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ABSTRACT 

In the deep submicron era, thermal hot spots and large 

temperature gradients significantly impact system reliability, 

performance, cost and leakage power. As the system complexity 

increases, it is more and more difficult to perform thermal 

management in a centralized manner because of state explosion 

and the overhead of monitoring the entire chip. In this paper, we 

propose a framework for distributed thermal management for 

many-core systems where balanced thermal profile can be 

achieved by proactive task migration among neighboring cores. 

The framework has a low cost agent residing in each core that 

observes the local workload and temperature and communicates 

with its nearest neighbor for task migration/exchange. By 

choosing only those migration requests that will result balanced 

workload without generating thermal emergency, the proposed 

framework maintains workload balance across the system and 

avoids unnecessary migration. Experimental results show that, 

compared with existing proactive task migration technique, our 

approach generates less hotspots and smoother thermal gradient 

with less migration overhead and higher processing throughput. 

Categories and Subject Descriptors 
C.4 [Perfomance of Systems]: Reliability, availability, and 

serviceability 

General Terms 
Algorithms, Management, Performance 

Keywords 
Dynamic thermal management, distributed control, prediction 

1. INTRODUCTION 
The Multiprocessor System-on-Chip (MPSoC) is becoming a 

major system design platform for general purpose and real-time 

applications, due to its advantages in low design cost and high 

performance. With the scaling of CMOS devices, this technology 

is progressing from the multi-core era to the many-core era [1]. 

An example of such system is the 80 tile network-on-chip that has 

been fabricated and tested by Intel [10]. However, the increasing 

chip complexity and power envelope elevate peak temperatures of 

chip and imbalance the thermal gradient.  

Raised peak temperatures reduce life-time of the core, deteriorate 

its performance, affect the reliability [9] and increase the cooling 

cost. Leakage power increases with rising temperature which in 

turn increases temperature of a transistor resulting in adverse 

positive feedback effect called thermal runaway [9]. When 

mapped on many-core system, diverse workload of applications 

may lead to power and temperature imbalance within different 

cores. Such temporal and spatial variation in temperature creates 

local temperature maxima on the chip called hotspot [5][9]. Rising 

temperatures cause Dynamic Thermal Management (DTM) events 

such as core throttling or stalling which hit the performance [1]. 

An excessive spatial temperature variation, which is also referred 

to as thermal gradient, increases clock skews and decreases 

performance and reliability.  

Considerable work has been done focusing thermal management 

on multicore systems. Modern day microprocessers handle 

thermal emergencies through various DTM mechanisms. 

Techniques at microarchitecture level has been well explored 

[1][9]. Voltage scaling and scheduling can be combined to 

leverage the temperature reduction on MPSoCs [5][8].In a many-

core system, the heat dissipation capability differs from processor 

to processor. In [14] an algorithm is proposed to map and 

schedule tasks based on the thermal conductivity of different 

processors.  

Proactive thermal management based on runtime task migration 

has been proposed in reference [4] and [11]. Both of them predict 

the future temperature as a projection of the history temperature 

trace. Although these predictive models are very accurate in some 

circumstances, they have some limitations. First of all, both 

models have to be updated and adjusted at runtime. This could 

incur adaption overhead. Secondly, both models predict the future 

temperature solely from the temperature history. For a system 

with frequent task migrations, history temperature trace does not 

reflect future temperature because the workload changes 

dramatically. The predictor cannot give accurate prediction until it 

has adapted to the new workload which may take a long time. 

Furthermore, a prediction model works well for an application in 

one core might not remain to be effective after this application has 

been migrated to another core because different cores can display 

different thermal characteristics due to their locations or heat 

dissipation abilities. Finally, the migration policies proposed in [4] 

and [11] does not try to maintain a balanced workload among 

processors. Therefore, they work efficiently only when the 

number of tasks is less than the number of cores.  

Most of these techniques are centralized approaches. They require 

a controller that monitors the temperature and workload 

distribution of the entire chip and make global decisions of 

resource allocation. Such centralized approaches do not have good 

scalability. As the number of processing elements grows, the 

complexity of solving the resource management problem grows 

super-linearly. Furthermore, a centralized monitoring and 

commanding framework incurs a large overhead, as 

communication between central controller and cores will increase 

exponentially [6].   

