
 Distributed Task Migration for Thermal Management in
Many-core Systems

Yang Ge, Parth Malani, Qinru Qiu
Department of Electrical and Computer Engineering
Binghamton University, State University of New York

{yge2, pmalani1, qqiu}@binghamton.edu

ABSTRACT

In the deep submicron era, thermal hot spots and large

temperature gradients significantly impact system reliability,

performance, cost and leakage power. As the system complexity

increases, it is more and more difficult to perform thermal

management in a centralized manner because of state explosion

and the overhead of monitoring the entire chip. In this paper, we

propose a framework for distributed thermal management for

many-core systems where balanced thermal profile can be

achieved by proactive task migration among neighboring cores.

The framework has a low cost agent residing in each core that

observes the local workload and temperature and communicates

with its nearest neighbor for task migration/exchange. By

choosing only those migration requests that will result balanced

workload without generating thermal emergency, the proposed

framework maintains workload balance across the system and

avoids unnecessary migration. Experimental results show that,

compared with existing proactive task migration technique, our

approach generates less hotspots and smoother thermal gradient

with less migration overhead and higher processing throughput.

Categories and Subject Descriptors
C.4 [Perfomance of Systems]: Reliability, availability, and

serviceability

General Terms
Algorithms, Management, Performance

Keywords
Dynamic thermal management, distributed control, prediction

1. INTRODUCTION
The Multiprocessor System-on-Chip (MPSoC) is becoming a

major system design platform for general purpose and real-time

applications, due to its advantages in low design cost and high

performance. With the scaling of CMOS devices, this technology

is progressing from the multi-core era to the many-core era [1].

An example of such system is the 80 tile network-on-chip that has

been fabricated and tested by Intel [10]. However, the increasing

chip complexity and power envelope elevate peak temperatures of

chip and imbalance the thermal gradient.

Raised peak temperatures reduce life-time of the core, deteriorate

its performance, affect the reliability [9] and increase the cooling

cost. Leakage power increases with rising temperature which in

turn increases temperature of a transistor resulting in adverse

positive feedback effect called thermal runaway [9]. When

mapped on many-core system, diverse workload of applications

may lead to power and temperature imbalance within different

cores. Such temporal and spatial variation in temperature creates

local temperature maxima on the chip called hotspot [5][9]. Rising

temperatures cause Dynamic Thermal Management (DTM) events

such as core throttling or stalling which hit the performance [1].

An excessive spatial temperature variation, which is also referred

to as thermal gradient, increases clock skews and decreases

performance and reliability.

Considerable work has been done focusing thermal management

on multicore systems. Modern day microprocessers handle

thermal emergencies through various DTM mechanisms.

Techniques at microarchitecture level has been well explored

[1][9]. Voltage scaling and scheduling can be combined to

leverage the temperature reduction on MPSoCs [5][8].In a many-

core system, the heat dissipation capability differs from processor

to processor. In [14] an algorithm is proposed to map and

schedule tasks based on the thermal conductivity of different

processors.

Proactive thermal management based on runtime task migration

has been proposed in reference [4] and [11]. Both of them predict

the future temperature as a projection of the history temperature

trace. Although these predictive models are very accurate in some

circumstances, they have some limitations. First of all, both

models have to be updated and adjusted at runtime. This could

incur adaption overhead. Secondly, both models predict the future

temperature solely from the temperature history. For a system

with frequent task migrations, history temperature trace does not

reflect future temperature because the workload changes

dramatically. The predictor cannot give accurate prediction until it

has adapted to the new workload which may take a long time.

Furthermore, a prediction model works well for an application in

one core might not remain to be effective after this application has

been migrated to another core because different cores can display

different thermal characteristics due to their locations or heat

dissipation abilities. Finally, the migration policies proposed in [4]

and [11] does not try to maintain a balanced workload among

processors. Therefore, they work efficiently only when the

number of tasks is less than the number of cores.

Most of these techniques are centralized approaches. They require

a controller that monitors the temperature and workload

distribution of the entire chip and make global decisions of

resource allocation. Such centralized approaches do not have good

scalability. As the number of processing elements grows, the

complexity of solving the resource management problem grows

super-linearly. Furthermore, a centralized monitoring and

commanding framework incurs a large overhead, as

communication between central controller and cores will increase

exponentially [6].

In this paper we propose a framework of distributed thermal

management where balanced thermal profile can be achieved by

proactive thermal throttling as well as thermal-aware task

migrations among neighboring cores. The framework has a low

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC’10, June 13–18, 2010, Anaheim, California, USA.

