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Abstract – The research and development in modeling and 
simulation of human cognizance functions requires a high-
performance computing platform for large-scale 
mathematical models. Traditional computing architecture 
cannot fulfill the needs in arithmetic computation and 
communication bandwidth. In this work, we propose a novel 
hybrid computing architecture for the simulation and 
evaluation of large-scale associative neural memory models. 
The proposed architecture achieves very high computing and 
communication performances by combining the technologies 
of hardware-accelerated computing, parallel distributed data 
operation and the publish/subscribe protocol. Analysis has 
been done on the computation and data bandwidth demands 
for implementing a large-scale Brain-State-in-a-Box (BSB) 
model. Comparing to the traditional computing architecture, 
the proposed architecture can achieve at least 100X speedup. 

I. INTRODUCTION 
With the recent ongoing research in human intelligence, 
more attention has been paid to the autoassociative and 
heteroassociative neural memory models [2] because in 
many aspects, their working mechanisms are very similar to 
the functionality of the cerebral cortex, i.e., neocortex. To 
evaluate the feasibility and performance of using these 
models for a complete cognitive function, for example vision, 
we need to build and simulate a large-scale model that may 
consist of hundreds of thousands of individual models and 
massive amount of connections among them. Traditional 
computing architecture, i.e., “general-purpose CPU plus 
centralized memory” cannot fulfill the arithmetic 
computation and data bandwidth demands to simulate large-
scale cortical models.  
More and more researchers intend to agree on that the 
neocortex follows a hierarchical architecture. On the bottom 
of the hierarchy is the neuron; multiple neurons forming 
cortical mini-columns; multiple mini-columns forming 
cortical columns; pattern repeated at higher level to 
implement the functional blocks thought to underlie 
cognizance operations in the human brain [3]. 

To artificially realize the operations in this hierarchical 
architecture/functionality of the brain, different 
mathematical models have been studied. The Brain-State-in-
a-Box (BSB) attractor models [2], is one of the promising 
solutions to the problem. The BSB model is usually used to 
model the functionality of a mini-column. Multiple BSB 
models can be connected to model a cortical column, and 
eventually to model a complete cognitive function of the 
brain, for example, vision. 
In this paper, we present a novel high-performance hybrid 
computing architecture for large-scale BSB models. Key 
contributions of the work can be summarized as follows. 
1. The proposed high-performance, reconfigurable 

computing architecture can be applied to the research 
and development in computing models of the neocortex. 
Comparing to conventional architectures, the new 
architecture will accelerate the computing speed by at 
least 100X. 

2. The proposed hardware architecture is targeted at 
highly-connected hybrid computer clusters, which may 
consist of 50 to 100 workstations communicating with 
each other through high-speed interconnect networks. 
Within each workstation, there are custom boards with 
field programmable gate array (FPGA) devices. The 
proposed architecture is general and scalable so that it 
can be adapted to different hybrid platforms. 

3. With the proposed architecture and design, we can run 
more than 100,000 BSB models with dimensionality of 
up to 128, simultaneously, with reaction time of less 
than 100 milliseconds.  

4. In the proposed architecture, the computational 
algorithms of the models will be implemented on the 
FPGA devices. There will be up to 1,000 models to 
share the same FPGA device and run in a time-
multiplexed way. Parallel local memory banks are used 
for high communication bandwidth demands. 

5. The inter-model connection/communication problem 
will be solved by both hardware and software. Within 



 

the same workstation, hardware circuits will be 
designed for sending outputs of one model to another. 
For the communication across different workstations, 
high-level asynchronous communication protocols such 
as the publish/subscribe protocol is used. 

The remainder of the paper is organized as follows. In 
Section II, we will give a brief introduction to the BSB 
model and a hybrid computing platform. The proposed 
architecture and design are introduced in Sections III and IV. 
An analysis on the computation and data bandwidth needs 
by large-scale BSB model is also discussed in Section IV. 
The summaries of the paper are given in Section V. 