In this paper we propose a framework of distributed thermal 

management where balanced thermal profile can be achieved by 

proactive thermal throttling as well as thermal-aware task 

migrations among neighboring cores. The framework has a low 
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cost agent residing in each core. The agent observes the workload 

and temperature of local processor while communicating and 

exchanging tasks with its nearest neighbors. The goal of task 

migration is to distribute tasks to processors based on their heat 

dissipation capabilities and also ensure that each processor has a 

good mix of high power (i.e. “hot”) tasks and low power (i.e. 

“cool”) tasks. We refer to the proposed technique as distributed 

thermal balancing migration (DTB-M) as it aims at balancing the 

workload and temperature of the processors simultaneously. In 

this work, we assume that the average power consumption of each 

task is known. This information can be obtained through offline 

characterization or online power estimation by observing the 

event counters. 

A neural network based peak temperature predictor is also 

proposed in this paper. It predicts the future peak temperature 

based on the workload statistics of the local processor and the 

maximum and minimum temperatures of the neighbors. Once 

trained, the neural network predictor has very low computation 

complexity. Because it takes the workload as one of the input 

parameters, it can give accurate prediction right after task 

migration. It can even be used to predict the temperature impact of 

a migration before the migration actually takes place as long as 

the power consumption of the task that will be migrated in or out 

is provided. Therefore, the predictor is used not only to determine 

when to trigger a proactive task migration but also to evaluate 

whether a migration is beneficial. The predictor is part of the 

thermal management agent in each core.  

The following summarizes the key differences between the 

proposed thermal management framework and the previous 

works. 

(1) No centralized controller is required in this framework. The 

distributed thermal management agent communicates and 

exchanges tasks with its nearest neighbor. Therefore, the 

communication cost and migration overhead for each core 

does not increase when the number of cores in the system 

increases. 

(2) The neural network based peak temperature predictor works 

robustly when the workload changes, which usually happens 

after task migration/exchange.  

(3) Compared to the existing proactive thermal-aware task-

migration, the proposed migration policy does not only 

reduce hot spots and thermal gradient, but also maintains a 

balanced workload and hence better performance.  

Experimental results show that the DTB-M has 66.79% less 

hot spots and 40.21% higher performance than the PDTM 

proposed in [11]. Furthermore, the DTB-M also has much 

lower migration overhead. The number of migrations is 

reduced by 33.84% while the overall migration distance is 

reduced by 70.7%. 

The rest of the paper is organized as follows: Section 2 gives the 

semantics of the underlying many core system and the application 

model. We discuss our thermal management policy in detail in 

Section 3. Experimental results are reported in Section 4.  Finally, 

we conclude the paper in Section 5. 

2. SYSTEM INFRASTRUCTURE 
A tile-based network-on-chip architecture [13] is targeted here. 

Each tile is a processor with dedicated memory and an embedded 

router. It will also be referred to as processing element (PE) in this 

paper. All the processors and routers are connected by an on-chip 

network where information is communicated via packet 

transmission. Although it has been pointed out by [12] that the 

thermal impact of the on-chip network is not negligible, in this 

paper, we assume that there is very limited inter-processor 

communication and we focus only on the thermal issues related to 

the processors. We refer to the cores that can reach to each other 

via one-hop communication as the nearest neighbors. The 

proposed DTB algorithm migrates tasks among nearest neighbors 

in order to reduce overhead and minimize the impact on the 

communication bandwidth. We assume an existence of 

temperature sensor on each core. A temperature sensor can be a 

simple diode with reasonably fast and accurate response [5].  

We assume that a dedicated OS layer is running on each core that 

provides functions for scheduling, resource management as well 

as communication with other cores. The proposed DTB algorithm 

is implemented as part of the OS based resource management 

program which performs thermal-aware task scheduling and 

migration. We assume that each core is a preemptive time-

sharing/multitasking system. We focus on batch processing mode, 

where pending processes/tasks are enqueued and scheduled by the 

OS. Each task occupies a slice of operating time. The OS switches 

from one task to another when the time slice expires. The 

scheduling intervals of different cores do not have to be 

synchronized. 

3. DISTRIBUTED THERMAL 

BALANCING POLICY 
In this section we present the details of the distributed proactive 

thermal balancing (DTB) policy. Table 1 summarizes the 

notations that will be used in this paper. 