Copyright 2010 ACM 978-1-4503-0002-5 /10/06…$10.00.

cost agent residing in each core. The agent observes the workload

and temperature of local processor while communicating and

exchanging tasks with its nearest neighbors. The goal of task

migration is to distribute tasks to processors based on their heat

dissipation capabilities and also ensure that each processor has a

good mix of high power (i.e. “hot”) tasks and low power (i.e.

“cool”) tasks. We refer to the proposed technique as distributed

thermal balancing migration (DTB-M) as it aims at balancing the

workload and temperature of the processors simultaneously. In

this work, we assume that the average power consumption of each

task is known. This information can be obtained through offline

characterization or online power estimation by observing the

event counters.

A neural network based peak temperature predictor is also

proposed in this paper. It predicts the future peak temperature

based on the workload statistics of the local processor and the

maximum and minimum temperatures of the neighbors. Once

trained, the neural network predictor has very low computation

complexity. Because it takes the workload as one of the input

parameters, it can give accurate prediction right after task

migration. It can even be used to predict the temperature impact of

a migration before the migration actually takes place as long as

the power consumption of the task that will be migrated in or out

is provided. Therefore, the predictor is used not only to determine

when to trigger a proactive task migration but also to evaluate

whether a migration is beneficial. The predictor is part of the

thermal management agent in each core.

The following summarizes the key differences between the

proposed thermal management framework and the previous

works.

(1) No centralized controller is required in this framework. The

distributed thermal management agent communicates and

exchanges tasks with its nearest neighbor. Therefore, the

communication cost and migration overhead for each core

does not increase when the number of cores in the system

increases.

(2) The neural network based peak temperature predictor works

robustly when the workload changes, which usually happens

after task migration/exchange.

(3) Compared to the existing proactive thermal-aware task-

migration, the proposed migration policy does not only

reduce hot spots and thermal gradient, but also maintains a

balanced workload and hence better performance.

Experimental results show that the DTB-M has 66.79% less

hot spots and 40.21% higher performance than the PDTM

proposed in [11]. Furthermore, the DTB-M also has much

lower migration overhead. The number of migrations is

reduced by 33.84% while the overall migration distance is

reduced by 70.7%.

The rest of the paper is organized as follows: Section 2 gives the

semantics of the underlying many core system and the application

model. We discuss our thermal management policy in detail in

Section 3. Experimental results are reported in Section 4. Finally,

we conclude the paper in Section 5.

2. SYSTEM INFRASTRUCTURE
A tile-based network-on-chip architecture [13] is targeted here.

Each tile is a processor with dedicated memory and an embedded

router. It will also be referred to as processing element (PE) in this

paper. All the processors and routers are connected by an on-chip

network where information is communicated via packet

transmission. Although it has been pointed out by [12] that the

thermal impact of the on-chip network is not negligible, in this

paper, we assume that there is very limited inter-processor

communication and we focus only on the thermal issues related to

the processors. We refer to the cores that can reach to each other

via one-hop communication as the nearest neighbors. The

proposed DTB algorithm migrates tasks among nearest neighbors

in order to reduce overhead and minimize the impact on the

communication bandwidth. We assume an existence of

temperature sensor on each core. A temperature sensor can be a

simple diode with reasonably fast and accurate response [5].

We assume that a dedicated OS layer is running on each core that

provides functions for scheduling, resource management as well

as communication with other cores. The proposed DTB algorithm

is implemented as part of the OS based resource management

program which performs thermal-aware task scheduling and

migration. We assume that each core is a preemptive time-

sharing/multitasking system. We focus on batch processing mode,

where pending processes/tasks are enqueued and scheduled by the

OS. Each task occupies a slice of operating time. The OS switches

from one task to another when the time slice expires. The

scheduling intervals of different cores do not have to be

synchronized.

3. DISTRIBUTED THERMAL

BALANCING POLICY
In this section we present the details of the distributed proactive

thermal balancing (DTB) policy. Table 1 summarizes the

notations that will be used in this paper.

As we mentioned before, each PEi is a preemptive system and has

a set of tasks LTi. Each task occupies an equal slice of execution

time tslice. Between two execution intervals is the scheduling

interval. Our DTB policy is performed in scheduling interval. The

PE also switches from one task to the next task at the scheduling

interval.