II. BACKGROUND 
A) The Brain-State-in-a-Box attractor model 
The mathematical model of a BSB attractor can be 
represented in the following form. 

x(t+1) = S(alpha*A*x(t) + lambda*x(t) + gamma*x(0))   (1) 

where, x(t+1) and x(t) are N dimensional real vectors; 
A is an N×N connection matrix;  
alpha is a scalar constant feedback factor; 
lambda is an inhibition decay constant;  
gamma is a nonzero constant if there is a need to 

maintain the input stimulation; 
x(0) is the input stimulation; 
S() is the “squash” function:  S(y) = 1 if y>1; -1 if 

y<-1; y otherwise. 
There are two main BSB operations: Training and Recall. 
Equation (1) is used in the recall operation. The training 
operation will use the following equations to determine the 
weight coefficients in A. 

                            ∆A = l_rate * (x – A*x) ⊗ x                  (2) 

                                      A = A + ∆A                                  (3) 

where, x is the normalized input training pattern, a N 
dimensional real vector; 

l_rate is the learning rate of the training operation; 
 ⊗ is the operator for the outer product of two 
vectors. 
The BSB attractor model discussed above is an 
autoassociative neural memory model. There are other 
autoassociative and heteroassociative models that have been 
studied extensively [1]. Different Hebbian learning 
algorithms have been studied too. These models and learning 
algorithms have many similarities with the BSB model and 
training algorithm. 

B) The hybrid computer cluster platform 
The proposed hardware architecture is targeted at highly-
connected hybrid computer clusters, which consist of a large 
number of workstations communicating with each other 
through high-speed interconnect networks. Within each 

workstation, in addition to traditional architecture with 
general-purpose processors, there are custom boards with 
field programmable gate array (FPGA) devices and local 
memories [4]. 
Figure 1 shows the components and system structure of the 
high-performance computing (HPC) cluster at the Air Force 
Research Lab, Rome, New York. The HPC cluster consists 
of about 50 computing nodes that are connected through a 
high-speed interconnect network. Each node in the cluster 
consists of a general-purpose workstation with Intel’s 
Pentium Xeon processors running Linux operating system, 
and a WILDSTAR II PCI card [4] in the workstation’s PCI 
slot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The components and system structure of the 
HPC cluster at RomeLab. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 The block diagram of half of the WILDSTAR II 

PCI card. 



 

Figure 2 shows half of the detailed block diagram of the 
WILDSTAR II PCI card [4]. There are two Xilinx Virtex II 
XC2V6000 FPGA [5] processing elements (PEs) on each 
card. For each PE, it connects to 6 parallel local memory 
banks, which provides high bandwidth (5.5 GBytes/second) 
for data read/write operations. These high-performance 
FPGA cards are the key enabling technology for the 
proposed computing architecture. 

III. PROPOSED HYBRID COMPUTING 
ARCHITECTURE 

A) Research challenges 
Major research challenges in hardware architecture and data 
communication can be summarized as follows: 
1. High computational demand. A large-scale 

autoassociative/heteroassociative memory model 
consists of a large amount (in the order of 100,000) of 
highly connected individual models. For example, the 
BSB models for entire visual cortex may require 
floating point multiplications and additions in the order 
of 1,000,000,000, for each cognizance task (e.g. 1 recall 
for each of the 100,000 BSB models). While the 
arithmetic resources in any hardware platform are 
limited, a good architecture must effectively utilize 
these resources to achieve required performance. 

2. Heavy data traffic. A large-scale model is also data-
intensive. On any platform, the data communication can 
become the bottleneck of the system performance. For 
example, for a 128-neuron BSB model, the weight 
matrix has 16,384 32-bit numbers. Even if we have high 
bandwidth between the system memory and the 
processing element (PE), we are not going to get good 
performance if the PE has to fetch the weight matrix 
from the memory for each operation of training or recall. 
A good architecture must provide an effective method 
of utilizing the on-chip memory and the local memory 
banks to achieve high communication bandwidth. 