As we mentioned before, each PEi is a preemptive system and has 

a set of tasks LTi. Each task occupies an equal slice of execution 

time tslice. Between two execution intervals is the scheduling 

interval. Our DTB policy is performed in scheduling interval. The 

PE also switches from one task to the next task at the scheduling 

interval. 

 Table 1. List of symbols and their definitions 

Symbol Definition 

LTi The list of tasks running on core i 

|LTi| The number of tasks running on core i 

i, A task in LTi 

Pi The power of i, 

Ti Current temperature of core i 

Ni The set of nearest neighbors of core i 

Tm Temperature threshold to trigger  the DTB-M algorithm 

Tdiff Threshold to trigger thermal balancing 

ntdiff Threshold to trigger workload balancing 

tslice Execution interval 

 
Figure 1. Master-Slave execution protocol 

The DTB policy basically can be divided into 3 phases: 

temperature checking and prediction, information exchange and 

task migration. Figure 1 shows the flowchart of the DTB 

execution in the ith core. A DTB agent is initially neutral. It will 
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enter the master mode if any of the three scenarios are true: (1) the 

local temperature Ti reaches a threshold Tm (in this case, the DTB 

will first stall the processor to let it cool down before it enters the 

master mode), (2) the predicted future peak temperature exceeds 

the threshold Tm, (3) the temperature difference of the local core 

and the neighbor core exceeds the thermal balancing threshold 

Tdiff. Otherwise, it will enter the slave mode. A master DTB agent 

issues a task migration request to its nearest neighbors which are 

DTB slaves. 

Because the scheduling intervals in all processors are not 

synchronized, the request is not likely to be checked and 

responded by the DTB slaves right away. On the other hand, 

because all cores adopt the same execution and scheduling 

interval, it is guaranteed that all the DTB slaves will response 

within one tslice after the request is issued. The asynchronous 

communication between master and slave DTB agents is 

explained by the example shown in Figure 2. It shows a single 

execution cycle of DTB policy starting from temperature check 

phase to task migration. When a master first enters its scheduling 

interval, it broadcasts a thermal balancing request in its 

neighborhood and then continues task execution.  

 
Figure 2. Master-slave communication 

The slave will not respond until it reaches the next scheduling 

interval, when it selects a master from multiple requests and sends 

a response. In case of no requests, the PE resumes normal 

execution in next time slice. In case of multiple master requests, 

the slave selects a master which has the highest average power 

consumption. Response to this master PE includes details of 

slave’s workload LTs, its average steady state temperature temps, 

and PE id, etc. The slave is then locked to this master until it 

receives the migration request from the master or is released by 

the master. 

After receiving the response, the master decides which tasks to 

migrate during its next scheduling interval and sends the 

migration command to slave. The tasks are migrated from master 

to slave at this time. After sending a response, the slave ignores 

any possible incoming request from other agents until it receives 

the migration command from the original master. Tasks can be 

migrated from slave to master at this time, which marks the end of 

DTB policy cycle.  

To make migration decisions, a master DTB agent considers both 

load balancing as well as thermal balancing. First, a load 

balancing process is triggered which migrates tasks one way to 

balance the workload between master and slave if the workload 

difference between them exceeds the threshold ntdiff, this is 

measure by  𝐿𝑇𝑖  −  𝐿𝑇𝑗   > 𝑛𝑡𝑑𝑖𝑓𝑓 , 𝑗 ∋ 𝑁𝑖 . The detailed workload 

balancing policy is presented in section 3.5. Secondly, if there is 

no workload imbalance, the DTB-M thermal balancing process is 

triggered.  

The main idea of the DTB-M policy is to exchange tasks between 

neighboring PEs, so that each PE can get a balanced workload that 

produces fewer hot spots. The DTB-M policy can be divided into 

two parts. Both of the techniques have quadratic complexity to the 

number of tasks in the local task queue. The first technique is a 

steady state temperature based migration policy (SSTM). It 

considers the long term thermal behavior of tasks, and distributes 

tasks to cores based on their different heat dissipation ability. The 

second technique is a temperature prediction based migration 

policy (TPM), which predicts the peak temperatures of different 

task combinations when making migration decisions. It ensures 

that each core can get a good mixture of high power and low 

power tasks without having thermal emergency. The two 

techniques are complementary to each other with the first 

technique considers long term average thermal effect and the 

second technique considers short term temporal variations. The 

main computation of the SSTM is performed by the masters while 

the main computation of the TPM is performed by the slaves. 