 Table 1. List of symbols and their definitions

Symbol Definition

LTi The list of tasks running on core i

|LTi| The number of tasks running on core i

i, A task in LTi

Pi The power of i,

Ti Current temperature of core i

Ni The set of nearest neighbors of core i

Tm Temperature threshold to trigger the DTB-M algorithm

Tdiff Threshold to trigger thermal balancing

ntdiff Threshold to trigger workload balancing

tslice Execution interval

Figure 1. Master-Slave execution protocol

The DTB policy basically can be divided into 3 phases:

temperature checking and prediction, information exchange and

task migration. Figure 1 shows the flowchart of the DTB

execution in the ith core. A DTB agent is initially neutral. It will

M
aster protocol

Ti > Tm? Tpred > Tm?
Tneigh < Ti – Tdiff?

DTB Master Mode DTB Slave Mode

Broadcast Requests Receive Requests

Receive Responses Select Requests and Send Response

Migrate Tasks

Reschedule Tasks

Resume Execution

S
lave protocol

Yes No

enter the master mode if any of the three scenarios are true: (1) the

local temperature Ti reaches a threshold Tm (in this case, the DTB

will first stall the processor to let it cool down before it enters the

master mode), (2) the predicted future peak temperature exceeds

the threshold Tm, (3) the temperature difference of the local core

and the neighbor core exceeds the thermal balancing threshold

Tdiff. Otherwise, it will enter the slave mode. A master DTB agent

issues a task migration request to its nearest neighbors which are

DTB slaves.

Because the scheduling intervals in all processors are not

synchronized, the request is not likely to be checked and

responded by the DTB slaves right away. On the other hand,

because all cores adopt the same execution and scheduling

interval, it is guaranteed that all the DTB slaves will response

within one tslice after the request is issued. The asynchronous

communication between master and slave DTB agents is

explained by the example shown in Figure 2. It shows a single

execution cycle of DTB policy starting from temperature check

phase to task migration. When a master first enters its scheduling

interval, it broadcasts a thermal balancing request in its

neighborhood and then continues task execution.

Figure 2. Master-slave communication

The slave will not respond until it reaches the next scheduling

interval, when it selects a master from multiple requests and sends

a response. In case of no requests, the PE resumes normal

execution in next time slice. In case of multiple master requests,

the slave selects a master which has the highest average power

consumption. Response to this master PE includes details of

slave’s workload LTs, its average steady state temperature temps,

and PE id, etc. The slave is then locked to this master until it

receives the migration request from the master or is released by

the master.

After receiving the response, the master decides which tasks to

migrate during its next scheduling interval and sends the

migration command to slave. The tasks are migrated from master

to slave at this time. After sending a response, the slave ignores

any possible incoming request from other agents until it receives

the migration command from the original master. Tasks can be

migrated from slave to master at this time, which marks the end of

DTB policy cycle.

To make migration decisions, a master DTB agent considers both

load balancing as well as thermal balancing. First, a load

balancing process is triggered which migrates tasks one way to

balance the workload between master and slave if the workload

difference between them exceeds the threshold ntdiff, this is

measure by 𝐿𝑇𝑖 − 𝐿𝑇𝑗 > 𝑛𝑡𝑑𝑖𝑓𝑓 , 𝑗 ∋ 𝑁𝑖 . The detailed workload

balancing policy is presented in section 3.5. Secondly, if there is

no workload imbalance, the DTB-M thermal balancing process is

triggered.

The main idea of the DTB-M policy is to exchange tasks between

neighboring PEs, so that each PE can get a balanced workload that

produces fewer hot spots. The DTB-M policy can be divided into

two parts. Both of the techniques have quadratic complexity to the

number of tasks in the local task queue. The first technique is a

steady state temperature based migration policy (SSTM). It

considers the long term thermal behavior of tasks, and distributes

tasks to cores based on their different heat dissipation ability. The

second technique is a temperature prediction based migration

policy (TPM), which predicts the peak temperatures of different

task combinations when making migration decisions. It ensures

that each core can get a good mixture of high power and low

power tasks without having thermal emergency. The two

techniques are complementary to each other with the first

technique considers long term average thermal effect and the

second technique considers short term temporal variations. The

main computation of the SSTM is performed by the masters while

the main computation of the TPM is performed by the slaves.

Section 3.1 presents the temperature prediction model that will be

used to trigger the master DTB and make the migration decision

in TPM. Section 3.2 and 3.3 provide the details of the SSTM and

the TPM policies and section 3.4 discusses how these two policies

work together in DTB-M.

3.1 Temperature Prediction Model
For a multitasking system (e.g. Linux), each task in a task set

could get a fair share of CPU time. Although the temperature

change is fast and large when running these tasks, the peak

temperature change is slow, as shown in [4]. Because the peak

temperature is the main reason for thermal emergency, here we

are interested in predicting the processor’s peak temperature in the

near future given the set of tasks on this processor.

