
   
 

Abstract — The advanced sensing and imaging technologies of 
today’s digital camera systems provide the capability of 
monitoring traffic flows in a very large area. In order to provide 
continuous monitoring and prompt anomaly detection, an 
abstract-level autonomous anomaly detection model is developed 
that is able to detect various categories of abnormal vehicle events 
with unsupervised learning. The method is based on the cogent 
confabulation model, which performs statistical inference 
functions in a neuromorphic formulation. The proposed approach 
covers the partitioning of a large region, training of the vehicle 
behavior knowledge base and the detection of anomalies 
according to the likelihood-ratio test. A software version of the 
system is implemented to verify the proposed model. The 
experimental results demonstrate the functionality of the 
detection model and compare the system performance under 
different configurations.  
 

Index Terms — anomaly detection, cogent confabulation, 
intelligent transportation, unsupervised learning 
 

I. INTRODUCTION 
NOMALY DETECTION, which refers to the techniques of 
identifying patterns that do not conform to the regular 

observations in a given data set, is of considerable importance. 
The problems of anomaly recognition and detection frequently 
arise from different domains, such as medical diagnosis and 
network intrusion detection. This paper focuses on developing 
an abstract-level autonomous anomaly detection model that 
provides continuous monitoring of vehicle behaviors over a 
very large area using unsupervised machine learning. Taking 
advantage of the advanced sensing and imaging capability of 
today’s digital camera systems, our model may enable 
anomalous traffic situation detection for wide area traffic 
monitoring which is not achievable solely by human observers. 

Several factors make building such a system challenging. 
Firstly, it is very hard to define a perfect normal region from 
which the abnormal vehicles can be differentiated. Secondly, 
normal traffic situations may evolve over time, so it is critical 
for the system to be adaptive to such changes. Thirdly, 
modeling and learning algorithm design can be difficult since 
there may be thousands of vehicles appearing simultaneous in 
the area. Last but not least, the requirement to handle such large 
volume of inputs and provide real-time monitoring, imposes 

stringent requirements in computation performance. 
Many techniques have been studied for anomaly detection 

[1]. In [2], outliers are detected by a kernelized one-class SVM 
classifier. Reference [3] uses replicator neural networks to 
provide a measure of outlierness. Nearest neighbor approaches 
assume that normal data occur in dense neighborhood while 
anomalies lie far from their neighbors [4]. Reference [5] 
improves the method by using a rank based approach. Bayesian 
network based methods such as [6] have also been well studied. 
More specifically, traffic anomalies are detected from camera 
images by trajectory clustering [7] or using Gaussian mixture 
model [8]. None of these approaches systematically scale to 
very large areas, nor provide explicit reasoning of the causes of 
the anomaly. 

In this paper, we present an autonomous traffic anomaly 
recognition and detection (AnRAD) model based on cogent 
confabulation [9], which is a computation model that mimics 
human information processing. It extracts the conditional 
probability among symbolic representations of features in an 
unsupervised environment. Thus the large area can be 
partitioned into smaller zones with independent models. Then, 
a knowledge base (KB) is built for each zone by feeding traffic 
records into properly modeled knowledge networks. When new 
traffic information is received, anomaly scores will be 
calculated by means of likelihood-ratio test for the observed 
events. Events with high anomaly scores will be marked as 
potential anomalies and the reasoning is achieved by the 
identification of key lexicons. The unique features of this 
platform can be summarized as follows: 
1. The model is able to handle a large volume of vehicle 

traces over a big area, which is not considered in [7][8]. 
The surveillance zones are estimated and partitioned to 
balance the computation load and the statistical model is 
more locally accurate. 

2. The confabulation based model has low complexity for 
both training and recall. Therefore, the system can be 
trained even during operating time, and this enables 
continuous improvements to the KB quality. 

3. By proper modeling, the system is capable of capturing the 
contextual information among vehicles and their 
neighbors. Thus, abnormal events caused by interaction 
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among vehicles, such as tailgating, can be detected as well. 
Such events are not considered in previous research. 