Section 3.1 presents the temperature prediction model that will be 

used to trigger the master DTB and make the migration decision 

in TPM. Section 3.2 and 3.3 provide the details of the SSTM and 

the TPM policies and section 3.4 discusses how these two policies 

work together in DTB-M. 

3.1 Temperature Prediction Model 
For a multitasking system (e.g. Linux), each task in a task set 

could get a fair share of CPU time. Although the temperature 

change is fast and large when running these tasks, the peak 

temperature change is slow, as shown in [4]. Because the peak 

temperature is the main reason for thermal emergency, here we 

are interested in predicting the processor’s peak temperature in the 

near future given the set of tasks on this processor.  

The peak temperature of a processor is a function that depends not 

only on the power consumption of tasks running on it, but also on 

the temperature of its neighboring processors. It is difficult to 

determine the peak temperature analytically, therefore we 

employed a neural network [7] prediction model to find the 

relation between the peak temperature and related parameters. Our 

neural network predictor takes a set of inputs, and predicts the 

peak temperature in the near future. The inputs to the predictor 

include (1) the average power consumption of all tasks in the 

processor, because the average power consumption determines the 

average temperature level of the processor, (2) the power 

consumption of the task with largest average power, because a 

high power task is more likely to produce peak temperature (3) 

the recent highest and lowest temperatures of its neighbor 

processors in a history window.  

 
Figure 3. Neural network predictor architecture 

Figure 3 shows the architecture of our neural network predictor. 

The predictor has one hidden layer and one output layer. There are 

s = (2+2×nn) input elements, where nn is the number of the 

nearest neighbors of a processor, m neurons in hidden layer and 

one neuron in output layer. We set m to be 7 to get a good tradeoff 

between prediction accuracy and computation amount. The IW, 

LW, b1, b2 are m by s input weight matrix, l by m layer weight 

matrix, l by m bias vector and 1 by 1 bias vector respectively. 

They will be trained during training process and fixed when we 

use the model to make prediction. The transfer functions for the 

hidden layer (f1) and the output layer (f2) are the tansig function 

and the purelin function respectively. Let P0 denote the input 
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vector, the output of hidden layer can be calculated as P1 = 

tansig(IW×P0+b1), and the output for the output layer is P2 = 

purelin(LW×P1+b2), which is the predicted peak temperature. 

The neural network predictor is trained using the fast and memory 

efficient Levenberg-Marquardt algorithm [7]. The training set is 

generated by running 500 groups of random picked synthetic 

workload on the many-core system and recording the peak 

temperature of each PE for different workloads. The training of 

the neural network predictor is an offline procedure and needs to 

be done only once. Therefore, here we only consider the 

complexity of the recall procedure, which is used online to predict 

the peak temperature. The recall procedure has very low 

complexity. It involves ms+m multiplications and ms+2m+1 

additions. Unlike other predictor models [4][11], we do not 

invoke the prediction at every time step. The predictor will be 

invoked when task in the PE changes, e.g. a new task has been 

migrated in, or when the core temperature exceeds the predicted 

value. This case could happen sometimes, for example, a PE made 

a prediction when its neighbors are cool. After its neighbors 

gradually heat up, the previous prediction will no longer be valid. 

3.2 Steady State Temperature Based Task 

Migration (SSTM) 
The SSTM policy balances high power tasks and low power tasks 

among neighbor PEs to optimize the average steady state 

temperature of the whole chip. It considers the lateral heat transfer 

between neighbor PEs and different heat dissipation capabilities 

of PEs. The SSTM policy assumes that the workload (i.e. the 

power consumption) of a PE is time invariant. 