The peak temperature of a processor is a function that depends not

only on the power consumption of tasks running on it, but also on

the temperature of its neighboring processors. It is difficult to

determine the peak temperature analytically, therefore we

employed a neural network [7] prediction model to find the

relation between the peak temperature and related parameters. Our

neural network predictor takes a set of inputs, and predicts the

peak temperature in the near future. The inputs to the predictor

include (1) the average power consumption of all tasks in the

processor, because the average power consumption determines the

average temperature level of the processor, (2) the power

consumption of the task with largest average power, because a

high power task is more likely to produce peak temperature (3)

the recent highest and lowest temperatures of its neighbor

processors in a history window.

Figure 3. Neural network predictor architecture

Figure 3 shows the architecture of our neural network predictor.

The predictor has one hidden layer and one output layer. There are

s = (2+2×nn) input elements, where nn is the number of the

nearest neighbors of a processor, m neurons in hidden layer and

one neuron in output layer. We set m to be 7 to get a good tradeoff

between prediction accuracy and computation amount. The IW,

LW, b1, b2 are m by s input weight matrix, l by m layer weight

matrix, l by m bias vector and 1 by 1 bias vector respectively.

They will be trained during training process and fixed when we

use the model to make prediction. The transfer functions for the

hidden layer (f1) and the output layer (f2) are the tansig function

and the purelin function respectively. Let P0 denote the input

Master PE

Slave PE

tslice

Scheduling
Interval

Scheduling
Interval

Task ExecutionInfo Exchange

Temp. Check Task Execution Task Migration Task Execution

Task Execution Task Migration

IW

+

b1

f1

1
1

2
2





 xe
y

LW

+

b2

f2

xy 

average power

max power

neighbor
temperatures

Input layer hidden layer output layer

predicted

peak temp

vector, the output of hidden layer can be calculated as P1 =

tansig(IW×P0+b1), and the output for the output layer is P2 =

purelin(LW×P1+b2), which is the predicted peak temperature.

The neural network predictor is trained using the fast and memory

efficient Levenberg-Marquardt algorithm [7]. The training set is

generated by running 500 groups of random picked synthetic

workload on the many-core system and recording the peak

temperature of each PE for different workloads. The training of

the neural network predictor is an offline procedure and needs to

be done only once. Therefore, here we only consider the

complexity of the recall procedure, which is used online to predict

the peak temperature. The recall procedure has very low

complexity. It involves ms+m multiplications and ms+2m+1

additions. Unlike other predictor models [4][11], we do not

invoke the prediction at every time step. The predictor will be

invoked when task in the PE changes, e.g. a new task has been

migrated in, or when the core temperature exceeds the predicted

value. This case could happen sometimes, for example, a PE made

a prediction when its neighbors are cool. After its neighbors

gradually heat up, the previous prediction will no longer be valid.

3.2 Steady State Temperature Based Task

Migration (SSTM)
The SSTM policy balances high power tasks and low power tasks

among neighbor PEs to optimize the average steady state

temperature of the whole chip. It considers the lateral heat transfer

between neighbor PEs and different heat dissipation capabilities

of PEs. The SSTM policy assumes that the workload (i.e. the

power consumption) of a PE is time invariant.

Let n denote the number of all thermal nodes in the system,

including those in the heat sink layer and heat spread layer. Let

TSSi and 𝑃𝑖 denote the steady state temperature and average power

consumption of node i. Pi is 0 if node i belongs to the heat sink

layer or heat spread layer. Let TSS and P denote vectors of TSSi

and Pi, 1≤i≤n. When the system reaches the steady state, for each

thermal node, its temperature is a linear function of power

consumptions P1, P2, …, Pn. The relation can be represented by

the following equation

 𝑇𝑆𝑆 = 𝑮−1𝑃 (1)

where 𝑮−1 = [𝑔𝑖𝑗] is the inverse matrix of thermal conductance

matrix G. We simplify equation (1) by keeping only the thermal

nodes related to the PEs:

𝑇1

⋮
𝑇𝑁

 =

𝑔11 ⋯ 𝑔1𝑁

⋮ ⋱ ⋮
𝑔𝑁1 ⋯ 𝑔𝑁𝑁

𝑃1

⋮
𝑃𝑁

 +
𝐷1

⋮
𝐷𝑁

 (2)

where N is the number of processors, and 𝐷𝑖 = 𝑔𝑖𝑗 ∙ 𝑃𝑗
𝑛
𝑗 =𝑁+1 is

a set of constants, because the power 𝑃𝑗 of other nodes does not

change. The coefficients gij and Di 1≤i, j≤N can be obtained by

offline analysis. Equation (2) shows that the steady state

temperature of each PE is a linear function of average power

consumptions on other PEs and increasing or reducing the power

consumption of one PE will have an impact on the steady state

temperature of all other PEs.