4. The overall system has a hierarchical architecture and the 
work load in each level of the hierarchy is inherently 
parallel. This can be further exploited in future work to 
provide real-time computing capabilities. 

The rest of the paper is structured as the follows. Section II 
provides the background concepts of cogent confabulation. 
Section III elaborates the designs of the model. Section IV 
presents experimental results and Section V concludes the 
current progress and discusses the potentials of future research. 

II. BACKGROUND 
Cogent confabulation is a cognitive computing model that 

mimics the learning, information storage and recall process of 
the human brain. It is proposed in [10] that aspects of learning 
and cognition can be formed from four major components: a 
universal symbolic system to represent objects, knowledge 
links between symbols, confabulation and action command 
launching. We will briefly describe each of these four 
components.  

The confabulation model represents the observation using a 
set of features. These features construct the basic dimensions 
that describe the world of applications, e.g. vehicle speed and 
coordinates. Different observed attributes of a feature are 
referred as symbols. The set of symbols used to describe the 
same feature forms a lexicon and the symbols in a lexicon are 
exclusive to each other. Knowledge links (KL) are established 
among lexicons. They are directed edges from the source 
lexicons to target lexicons. Each knowledge link is associated 
with a matrix. The ijth entry of the matrix gives the conditional 
probability log �𝑝�𝑠𝑖�𝑡𝑗�� between the symbols 𝑠𝑖 in the source 
lexicon and 𝑡𝑗 in the target lexicon. The knowledge matrix is 
constructed during training by extracting and associating 
features from the inputs. 

The cogent confabulation model has close resemblance to a 
neural system. The symbols are analogous to neurons and 
knowledge links between symbols are analogous to synapses 
between neurons. Whenever an attribute is observed, the 
corresponding symbol (i.e. neuron) is activated, and an 
excitation is passed to other symbols (i.e. neurons) through 
knowledge links (i.e. synapses).  

The excitation of a symbol t in lexicon l is calculated by 
summing up all incoming knowledge links: 

  𝑒𝑙(𝑡) =  ∑ (∑ 𝐼(𝑠) ln �𝑝(𝑠|𝑡)
𝑝0

� + 𝐵)𝑠∈𝑆𝑘𝑘∈𝐹𝑙  (1) 
where Fl denotes the set of lexicons that have connections to l, 
and Sk is a set that consists the collections of symbols in lexicon 
k; I(s) is the firing strength of source symbol s, and it is set to 1 
if s is observed without ambiguity; p0 is the minimum 
probability that is considered informative. Parameter B is a 
constant called band gap, it is 0 if none of the active source 
symbols in Sk has knowledge links go into t. The band gap 
ensures that symbols with more KLs receive higher excitation 
over those with fewer KLs. 

 As we can see, the excitation level of a symbol is actually its 
log-likelihood given the observed attributes in other lexicons. 

In [11], the excitation levels are used to resolve the ambiguity 
in observation via maximum likelihood inference. In this paper, 
the excitation level enables us to detect anomaly using the 
likelihood ratio method. 

When compared to other schemes, the training and recall 
process in the confabulation model are simple however 
massively parallel. Since the model is highly configurable, the 
system can be easily modified to fit diversified applications, or 
be optimized for better performance. Finally, because training 
and recall share the same knowledge data structures, the model 
offers unsupervised learning and online updating capabilities. 

 A previous research in [11], which performs confabulation- 
based text recognition on a high performance computing (HPC) 
cluster, demonstrates the model’s ability to handle incomplete 
data and to capture the causality between observations.  

III. MODEL DESIGN 
In this section, the detailed design aspects will be discussed. 

This covers the partition of the monitoring area into detection 
zones, the feature set, and the topology of knowledge graph that 
consists of knowledge links and lexicons, the training and 
detection algorithms, and the incremental learning of the 
knowledge base. 

