ×× ××X
0

X
1

X
31

++ ++

++

A
dd

er
 T

re
e

A
dd

er
 T

re
e

××

al
ph

a

++

××

la
m

bd
a

S
()S
()

X
N

31
X

N
31

X
N

30
X

N
30

X
N

0
X

N
0

×× ×× ××X
0

X
1

X
31

++ ++

++

A
dd

er
 T

re
e

A
dd

er
 T

re
e

××

al
ph

a

++

××

la
m

bd
a

S
()S
()

X
N

31
X

N
31

X
N

30
X

N
30

X
N

0
X

N
0

Dele

coefficient loading overhead for both PC and FPGA, which
we will address in the next sub-section.
One possible concern about the proposed approach is that,
all the previous BSB model work is based on floating-point
numbers and operations. Will the model still work if we use
integer number? To evaluate the feasibility of using integer
operations instead of floating-point operations, we made a
test case that uses a 32-neuron BSB model to learn and recall
one of the four patterns shown in Figure 4.

Figure 4 Four 25-pixel black-and-white patterns used for

the training and recall of a 32-neuron BSB model.
Two software programs in C/C++ are developed on a PC
with Linux OS, one using floating-point numbers and the
other using 16-bit integer numbers. We found that, given the
same sequence of training-recall operations, both programs
achieve the same result. Although this study does not cover
all possible application scenarios of the BSB models, it gives
us good confidence that the proposed FPGA-based
architecture will work in the integer domain.
The design in Figure 3 can be easily scaled up for 128-
neuron BSB models, as long as we have enough multipliers
on the FPGA. As we have mentioned, the WILDSTAR II
PCI card in the HPC cluster uses Xilinx XC2V6000 FPGA
that has 144 multipliers. One 128-neuron BSB model or four
32-neuron BSB models are good fit to its capacity. It is
worthwhile to mention that FPGA is virtually capable of
implementing any size BSB models, when it is needed.

IV. ANALYSIS ON COMPUTING AND
COMMUNICATION PERFORMANCE FOR

LARGE-SCALE CORTICAL MODELS
To address the second research challenge in heavy data
traffic, we divide the data communication in the system into
two types: intra-BSB communication and inter-BSB
communication. Intra-BSB communication is generated
mainly by the loading of weight matrix from memory to
FPGA. Inter-BSB communication is generated mainly by
sending the outputs of a BSB model to the inputs of other
models. To quantify the requirements in communication
bandwidth, we have done analysis on the following
application scenario.
To build a model for the whole primary visual cortex (V1),
we estimate that we need to have about 100,000 highly-
connected 128-neuron BSB models. If we have 100 FPGAs
in the computing platform, then the number of BSB models
to share the same FPGA can be calculated as:

 num_of_BSB_per_FPGA = 100,000 / 100 = 1,000 (4)

A 128-neuron BSB model has 1282 = 16,384 coefficients in
the weight matrix. If each coefficient is a 16-bit integer, then
the total storage space needed for all the BSB models on the
same FPGA can be calculated as:

total_memory_space = 1,000 * 16,384 * 2 ≈ 32 MBytes (5)

If the FPGA runs at 100MHz, the time for one recall
operation (128 clock cycles) is about 1.28µs. For each BSB
model, the maximum possible frequency of recall operation
can be calculated as:

 num_of_recall_per_BSB_per_Second

 = (1.0s / 1.28µs) / 1,000 ≈ 780 (6)

In worst case, on the same FPGA, if every time one BSB
model is loaded (i.e. transferring of the weight matrix from
memory to FPGA) for just one recall operation before the
next one is loaded, then the frequency of transferring a
weight matrix from memory to FPGA is:

 num_of_matrix_load_per_Second

 = 780 * 1,000 = 780,000 (7)

The worst-case total data traffic for intra-BSB
communication can be calculated as:

 intra_BSB_traffic = 16,384 * 2 * 780,000

 = 25,559,040,000 ≈ 25.6 GBytes/Second (8)