Assume that PEi and PEj had some task exchanges, and their

average power consumptions altered by 𝛥𝑃𝑖 and 𝛥𝑃𝑗 respectively.

Using equation (2), the total steady state temperature change of all

processors after task migration can be calculated as:

 𝛥𝑇𝑘

𝑁

𝑘=1
= 𝐺𝑖 ∙ 𝛥𝑃𝑖 + 𝐺𝑗 ∙ 𝛥𝑃𝑗 , (3)

where 𝐺𝑖 = 𝑔𝑚𝑖
𝑁
𝑚=1 , 𝐺𝑗 = 𝑔𝑛𝑗

𝑁
𝑛=1 . As we mentioned earlier,

the goal of the SSTM policy is to reduce the average steady state

temperature of the many-core system. In another word, it

exchanges task pair to keep 𝑇𝑘
𝑁
𝑘=1 decreasing, i.e. 𝛥𝑇𝑘

𝑁
𝑘=1 <

0. In this way, the master can maintain fairness of workload and

reduce its own operating temperature as well as the system’s

steady state temperature. Algorithm 1 gives the SSTM policy. A

master DTB agent in PEi first forms all task pairs 𝜏𝑖 , 𝜏𝑗 , 𝜏𝑖 ∈

𝐿𝑇𝑖 , 𝜏𝑗 ∈ 𝐿𝑇𝑗 , 𝑗 ∈ 𝑁𝑖 and 𝑃𝜏𝑖
> 𝑃𝜏𝑗

. Then for each task pair,

equation (3) is evaluated. The task pair which gives the minimum

𝛥𝑇𝑘 is selected and tasks are swapped. The process continues until

 𝛥𝑇𝑘
𝑁
𝑘=1 > 0 for all task pairs.

3.3 Temperature Prediction Based Migration

(TPM)
The SSTM reduces the average steady state temperatures of the

whole chip. However, it does not consider the temporal variation

of the workload (i.e. the power consumption) on each processor

and hence it may not be able to reduce the local peak temperature.

The workload/power consumption of a processor is constantly

changing because each processor is shared by a set of tasks with

different power and thermal profiles. In order to capture the local

temperature variation, the prediction model introduced in section

3.1 is used to decide whether a migration is beneficial or not.

Algorithm 2 shows the main computation of the TPM policy

which is performed by the slave DTB agent. For each task 𝜏𝑖 on

the master PE, the slave DTB agent employs the prediction model

to determine whether the local temperature will exceed the

thermal threshold Tm in the near future after exchanging 𝜏𝑖 with a

local task 𝜏𝑗 . Among those tasks that can safely be exchanged

with a task running on master PE, the one that has the lowest

power is selected and sent to the master as a potential offer for

task migration/exchange. On the master side, algorithm 2.1 is

executed. First, the master agent selects the one with the highest

power among the tasks that have been offered for task exchange.

If this task 𝜏𝑖 receives multiple offers, the master agent selects the

offer that exchanges 𝜏𝑖 with a task 𝜏𝑗 that has the lowest average

power.

1. S = ;

2. for each task 𝜏𝑖 ∈ 𝐿𝑇𝑖, (LTi is the list of tasks on master i)

3. for each task 𝜏𝑗 ∈ 𝐿𝑇𝑗 , (LTj is the list of tasks on slave j)

4. If (Predict_Thermal_Emergency(𝜏𝑖) = FALSE)

 Insert (i, j) to S;

5. If (S)

6. Return (i, j) to master, (i, j) S and 𝑃𝜏𝑖
≤ 𝑃𝜏𝑗

, (i, j)S;

7. Else Return NULL to master;

Algorithm 2 TPM (Slave Process)

1. Let S = {(i, j) | (i, j) is an offer from a slave}

2. Let T = {(i, j) | (i, j) 𝜖 S and 𝑃𝜏𝑖
 is the maximum in S }

3. Select a task pair (i, j) 𝜖 T, s.t. 𝑃𝜏𝑗
 is the minimum in T

4. Swap (i, j)

Algorithm 2.1 TPM (Master Process)

Algorithm 1 SSTM

1. for each 𝜏𝑖 ∈ 𝐿𝑇𝑖

2. for each 𝜏𝑗 ∈ 𝐿𝑇𝑗 , 𝑠. 𝑡. 𝑗 ∈ 𝑁𝑖 , 𝑃𝑇𝑖
> 𝑃𝑇𝑗

3. 𝛥𝑇𝑖𝑗 = 𝐺𝑖 ∙ 𝛥𝑃𝑖 + 𝐺𝑗 ∙ 𝛥𝑃𝑗

4. do { 𝛥𝑇𝑚𝑖𝑛 = min(𝛥𝑇𝑖𝑗)