The input to the system for both training and recall are traffic 
data (extracted from motion video) formatted as series of 
vehicle records ordered by time. Each record consists of a 
timestamp, vehicle type, the location and speed of the vehicle. 
We assume that there is no tracking information available that 
correlates records in different time instances. 

A. Surveillance Zone Partition 
The whole monitoring area is first divided into multiple 

smaller detection zones in the aid of training data. The benefits 
of this step are manifold: 
1. It is possible that thousands of vehicles exist at the same 

time in the area. The complexity of finding the nearest 
neighbors is a quadratic function of the number of the 
vehicles in the detection zone. This is computationally 
expensive as the monitoring area gets bigger and the 
number of vehicles in the area increases. Partitioning the 
monitoring area into smaller zones and processing each 
zone independently can effectively reduce the complexity. 

2. Each detection zone will be trained and operated as an 
independent unit, thus the workload can easily be 
parallelized and the knowledge base can be stored in a 
distributed manner.  

3. The number of possible attributes of certain features, e.g. 
vehicle coordinates, is directly proportional to the area of 
the zones. Therefore the partitioning method effectively 
reduces the number of symbols in a lexicon, and reduces 
the complexity of the confabulation model.  

4. The traffic situation varies from location to location. 
Therefore it is not appropriate to describe the whole area 
by a single model, since vehicles may exhibit different 
behaviors in different zones. Zone partitioning helps to 
improve the accuracy of the model. 

Because the number of vehicles directly determines the 
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computation workload of the training and recall processes, it is 
used as the criteria for zone partitioning. The partition 
algorithm is described in Figure 1. In general the algorithm 
divides the zones based on the average traffic density and 
ensures that none of the monitoring zone has more than the 
Partition Constraint N of vehicles appearing at the same time 
slot in the training set. The resulting zones are organized in a 
sibling tree structure. Each parent node is associated with four 
child zones, which are derived by directly splitting the parent 
zone into four equally-sized patches.  
 

1  Find the MAX and MIN values of vehicle coordinates 
2  Define the root zone and set Z = {root} 
3  For each time slot t in the training set 
4      reset vehicle_count of each zone in Z 
5      For each record x at time slot t 
6          Find zone z that x.location falls into 
7          if z.vehicle_count exceed limit N 
8              Split z into 4 child zones z[1-4] 
9              Update vehicle_count of z[1-4] 
10            Update set Z 
11        Else 
12            z.vehicle_count++ 
13        End if 
14    End for 
15 End for 

Figure 1. Zone partitioning algorithm. 

An example of the resulting zone partitioning is shown in 
Figure 2. The grids with yellow borders are detection zones. 

 

 
Figure 2. A zone partitioning example. 

Furthermore, each zone is designed to have a “buffer area” 
which is a margin overlapping with the adjacent zones. 
Vehicles in these margin areas will not be tested for anomaly 
detection, but be used to generate supporting information, such 
as neighbors to the target vehicles, or previous records of the 
current target vehicles. This allows the system to consider the 
vehicles about to enter or already exited the zone. 

B. Lexicon Definitions and Feature Extraction 
After the zone partition, the confabulation model can be built 

for each detection zone. The first task is to define the lexicons, 
namely features that are used to describe the vehicle behavior in 
traffic. Because the confabulation model was first introduced 
for applications in natural language processing [11], in this 
work we continue the tradition and refer the set of lexicons 

describing an observation as a “sentence”. 
In the anomaly detection problem, we consider the behavior 

of a vehicle within the context of its neighbors during the 
current and previous observations. If we define all observations 
made in the same time slot as a frame, the detection method 
involves three consecutive frames. Four classes of objects are 
defined: target, neighbor, auxiliary center, and supporter. Each 
vehicle appearing in a detection zone at frame t is considered as 
a target. The ten vehicles closest to the target in the same frame 
are defined as neighbors. Based on the current location and 
speed of target, we can estimate its location in the previous 
frames. The estimated targets in frames t-1 and t-2 are referred 
as the auxiliary centers. The nearest ten neighbors of the 
auxiliary center in the corresponding frame are called the 
supporters. Figure 3 shows an example of the four types of 
vehicle records. A sentence (i.e. the set of lexicons for the 
detection problem) is generated based on the observations of 
each target within the context neighbors, auxiliary centers and 
supporters. 