B) A parallel architecture for high-performance 
computing 
To address the first challenge, we have developed a new 
method that implements BSB operations on field 
programmable gate array (FPGA) [5] chips. This 
architecture parallelizes the multiplications and additions by 
utilizing the large amount of multipliers and adders on the 
FPGA. For example, there are 144 18-bit integer multipliers 
on an XC2V6000 FPGA [5], which provides the capability 
of performing 144 integer multiplications in the same clock 
cycle. 
In our initial study, we have developed the FPGA design of 
a 32-neuron BSB recall function to illustrate the proposed 
approach. The detailed PE data-path design is shown in the 
Figure 3. 
In Figure 3, Xi (i=0, 1, …, 31) is a 16-bit 2’s complement 
integer stored in a register. In this design, we use 16-bit 
signed integer number to represent real number in the range 

of [-1.0, +1.0]. Therefore, 0x7FFF (32767) is for +1.0 and 
0x8001 (-32767) for -1.0. We use the same conversion 
method for other real numbers in Equations (1), (2) and (3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 The datapath design of a 32-neuron BSB recall 

function. 
In this experimental design, values of Xi and Ai,j will be 
loaded from the memory to FPGA in sequential manner, i.e., 
one data per clock cycle. It requires 1,024 clock cycles to 
shift-in the weight matrix, however this is only a fixed non-
recurring overhead.  
For above design, the throughput is 32 clock cycles per BSB 
recall function. If the FPGA chip runs at 100MHz, which is 
achievable by appropriate pipelining, the throughput would 
be 320ns per BSB recall. Meanwhile the time for a 2.4GHz 
PC to do one BSB recall has been measured to be about 
12,000ns. The hardware versus software speedup is around 
12,000/320 ≈ 40X.  
We estimate that for a 128-neuron BSB model, the speedup 
is about 160X. Please note here that we have ignored the 
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coefficient loading overhead for both PC and FPGA, which 
we will address in the next sub-section. 
One possible concern about the proposed approach is that, 
all the previous BSB model work is based on floating-point 
numbers and operations. Will the model still work if we use 
integer number? To evaluate the feasibility of using integer 
operations instead of floating-point operations, we made a 
test case that uses a 32-neuron BSB model to learn and recall 
one of the four patterns shown in Figure 4. 
 
 
 
 
Figure 4 Four 25-pixel black-and-white patterns used for 

the training and recall of a 32-neuron BSB model. 
Two software programs in C/C++ are developed on a PC 
with Linux OS, one using floating-point numbers and the 
other using 16-bit integer numbers. We found that, given the 
same sequence of training-recall operations, both programs 
achieve the same result. Although this study does not cover 
all possible application scenarios of the BSB models, it gives 
us good confidence that the proposed FPGA-based 
architecture will work in the integer domain.  
The design in Figure 3 can be easily scaled up for 128-
neuron BSB models, as long as we have enough multipliers 
on the FPGA. As we have mentioned, the WILDSTAR II 
PCI card in the HPC cluster uses Xilinx XC2V6000 FPGA 
that has 144 multipliers. One 128-neuron BSB model or four 
32-neuron BSB models are good fit to its capacity. It is 
worthwhile to mention that FPGA is virtually capable of 
implementing any size BSB models, when it is needed. 
 

IV. ANALYSIS ON COMPUTING AND 
COMMUNICATION PERFORMANCE FOR 

LARGE-SCALE CORTICAL MODELS 
To address the second research challenge in heavy data 
traffic, we divide the data communication in the system into 
two types: intra-BSB communication and inter-BSB 
communication. Intra-BSB communication is generated 
mainly by the loading of weight matrix from memory to 
FPGA. Inter-BSB communication is generated mainly by 
sending the outputs of a BSB model to the inputs of other 
models. To quantify the requirements in communication 
bandwidth, we have done analysis on the following 
application scenario. 
To build a model for the whole primary visual cortex (V1), 
we estimate that we need to have about 100,000 highly-
connected 128-neuron BSB models. If we have 100 FPGAs 
in the computing platform, then the number of BSB models 
to share the same FPGA can be calculated as: 

        num_of_BSB_per_FPGA = 100,000 / 100 = 1,000     (4) 

A 128-neuron BSB model has 1282 = 16,384 coefficients in 
the weight matrix. If each coefficient is a 16-bit integer, then 
the total storage space needed for all the BSB models on the 
same FPGA can be calculated as: 

total_memory_space = 1,000 * 16,384 * 2 ≈ 32 MBytes    (5) 