5. if (𝛥𝑇𝑚𝑖𝑛 < 0) swap(𝜏𝑖 , 𝜏𝑗)

6. } while (𝛥𝑇𝑚𝑖𝑛 < 0)

3.4 Overall Task Migration and Scheduling
Our DTB-M policy consists of both SSTM and TPM. The SSTM

algorithm reduces the overall chip temperature by considering the

thermal conductance of the chip. So that in a neighborhood, high

power tasks can quickly be moved to the PEs that have better heat

dissipation, while low power tasks can be moved to the PEs that

are more easily to heat up. On the other hand, the TPM algorithm

mitigates the local hot spots and balances the thermal gradient.

After a master DTB agent triggers a migration request, it waits for

the response from the slaves. In this request, the master sends out

the list of its local task. When the slave receives the request, it

performs the TPM algorithm. In the reply message, it sends the

master the task pair that is found by the TPM algorithm and also

the list of its local task. The master then performs SSTM. If

SSTM algorithm found task pair whose exchange can reduce the

average temperature of the whole chip, then the master will issue

a task migration command. If the SSTM algorithm cannot find

any task pair for exchange, the master DTB performs the TPM

algorithm.

After task migration finishes, we employ a simple technique to

schedule the execution of tasks based on their average power

consumption for both master and slave PEs. All tasks in a PE’s

run queue are sorted according to descending order of their

average power consumption. The thermal aware scheduler will

execute hot and cool tasks alternatively starting from the coolest

and the hottest tasks, then the second coolest tasks and the second

hottest, until all tasks have been executed once. It will start a new

round of scheduling again. It is a simple yet effective scheduling

technique that tries to reduce the operating temperature of the

core.

3.5 Workload Balancing Policy
Workload balancing is triggered when a master PEi finds the

workload difference between itself and a slave PEj exceeds the

threshold ntdiff, this is 𝐿𝑇𝑖 − 𝐿𝑇𝑗 > 𝑛𝑡𝑑𝑖𝑓𝑓 , 𝑗 ∋ 𝑁𝑖 . The master

will pick the slave which gives the maximum workload

difference. The workload balancing policy is based on SSTM

described in 3.2. Firstly, 𝐺𝑖 and 𝐺𝑗 are evaluated (see equation

(3)). Then, tasks are migrated from the PE with more tasks to the

PE with fewer tasks one by one until the task difference is less

than or equal to one. In every migration, (3) is computed and the

task which minimize the 𝛥𝑇𝑘
𝑁
𝑘=1 will be selected. It can be

proved that if 𝐺𝑖 > 𝐺𝑗 and 𝐿𝑇𝑖 > 𝐿𝑇𝑗 , the migration from PEi

to PEj will start from the highest power task in PEi. On the other

hand, if 𝐺𝑖 > 𝐺𝑗 and 𝐿𝑇𝑖 < 𝐿𝑇𝑗 , the migration from PEj to PEi

will start from the lowest power task in PEj.

4. EXPERIMENTAL RESULTS
We implemented an event driven behavioral simulator of a

multicore system using C++. Hotspot [9] is integrated to our

multicore simulator to simulate the system thermal behavior.

Though the model is scalable for any number of cores a 36 core

system with 6x6 grids is chosen for our experiments due to the

limitation of simulation time. Each core has a size of 4mm x 4mm

with silicon layer of 24mm x 24mm.

We evaluated the proposed thermal management policy using

both static workload and dynamic workload. The system

performance is characterized by the number of completed jobs

within a given period of time. We assume that the temperature

threshold to trigger thermal throttling is 78 oC and during thermal

throttling, the CPU stalls its current execution. However, other

low power techniques such as DVFS can easily be integrated into

this framework. In all experiments, we set ntdiff = 2, tslice = 100ms,

Tm = 80 oC, Tdiff = 10 oC for the DTB policy.

We compared our migration policy with the state-of-the-art

Predictive Dynamic Thermal management (PDTM) policy

proposed in [11]. PDTM predicts a running process’s temperature

based on its temperature history using Recursive Least Square

method and based on the process’s steady state temperature. The

PDTM policy moves a process to a core which is predicted to be

cold in the near future before the process reaches high temperature

on its current running core. Therefore the system temperature can

be reduced. The proposed DTB policy and the reference policy

are compared from the following perspectives.