 
Figure 3. Classification of vehicle records and correspondent 

lexicons. 

Three lexicons are used to describe the basic attributes of a 
target vehicle, target location (L), target velocity (V), and target 
size (S). The target location is expressed in geographic latitude 
and longitude and is discretized to levels of approximately ten 
meters. The target speed is expressed as the combination of 
ground speed and direction. The target size is discretized to 
reflect the five different vehicle categories: sedan, truck, SUV, 
moving truck and 18-wheeler.  

Two lexicons are associated with each auxiliary center, 
center displacement (ΔL-t) and center acceleration (ΔV-t), t = 
1, 2. The center displacement is the distance between the target 
and an auxiliary center represented by the displacement in 
latitude and longitude. It describes how far the target moved in 
the last 1 and 2 frames. The center acceleration specifies the 
change of velocity (speed and direction) of the target during the 
last 1 and 2 frames. 

Two lexicons are associated with each neighbor or supporter. 
The relative location lexicon (denoted as ΔLi for the ith 
neighbor and ΔLi

-t for the ith supporter in frame -t) gives the 
relative position of the neighbor (or supporter) with the respect 
to the target. The velocity lexicon (denoted as Vi, for the ith 
neighbor and Vi

-t for the ith supporter in frame -t) specifies the 
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velocity of the neighbor (or supporter) as a combination of the 
speed and direction.  

Three lexicons are used for pairwise attributes that describes 
the relation between the target and each of its neighbors. 
Pairwise location lexicon (Li

~) specifies the distance (in meters) 
and direction (in degrees, relative to neighbor’s moving 
direction) between the target and the ith neighbor. Pairwise 
speed lexicon (Vi

~) specifies the target’s absolute speed (in m/s) 
and relative direction (in degrees) with respect to the neighbor’s 
direction. Pairwise speed changes lexicon (ΔVi

~) captures the 
target relative speed (in m/s) and relative direction (in degrees) 
with respect to the ith neighbor.  

In total, 97 lexicons (features) are used to describe the status 
and context of a target vehicle. The set of observed attributes of 
these features form a sentence, which is the basic input for the 
confabulation training and recall processes. Every vehicle in 
the detection zone is treated as a target; therefore there is a 
sentence for each one of them.  

C. Overall confabulation model 
 

 
Figure 4. Illustration of knowledge links among lexicons. 

Figure 4 shows the overall confabulation model with 
lexicons and the knowledge links among them. Lexicons S, L, V 
and Li

~, 1 ≤ 𝑖 ≤ 10, are represented using dashed circles.  Each 
one of them corresponds to a general category of abnormal 
behavior of the target vehicle, such as abnormal location or 
speeding, inconsistency between vehicle size and its status, and 
abnormal interactions with neighbors. We refer these lexicons 
as the key lexicons and others as the regular lexicons. Only the 
excitation levels of the key lexicons need to be evaluated. All 
other lexicons only provide supporting context for them. A key 
lexicon can have incoming knowledge links from all other 
lexicons while a regular lexicon can only have outgoing 
knowledge links. 

Comparing to the original confabulation model [10][11], this 
work adopts a new feature called “shared links”. It is motivated 
by the observation that for most of the time, a target vehicle 
may only have a small number of neighbors (usually less than 
five). Therefore the neighbor lexicons with large indices may 
have few training data. Figure 5 shows how the current training 
data reduce as the neighbor lexicon index increases. The 
amount of available training data directly affects the accuracy 
of the knowledge link derived. Meanwhile neighboring 
vehicles with similar behavior may be associated more often 

during multiple times of observation, because the neighbors are 
mapped to lexicon indices based on their relative distance to the 
target. Our model overcomes these problems by letting the 
knowledge links initiated from neighbor lexicons share the 
same knowledge matrix. In this way the training data for 
neighbors can all contribute to the same knowledge base and 
hence reduces the false alarm rate. Moreover, shared 
knowledge helps to reduce the size of KB since only one matrix 
is maintained for multiple knowledge links. 