Let n denote the number of all thermal nodes in the system, 

including those in the heat sink layer and heat spread layer. Let 

TSSi and 𝑃𝑖  denote the steady state temperature and average power 

consumption of node i. Pi is 0 if node i belongs to the heat sink 

layer or heat spread layer. Let TSS and P denote vectors of TSSi 

and Pi, 1≤i≤n. When the system reaches the steady state, for each 

thermal node, its temperature is a linear function of power 

consumptions P1, P2, …, Pn. The relation can be represented by 

the following equation 

 𝑇𝑆𝑆 = 𝑮−1𝑃 (1)  

where 𝑮−1 = [𝑔𝑖𝑗 ] is the inverse matrix of thermal conductance 

matrix G. We simplify equation (1) by keeping only the thermal 

nodes related to the PEs: 

  
𝑇1

⋮
𝑇𝑁

 =  

𝑔11 ⋯ 𝑔1𝑁

⋮ ⋱ ⋮
𝑔𝑁1 ⋯ 𝑔𝑁𝑁

  
𝑃1

⋮
𝑃𝑁

 +  
𝐷1

⋮
𝐷𝑁

  (2)  

where N is the number of processors, and 𝐷𝑖 =  𝑔𝑖𝑗 ∙ 𝑃𝑗
𝑛
𝑗 =𝑁+1  is 

a set of constants, because the power 𝑃𝑗  of other nodes does not 

change. The coefficients gij and Di 1≤i, j≤N can be obtained by 

offline analysis. Equation (2) shows that the steady state 

temperature of each PE is a linear function of average power 

consumptions on other PEs and increasing or reducing the power 

consumption of one PE will have an impact on the steady state 

temperature of all other PEs. 

Assume that PEi and PEj had some task exchanges, and their 

average power consumptions altered by 𝛥𝑃𝑖  and 𝛥𝑃𝑗  respectively. 

Using equation (2), the total steady state temperature change of all 

processors after task migration can be calculated as: 

  𝛥𝑇𝑘

𝑁

𝑘=1
= 𝐺𝑖 ∙ 𝛥𝑃𝑖 + 𝐺𝑗 ∙ 𝛥𝑃𝑗 , (3)  

where  𝐺𝑖 =  𝑔𝑚𝑖
𝑁
𝑚=1 , 𝐺𝑗 =  𝑔𝑛𝑗

𝑁
𝑛=1 . As we mentioned earlier, 

the goal of the SSTM policy is to reduce the average steady state 

temperature of the many-core system. In another word, it 

exchanges task pair to keep  𝑇𝑘
𝑁
𝑘=1  decreasing, i.e.  𝛥𝑇𝑘

𝑁
𝑘=1 <

0. In this way, the master can maintain fairness of workload and 

reduce its own operating temperature as well as the system’s 

steady state temperature. Algorithm 1 gives the SSTM policy. A 

master DTB agent in PEi first forms all task pairs  𝜏𝑖 , 𝜏𝑗  , 𝜏𝑖 ∈

𝐿𝑇𝑖 , 𝜏𝑗 ∈ 𝐿𝑇𝑗 , 𝑗 ∈ 𝑁𝑖  and 𝑃𝜏𝑖
> 𝑃𝜏𝑗

. Then for each task pair, 

equation (3) is evaluated. The task pair which gives the minimum 

𝛥𝑇𝑘  is selected and tasks are swapped. The process continues until 

 𝛥𝑇𝑘
𝑁
𝑘=1 > 0 for all task pairs. 

  

 

 

 

 

 

 

 

3.3 Temperature Prediction Based Migration 

(TPM) 
The SSTM reduces the average steady state temperatures of the 

whole chip. However, it does not consider the temporal variation 

of the workload (i.e. the power consumption) on each processor 

and hence it may not be able to reduce the local peak temperature. 

The workload/power consumption of a processor is constantly 

changing because each processor is shared by a set of tasks with 

different power and thermal profiles. In order to capture the local 

temperature variation, the prediction model introduced in section 

3.1 is used to decide whether a migration is beneficial or not. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 shows the main computation of the TPM policy 

which is performed by the slave DTB agent. For each task 𝜏𝑖  on 

the master PE, the slave DTB agent employs the prediction model 

to determine whether the local temperature will exceed the 

thermal threshold Tm in the near future after exchanging 𝜏𝑖  with a 

local task 𝜏𝑗 . Among those tasks that can safely be exchanged 

with a task running on master PE, the one that has the lowest 

power is selected and sent to the master as a potential offer for 

task migration/exchange. On the master side, algorithm 2.1 is 

executed. First, the master agent selects the one with the highest 

power among the tasks that have been offered for task exchange. 