If the FPGA runs at 100MHz, the time for one recall 
operation (128 clock cycles) is about 1.28µs. For each BSB 
model, the maximum possible frequency of recall operation 
can be calculated as: 

        num_of_recall_per_BSB_per_Second  

        = (1.0s / 1.28µs) / 1,000  ≈ 780                                  (6) 

In worst case, on the same FPGA, if every time one BSB 
model is loaded (i.e. transferring of the weight matrix from 
memory to FPGA) for just one recall operation before the 
next one is loaded, then the frequency of transferring a 
weight matrix from memory to FPGA is: 

        num_of_matrix_load_per_Second  

        = 780 * 1,000 = 780,000                                            (7) 

The worst-case total data traffic for intra-BSB 
communication can be calculated as: 

        intra_BSB_traffic = 16,384 * 2 * 780,000  

        = 25,559,040,000 ≈ 25.6 GBytes/Second                  (8) 

As a reference, the local memories banks (6 per FPGA) on 
the WILDSTAR II PCI card can provide a communication 
bandwidth of about 5.5 GBytes/Second. 
If we assume that half of the BSB outputs (64 integers = 128 
Bytes) will be sent to other models after every recall, then 
the worst-case total data traffic for inter-BSB 
communication can be calculated as: 

        inter_BSB_traffic = 100,000 * 780 * 128  

        = 9,984,000,000 ≈ 10 GBytes/Second                        (9) 

The intra-BSB communication is solely between memory 
and FPGA, while most of the inter-BSB communication is 
between different workstations. As a reference, a Gigabit 
Ethernet can provide a raw bandwidth of 125 
MBytes/Second. The achievable aggregated bandwidth may 
be larger, but is dependent on the network topology. 
From the analysis we can see that, when developing the new 
architecture, maximizing communication bandwidth is as 
important as providing enough computing power. We 
believe that a good architecture, combined with good 
resource allocation algorithms, can achieve the best system 
performance. 
To maximize the bandwidth for intra-BSB communication, 
we propose a parallel loading method by distributing the 
weight matrix into the local memory banks so that they can 
be loaded to the FPGA in parallel. If we use the 
WILDSTAR II PCI card, the method is illustrated in Figure 
5. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 A parallel loading method for minimizing the 
loading time of the weight matrix. 

At full speed, the time to load a BSB model can be 
calculated as: 

        time_to_load_BSB  

        = 16,384 * 2 / (5.5 GBytes/Second) ≈ 6µs               (10) 

The total for loading a BSB model and performing a recall 
can be calculated as: 

          time_to_load_recall_BSB = 6 + 1.28 = 7.28µs      (11) 

If we consider some possible latency and overhead, 
conservatively speaking, we should be able to have the total 
time less than 10µs. Since there are 1,000 BSB models 
sharing the same FPGA, the effective total load + recall time 
for each BSB model is 10ms. 
The time for inter-BSB communication is rather hard to be 
quantifed at this moment. We propose to use the flexible and 
high-performance publish/subscribe protocol [7] as the 
communication framework. The actually performance will 
be calibrated when we have the hardware and software 
working on the HPC cluster.  
Figure 6 shows the overall hardware and communication 
framework of the system. The inputs and outputs of the BSB 
models will be stored in the on-chip memory. For inter-BSB 
communication on the same FPGA, it only involves memory 
reads and writes. For the communication on the same 
WILDSTAR card, we can use the built-in high-speed links. 
The cost for inter-BSB communication across the 
workstations is much higher, because the data have to go 
through the PCI bus, the hardware-pub/sub interface, 
pub/sub protocol software, and the network. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 The overall hardware and communication 
framework of the system. 

V. SUMMARIES 
We have proposed a novel hybrid computing architecture for 
the simulation and evaluation of large-scale associative 
neural memory models. The proposed architecture achieves 
very high computing and communication performances by 
combining the technologies of hardware-accelerated 
computing, parallel distributed data operation and the 
publish/subscribe protocol. Analysis has been done on the 
computation and data bandwidth demands for implementing 
a large-scale Brain-State-in-a-Box (BSB) model. Comparing 
to the traditional computing architecture, the proposed 
architecture can achieve at least 100X speedup. 
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