 

 
Figure 5. The number of available training instances decreases 

when neighbor lexicon index increases. 

The detection process is divided into three stages: self-check, 
cross check and pairwise check. For self-check, the target 
status, namely the location, speed and type are checked with its 
own attributes: the S, L and V lexicons are connected to each 
other; the ΔL-t and ΔV-t lexicons are also connected to the 
current status and served as the triggering sources. The vehicle 
status should also pass cross check to be justified as normal. 
Thus S, L and V lexicons are also connected with neighbor and 
support lexicons, so that the “supporters” agree with the target 
vehicle’s behavior. Finally, the pairwise location lexicon Li

~ is 
used as the target lexicon to detect abnormal interactions 
among vehicles. It is tested against the target location L and 
pairwise speed information Vi

~ and ΔVi
~. 

D. Confabulation Training and Recall 
The confabulation algorithms consist of two procedures: 

unsupervised learning (training) and anomaly detection 
(recall). Both procedures are based on the same knowledge 
base data structure.  

 

 
Figure 6. Training and recall using confabulation model. 

Figure 6 shows the task flow of the training and recall 
procedures. The observed traffic data are first preprocessed for 
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zone partitioning and feature extraction. The observed attribute 
of the lexicons are collected and assembled into a sentence. 
Each observed attribute is mapped into a globally unique 
reference number called a symbol using the two-level hash 
function. For a given lexicon, all attributes observed during the 
training process form its candidate set. After preprocess, for 
each knowledge link, the co-occurrence of the source and target 
symbols are counted and the logarithm conditional probability 
is calculated. Finally, the knowledge matrices are stored into a 
knowledge base. The steps are summarized in Figure 7. 

 
1  Reset all KLs and lexicons 
2  For each input sentence T 
3      Map elements in T into reference numbers 
4      For each symbol oi in T 
5          Add oi to the candidate set of lexicon[i] 
6          For each symbol oj in T 
7                If (i !=  j), KL[oi, oj].count++ 
8          End for 
9      End for 
10 End for 
11 Finalize value of each KL and store into KB 

Figure 7. AnRAD training procedure. 

The same preprocessing and feature extraction procedures 
are performed in the recall procedure. The excitation levels el(t) 
of the key lexicons are calculated, which give the likelihood 
values of the observations given the context of the target and 
neighbors. For each key lexicon, the excitation levels of other 
symbols in its candidate set are also calculated and the symbol 
𝑡𝑏𝑒𝑠𝑡with the highest excitation level is obtained. An anomaly 
score as(l,t) is defined based on the likelihood ratio test as 
shown in Equation (2).  

  𝑎𝑠(𝑙, 𝑡) = 𝑒𝑙(𝑡𝑏𝑒𝑠𝑡)−𝑒𝑙(𝑡)
𝑒𝑙(𝑡𝑏𝑒𝑠𝑡)

 (2) 
A high anomaly score for observed symbol t indicates that 

the likelihood of t is much lower than the likelihood of the 
typical attributes in the current traffic context.  

Since an abnormal event usually lasts for multiple time slots, 
a vehicle is reported as “abnormal” only when the anomaly 
score of one of its key lexicons exceeds a threshold for three 
continuous frames. This constraint is specified by Equation (3). 

 min
𝑗=0,1,2

{𝑎𝑠−𝑗(𝑙, 𝑡)} > 𝜃𝑙 (3) 
The overall procedure of the anomaly detection is 

summarized in Figure 8. 
 