As a reference, the local memories banks (6 per FPGA) on
the WILDSTAR II PCI card can provide a communication
bandwidth of about 5.5 GBytes/Second.
If we assume that half of the BSB outputs (64 integers = 128
Bytes) will be sent to other models after every recall, then
the worst-case total data traffic for inter-BSB
communication can be calculated as:

 inter_BSB_traffic = 100,000 * 780 * 128

 = 9,984,000,000 ≈ 10 GBytes/Second (9)

The intra-BSB communication is solely between memory
and FPGA, while most of the inter-BSB communication is
between different workstations. As a reference, a Gigabit
Ethernet can provide a raw bandwidth of 125
MBytes/Second. The achievable aggregated bandwidth may
be larger, but is dependent on the network topology.
From the analysis we can see that, when developing the new
architecture, maximizing communication bandwidth is as
important as providing enough computing power. We
believe that a good architecture, combined with good
resource allocation algorithms, can achieve the best system
performance.
To maximize the bandwidth for intra-BSB communication,
we propose a parallel loading method by distributing the
weight matrix into the local memory banks so that they can
be loaded to the FPGA in parallel. If we use the
WILDSTAR II PCI card, the method is illustrated in Figure
5.

Figure 5 A parallel loading method for minimizing the
loading time of the weight matrix.

At full speed, the time to load a BSB model can be
calculated as:

 time_to_load_BSB

 = 16,384 * 2 / (5.5 GBytes/Second) ≈ 6µs (10)

The total for loading a BSB model and performing a recall
can be calculated as:

 time_to_load_recall_BSB = 6 + 1.28 = 7.28µs (11)

If we consider some possible latency and overhead,
conservatively speaking, we should be able to have the total
time less than 10µs. Since there are 1,000 BSB models
sharing the same FPGA, the effective total load + recall time
for each BSB model is 10ms.
The time for inter-BSB communication is rather hard to be
quantifed at this moment. We propose to use the flexible and
high-performance publish/subscribe protocol [7] as the
communication framework. The actually performance will
be calibrated when we have the hardware and software
working on the HPC cluster.
Figure 6 shows the overall hardware and communication
framework of the system. The inputs and outputs of the BSB
models will be stored in the on-chip memory. For inter-BSB
communication on the same FPGA, it only involves memory
reads and writes. For the communication on the same
WILDSTAR card, we can use the built-in high-speed links.
The cost for inter-BSB communication across the
workstations is much higher, because the data have to go
through the PCI bus, the hardware-pub/sub interface,
pub/sub protocol software, and the network.

Figure 6 The overall hardware and communication
framework of the system.

V. SUMMARIES
We have proposed a novel hybrid computing architecture for
the simulation and evaluation of large-scale associative
neural memory models. The proposed architecture achieves
very high computing and communication performances by
combining the technologies of hardware-accelerated
computing, parallel distributed data operation and the
publish/subscribe protocol. Analysis has been done on the
computation and data bandwidth demands for implementing
a large-scale Brain-State-in-a-Box (BSB) model. Comparing
to the traditional computing architecture, the proposed
architecture can achieve at least 100X speedup.

REFERENCES
[1] Q. Qiu, Q. Wu, D. Burns, P. Mukre, “Hybrid Architecture

for Accelerating DNA Codeword Library Searching,”
submitted to International Symposium on Circuits and
Systems, May 2007.

[2] “Associative Neural Memories: Theory and
Implementation,” Mohamad H. Hassoun, Editor, Oxford
University Press, 1993.

[3] “On Intelligence,” Jeff Hawkins, Sandra Blakeslee, Times
Books, Henry Holt and Company, LLC, 2004.

[4] “WILDSTAR II for PCI Data Sheet,” Annapolis Micro
Systems, Inc.

[5] “Virtex-II Family Product Table,” Xilinx, Inc.
[6] “Virtex-II Pro Family Product Table,” Xilinx, Inc.
[7] Patrick Eugster, Pascal Felber, Rachid Guerraoui, and

Anne-Marie Kermarrec, “The Many Faces of
Publish/Subscribe,” ACM computing Surveys, 35(2), June
2003.