 Hotspot: The time spend above a temperature threshold which

is 80 oC in our case.

 Grad: i.e. thermal gradient, the percentage of time that any two

cores have more than 15oC temperature difference.

 NT: The number of tasks completed within a given period of

time. This is our representation of performance in a system.

 Mig: total number of migrations occurred during execution.

This is our representation of overhead.

We carried out experiments using power sequences collected from

real applications. We used 9 different CPU benchmarks

comprising of 3 SPEC2K benchmarks (bzip2, applu, mesa), 4

Mediabench applications (mpeg2enc, mpeg2dec, jpegdec,

jpegenc) and 2 telecom applications (crc32 and fft) from MiBench

benchmark suite. We collected cycle level power trace by

modifying the Wattch power analysis tool [3]. The average power

consumptions and steady state temperatures of each task are

summarized in table 2. The workloads of the following

experiments are random combinations of multiple copies of these

9 benchmarks. All experiment results reported below are the

average of 10 runs.

 Table 2 Average power and steady state temperature of CPU

benchmarks
Bench

marks
crc32

mp2

enc

mp2

dec
fft applu mesa bzip2

jpeg

dec

jpeg

enc

Avg. Power

(mW)
24.4 19.4 19 18.5 17.4 17.3 13.3 10.7 10.4

Steady

Temp. (oC)
99.42 84.17 82.95 81.42 78.07 77.76 65.56 57.63 56.72

4.1 Performance with Static Workload
In the first experiment, we apply the DTB-M policy in a system

with statistic workload. The workload consists of 144 tasks. Each

task is randomly selected from the 9 benchmarks mentioned

above. We determine the selection probability of a benchmark

based on its average power consumption so that the average

power consumption of the 144 tasks can follow a desired

distribution. Five power consumption distributions are tested in

this experiment.

Uniform distribution evenly generates tasks with different power

consumptions. Triangular (cool) distribution generates more low

power tasks than high power tasks, whereas triangular (hot)

distribution generates more high power tasks. Normal distribution

generates a set of tasks whose power consumption is mostly

clustered around the medium power. Inverse normal distribution

generates more high power tasks and low power tasks than the

medium power tasks.

Table 3 shows the comparison between the DTB policy and the

reference policy over those 5 different distributions. We can see

that DTB reduces the thermal gradients by 66.23% and hotspots

by 66.79% and improves the performance by 40.21% while

maintaining a 33.84% lower migration overhead. The reason that

the DTB gives improved performance is because the DTB

exchanges tasks and tends to distribute workload evenly across

the system and hence increases the parallelism while PDTM will

move tasks from different hot PEs to the same cooler PE, thus

making the load on different PEs unbalanced. PDTM also creates

much larger thermal gradients for the same reason. Without load

balancing, a PE may become idle and hence drop to a very low

temperature before new tasks moved in.

Table 3 Performance with static workload
Workload

distribution
Policy Uni.

Tri.

(cool)

Tri.

(hot)
Norm.

Inv.

Norm.

NT

DTB-M 144 144 144 144 144

PDTM 84.4 90.8 82.9 86.2 86.2

%Impr. 41.39 36.94 42.43 40.14 40.14

Mig. #

DTB-M 489.6 273.8 566.6 468.2 459.6

PDTM 582 418 1392.9 1009.3 488.5

%Impr. 15.88 34.50 59.32 53.61 5.92

Grad.

DTB-M 3.66% 2.62% 4.02% 2.95% 3.76%

PDTM 5.73% 9.02% 14.37% 9.02% 10.83%

%Impr. 36.19 70.89 72.00 67.28 65.31

Hotspot

DTB-M 115 135 147 238 150

PDTM 354 300 991 834 332

%Impr. 67.51 55.00 85.17 71.46 54.82

Note that although each time the DTB migrates two tasks (one

task in and one task out), the total number of migrated tasks of

DTB policy is still much less than that of PDTM. This is because

the DTB will analysis migration decisions first. If it finds that a

migration could cause hot spots on target PE, it will stop the

migration, therefore reduces the number of unnecessary

migrations. DTB also maintains a good mixture of high power and

low power tasks in each PE, the low power tasks can help reduce

the heat generated by high power tasks. Thus the high power tasks

do not have to be moved among neighbor PEs again and again.

This mixture of high power and lower power tasks also reduces

the hotspots. On the other hand, PDTM does not analyze the

thermal effect a migration would bring to the target PE. Therefore,

a high power task has a high chance to be moved among different

PEs frequently. We also observed in our experiment that the

average distance of each migration in PDTM is 3.41 hops while

the distance in DTB is always 1 hop. Our experimental results

also show that the neural network predictor is very accurate. The

average difference between the predicted peak temperature and

the actual peak temperature is only 1.5 oC. And the percentage of

times the actual temperature of a PE exceeds Tm, but our predictor

failed to catch that is within 6%.