1  For each input sentence T 
2      Map elements in T into reference numbers 
3      For each target key lexicon l  and observation t 
4          Calculate el(t) by Eq. (1) 
5          For each candidates tj in lexicon[l], find el(tbest) 
6          Calculate as(l, t) by Eq. (2) 
7          If Eq. (3) satisfied, flag anomaly on the target 
9      End for 
10 End for 
11 Output anomaly reports 

Figure 8. AnRAD recall procedure. 

E. Incremental Learning 
One aspect of the traffic anomaly detection problem is that it 

is hard to obtain an accurate model without a sufficient volume 
of training data. Therefore it is important to keep learning even 
during operation time. Since AnRAD is probability-based and 
the data structures for training and detection procedures are 
consistent, this allows incremental learning to refine the model 
during the detection operation. To implement this feature, 
trained KBs are first loaded into memory and organized in the 
structure as shown in Figure 4. When new data are received, the 
system updates the event counter for each knowledge link. The 
probability calculations are performed periodically based on 
the updated event counter. As a result the KLs are updated 
on-the-fly and used for future anomaly detection. 

Efficient storage of the knowledge matrices and searching in 
the feature space are computationally challenging due to the 
large size of the feature space. For example, in order to provide 
sufficient resolution for a typical zone of 500×500 (meter2), 
more than 2500 location symbols are needed. Also, about 400 
symbols are needed to describe the relative distance between a 
target and one of its neighbors within a 100-meter radius. Each 
KL matrix has about 106 entries, and there are 30 knowledge 
links in each detection zone.  

Fortunately, the knowledge links are sparse matrices. For 
example, not all locations in the detection zone can be target 
location since most vehicles only appear on roads. In average, 
only 1% of the entries in the KL matrices are actually visited in 
a 90-minute training data. This number does not increase much 
when the training data get longer. For a 240-minute training 
sequence, the nonzero entries in KL matrices are about 2%.  

In this work, the knowledge matrix is organized using a 
2-level hash table. The first level maps each application 
specific symbol into a globally unique reference number. It 
isolates the confabulation training and recall from application 
specific data types, thus increases the adaptability of the 
approach. After the symbol mapping, the pairs of reference 
numbers between connected lexicons are used as keys to locate 
the entries of the KL in the second-level hash tables. The 
second-level hash function exploits the sparse characteristic of 
the KLs and improves the search performance. The average 
collision rate of the second-level level hash table is 1.4. Figure 
9 shows that the first-level hashing reduces the pattern 
combinations of ΔLi  and L from 1,000,000 to about 120,000 
(blue line); then the second-level hashing further reduces the 
storage requirement by another 90% (red line), which is only 
1% of the original size.  

 
Figure 9. Storage reduction by the two-level hashing method. 
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IV. EXPERIMENTAL RESULTS 
Experiments are conducted to evaluate the performance of 

AnRAD. The monitoring data cover a 10×10 (mile2) area. 

A. Single Detection Zone Tests 
In this test, one detection zone of 500×500 (meter2) with 

moderate traffic density is randomly selected from the 
monitoring area. The training data has 240 minutes of normal 
traffic. The testing data include 10 minutes of normal traffic 
data with manually inserted abnormal events representing 
typical hazardous vehicle activities. The abnormal events 
include cars deviating from the road, speeding, tailgating, 
18-wheelers running at abnormal speed, and cars unexpectedly 
stop-and-go in the middle of the road.  

 
Figure 10. Anomaly score of location key lexicon. 

 
Figure 11. Anomaly score of speed key lexicon. 

 
Figure 12. Anomaly score of the first neighbor pair lexicon. 

 
Figure 13. Anomaly score of speed lexicon for stop-and-go events. 

Figures 10, 11, 12 and 13 show the anomaly scores of the key 
lexicons for all vehicles in the testing data when abnormal 
events appeared. The X-axis of all the plots gives the indices of 

vehicles. The Y-axis gives the magnitude of the anomaly 
scores. Each figure corresponds to a type of abnormal activities. 
The anomaly scores of the manually-inserted abnormal targets 
are highlighted in red in each figure. As we can see, the 
anomaly scores in red are significantly higher than the normal 
ones, indicating anomalies can be detected by a decision 
threshold. Furthermore, the anomaly scores demonstrate 
obvious temporal continuity for most categories of abnormal 
events, except that of abnormal stop-and-go of vehicles, which 
give short spikes only when the moving status changes.  