A31,0A31,0 A30,0A30,0 A0,0A0,0

A31,1A31,1 A30,1A30,1 A0,1A0,1

A31,31
A31,31 A30,31

A30,31 A0,31
A0,31

w_shift_in
w_update

w_update

w_update

X31X31 X30X30 X0X0

x_shift_in

x_update

X31X31 X30X30 X0X0

x_shift_in
x_update

A31,0A31,0 A30,0A30,0 A0,0A0,0

A31,1A31,1 A30,1A30,1 A0,1A0,1

A31,31
A31,31 A30,31

A30,31 A0,31
A0,31

w_shift_in
w_update

w_update

w_update

X31X31 X30X30 X0X0

x_shift_in

x_update

X31X31 X30X30 X0X0

x_shift_in
x_update

××

××

××

X0

X1

X31

++

++

++

Adder TreeAdder Tree

××

alpha

++

××

lambda

S()S()

XN31XN31 XN30XN30 XN0XN0

××

××

××

X0

X1

X31

++

++

++

Adder TreeAdder Tree

××

alpha

++

××

lambda

S()S()

XN31XN31 XN30XN30 XN0XN0

128128--neuron BSB neuron BSB
hardware on FPGAhardware on FPGA

BSB_1 weight BSB_1 weight
matrix, part 1matrix, part 1

BSB_2 weight BSB_2 weight
matrix, part 1matrix, part 1

……

BSB_1000 weight BSB_1000 weight
matrix, part 1matrix, part 1

Memory Bank 1Memory Bank 1

BSB_1 weight BSB_1 weight
matrix, part 2matrix, part 2

BSB_2 weight BSB_2 weight
matrix, part 2matrix, part 2

……

BSB_1000 weight BSB_1000 weight
matrix, part 2matrix, part 2

Memory Bank 2Memory Bank 2

BSB_1 weight BSB_1 weight
matrix, part 3matrix, part 3

BSB_2 weight BSB_2 weight
matrix, part 3matrix, part 3

……

BSB_1000 weight BSB_1000 weight
matrix, part 3matrix, part 3

Memory Bank 3Memory Bank 3

BSB_1 weight BSB_1 weight
matrix, part 4matrix, part 4

BSB_2 weight BSB_2 weight
matrix, part 4matrix, part 4

……

BSB_1000 weight BSB_1000 weight
matrix, part 4matrix, part 4

Memory Bank 4Memory Bank 4

BSB_1 weight BSB_1 weight
matrix, part 5matrix, part 5

BSB_2 weight BSB_2 weight
matrix, part 5matrix, part 5

……

BSB_1000 weight BSB_1000 weight
matrix, part 5matrix, part 5

Memory Bank 5Memory Bank 5

BSB_1 weight BSB_1 weight
matrix, part 6matrix, part 6

BSB_2 weight BSB_2 weight
matrix, part 6matrix, part 6

……

BSB_1000 weight BSB_1000 weight
matrix, part 6matrix, part 6

Memory Bank 6Memory Bank 6

Parallel load memory interfaceParallel load memory interface

Parallel load memory interfaceParallel load memory interface

BSB_1 in/outBSB_1 in/out
BSB_2 in/outBSB_2 in/out

……
BSB_1000 in/outBSB_1000 in/out

OnOn--Chip MemoryChip Memory

PE0PE0

BSB_1 in/outBSB_1 in/out
BSB_2 in/outBSB_2 in/out

……
BSB_1000 in/outBSB_1000 in/out

OnOn--Chip MemoryChip Memory

PE1PE1

Direct LinkDirect Link

PCI Bus InterfacePCI Bus Interface

Hardware Hardware -- Pub/Sub Interface SoftwarePub/Sub Interface Software

Publish/Subscribe Framework SoftwarePublish/Subscribe Framework Software

GeneralGeneral--purpose processor purpose processor
with Linux OSwith Linux OS

Hybrid Computing Workstation

High-Speed Interconnect Network

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