Table 4 Performance with dynamic workload

Policy NT Mig. # Grad.(%) Hotspot

DTB-M 161 965.7 5.82% 174

PDTM 125.8 1279.4 13.11% 493.6

Improvement (%) 27.98 24.52 55.62 64.75

4.2 Performance with Dynamic Workload
In the second experiment, we further introduce some randomness

in the workload to model a dynamic system where new tasks

enters and existing tasks leaves. The initial task set consists of 144

tasks generated as described in section 4.1 with uniformly

distributed power consumptions. Instead of fixed durations, the

execution time of a task is uniformly distributed between 15 to 30

time slices, which is equivalent to 1.5 to 3 seconds. Every

execution interval, a new task is generated on a PE with 0.02

probability. The execution time of the new tasks follows the same

distribution. Table 4 gives the performance comparison between

DTB-M and PDTM. The experimental results show that DTB-M

can effectively improve the system performance and balance the
temperature in dynamic workload as well.

5. CONCLUSION
In this paper, we proposed a distributed thermal balancing policy

which stabilizes the operating temperature and improves the

performance of many core systems. A lightweight agent is

proposed for each core which independently monitors the

temperature and work towards maintaining a feasible thermal

profile and improve the core performance. Together all cores

collaboratively balance the thermal gradient on chip.

Experimental results show that performance is improved with

reduced overhead.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grant No. CNS-0845947

7. REFERENCES
[1] S. Borkar, “Thousand Core Chips – A Technology Perspective,” In

Proc. Design Automation Conference, June 2007.
[2] D. Brooks and M. Martonosi, “Dynamic Thermal Management for

High Performance Microprocessors,” In Proc. Int. Symp. High
Performance Computer Architecture, pages 171-182, Jan. 2001.

[3] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for
Architectural Level Power Analysis and Optimizations,” In Proc.
Int. Symp. Computer Architecture, pages 83-94, June 2000.

[4] A. Coskun, T. Rosing and K. Gross, “Proactive Temperature
Management in MPSoCs,” In Proc. Int. Symp. on Low Power
Electronics and Design, pages 165-170, Aug. 2008.

[5] J. Donald and M. Martonosi, “Techniques for Multicore Thermal
Management: Classification and New Exploration,” In Proc. Int.
Symp. Computer Architecture, pages 78-88, June 2006.

[6] T. Ebi, M. Faruque and J. Henekl, “TAPE: Thermal-Aware Agent-
Based Power Economy for Muti/Many-Core Architectures”, In Proc.
Int. Conf. on Computer-Aided Design, pages 302-309, Nov. 2009.

[7] R. Jayaseelan, T. Mitra, “Dynamic Thermal Management via
Architectural Adaption”, In Proc. Design Automation Conference,
pages 484-489, Jul. 2009.

[8] F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini, D.
Atienza and G. De Micheli, “Thermal Balancing Policy for
Streaming Computing on Multiprocessor Architectures,” In Proc.
Design Automation and Test in Europe, pages 734-739, March 2008.

[9] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy
and D. Tarjan, “Temperature-Aware Microarchitecture: Modeling
and Implementation,” ACM Trans. on Architecture and Code
Optimization, Vol. 1 Issue 1, pages 94-125,Mar. 2004.

[10] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D.
Finan, P. Lyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y.
Hoskote and N. Borkar “An 80-Tile 1.28 TFLOPS Network-on-Chip
in 65nm CMOS,” In Proc. Int. Solid-State Circuits Conf., pages 98-
589, Feb. 2007.

[11] I. Yeo, C. Liu and E. Kim “Predictive Dynamic Thermal
Management for Multicore Systems,” In Proc. Design Automation
Conf., pages 734-739, June 2008.

[12] L. Shang, L. Peh, A. Kumar and N. Jha, “Thermal Modeling,
Characterization and Management of On-chip Networks,” In Proc.
Int. Symp. Microarchitecture, Dec., 2004.

[13] W. Dally, B. Towles “Route packets, not wires: on-chip
interconnection networks,” In Proc. Design Automation Conf., Jun.
2001.

[14] S. Liu, J. zhang, Q. Wu and Q. Qiu, “Thermal-Aware Job Allocation
and Scheduling for Three Dimensional Chip Multiprocessor,” in
Proc. International Symposium on Quality Electronic Design, Mar.
2010.