 
Figure 14. Comparison of anomaly score between excitation level 

and Bayesian probability. 

Different from the calculation of the maximum a posteriori 
probability in a traditional Bayesian model [6], the prior 
probability of an observed attribute weights less in the 
confabulation model. The proposed method is more effective in 
detecting outliers that does not appear abnormal by itself but 
only becomes abnormal in a specific context. For example, an 
18-wheeler by itself is quite common in the detection zone. 
However this vehicle type becomes abnormal when it drives at 
a speed that is normally observed on sedans. As we can see 
from Figure 14, confabulation based anomaly scores for such 
events are 20% higher than those calculated with Bayesian 
models, therefore providing a better detection chance. 

B. Computation Costs and Partition Constraints 
In the second test, synthetic traces are generated over the 

same big area to compare the computational workload. Since 
the current testing system has not been optimized for 
multi-threading or parallel processing, the results are used for 
general trend comparison only.  

In Figure 15, the X axis is the total number of vehicles 
appeared in the entire monitoring area, and the Y axis is the 
average computation time for each frame over the whole area. 
Different partition constraints (values of N in Figure 1) are 
tested. It is observed the smaller N is, or in other words the finer 
the zones are divided, the smaller the computation time per 
frame is. This is mainly because smaller zones generate fewer 
candidates for the lexicons, therefore reducing the computation 
needed for searching knowledge entries and comparing 
candidate excitation levels. The only exception is that 
computing times for both training and recall with N=10 are 
slightly larger than the ones with N=20. This is due to the fact 
that with N=10, some of the zones become smaller than the 
overlapping margins between adjacent zones. This actually 
increases the total area of zones significantly and adds 
redundant calculation on the vehicles in the overlapping areas. 
Therefore N=20, which limits the maximum number of vehicles 
in each zone to 20, is chosen for the partitioning algorithm. 
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Figure 15. Computation time costs for the whole area with 

different zone partition constraints. 

C. Incremental Learning 
In this final experiment, training sequences are streaming 

into the system in an incremental fashion to verify that the 
proposed model can evolve and improve as more and more 
training data become available. In this test, one detection zone 
is selected and the training data are presented to the system 
gradually in 10-minute-long segments. After every incremental 
training step, a 10-minute-long normal traffic sequence (which 
is different from any of the training segment) is used for testing, 
and the number of detected anomalies in any key lexicons is 
reported. Since the testing sequence consists of normal 
vehicles, these anomaly counts are false alarms and expected to 
decrease with better training. 

 
Figure 16. False alarm rate against volume of training set 

Figure 16 shows that the false alarm rate reduces as the 
training goes on. The false alarm rate is calculated as the ratio 
of reported anomalies over the total number of checked 
instance. Each line represents a false alarm rate of one category 
of anomaly category (i.e., a key lexicon). With insufficient 
training, e.g. 10 minutes of training sequence, the false alarm 

rate can be as high as 60%. Meanwhile with more training, the 
false alarm rate drops quickly, and the system gives almost no 
false alarms after trained with 150 minutes of data. This 
indicates that the model has been updated incrementally and 
become more accurate when trained with more data.  

V. CONCLUSIONS & FUTURE WORK 
This paper presents an anomaly detection system based on 

the cogent confabulation model and its application in abnormal 
vehicle behavior detection. The model construction, data 
preprocessing, training and recall algorithms are presented. The 
experimental results show that synthetic anomalies can be 
easily detected in this model. Although the AnRAD system has 
shown promising potential in anomaly detection, many 
improvements are still needed. For example the parameters 
such as anomaly score thresholds need to be tuned carefully in 
the current system. Future work is needed to find a more 
general decision criterion.  
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