If this task 𝜏𝑖  receives multiple offers, the master agent selects the 

offer that exchanges 𝜏𝑖  with a task 𝜏𝑗  that has the lowest average 

power.  

1. S = ; 

2. for each task  𝜏𝑖 ∈ 𝐿𝑇𝑖, (LTi is the list of tasks on master i)  

3.       for each task 𝜏𝑗 ∈ 𝐿𝑇𝑗 , (LTj is the list of tasks on slave j) 

4.            If (Predict_Thermal_Emergency(𝜏𝑖) =  FALSE)   

                 Insert (i, j) to S;        

5. If (S)  

6.      Return (i, j) to master,  (i, j) S  and 𝑃𝜏𝑖
≤ 𝑃𝜏𝑗

, (i, j)S; 

7. Else Return NULL to master; 

Algorithm 2 TPM (Slave Process) 

1. Let S = {(i, j) | (i, j) is an offer from a slave} 

2. Let T = {(i, j) | (i, j) 𝜖 S and 𝑃𝜏𝑖
 is the maximum in S } 

3. Select a task pair (i, j) 𝜖 T, s.t. 𝑃𝜏𝑗
 is the minimum in T 

4. Swap (i, j) 

Algorithm 2.1 TPM (Master Process) 
 

Algorithm 1 SSTM 

1. for each 𝜏𝑖 ∈ 𝐿𝑇𝑖  

2.       for each 𝜏𝑗 ∈ 𝐿𝑇𝑗 , 𝑠. 𝑡. 𝑗 ∈ 𝑁𝑖 , 𝑃𝑇𝑖
> 𝑃𝑇𝑗

 

3.             𝛥𝑇𝑖𝑗 = 𝐺𝑖 ∙ 𝛥𝑃𝑖 + 𝐺𝑗 ∙ 𝛥𝑃𝑗  

4. do {  𝛥𝑇𝑚𝑖𝑛 = min(𝛥𝑇𝑖𝑗 ) 

5.          if (𝛥𝑇𝑚𝑖𝑛 < 0)    swap(𝜏𝑖 , 𝜏𝑗 )  

6. } while (𝛥𝑇𝑚𝑖𝑛 < 0) 

 



3.4 Overall Task Migration and Scheduling  
Our DTB-M policy consists of both SSTM and TPM. The SSTM 

algorithm reduces the overall chip temperature by considering the 

thermal conductance of the chip. So that in a neighborhood, high 

power tasks can quickly be moved to the PEs that have better heat 

dissipation, while low power tasks can be moved to the PEs that 

are more easily to heat up. On the other hand, the TPM algorithm 

mitigates the local hot spots and balances the thermal gradient.  

After a master DTB agent triggers a migration request, it waits for 

the response from the slaves. In this request, the master sends out 

the list of its local task. When the slave receives the request, it 

performs the TPM algorithm. In the reply message, it sends the 

master the task pair that is found by the TPM algorithm and also 

the list of its local task. The master then performs SSTM. If 

SSTM algorithm found task pair whose exchange can reduce the 

average temperature of the whole chip, then the master will issue 

a task migration command. If the SSTM algorithm cannot find 

any task pair for exchange, the master DTB performs the TPM 

algorithm.  

After task migration finishes, we employ a simple technique to 

schedule the execution of tasks based on their average power 

consumption for both master and slave PEs. All tasks in a PE’s 

run queue are sorted according to descending order of their 

average power consumption. The thermal aware scheduler will 

execute hot and cool tasks alternatively starting from the coolest 

and the hottest tasks, then the second coolest tasks and the second 

hottest, until all tasks have been executed once. It will start a new 

round of scheduling again. It is a simple yet effective scheduling 

technique that tries to reduce the operating temperature of the 

core. 

3.5 Workload Balancing Policy 
Workload balancing is triggered when a master PEi finds the 

workload difference between itself and a slave PEj exceeds the 

threshold ntdiff, this is   𝐿𝑇𝑖  −  𝐿𝑇𝑗   > 𝑛𝑡𝑑𝑖𝑓𝑓 , 𝑗 ∋ 𝑁𝑖 . The master 

will pick the slave which gives the maximum workload 

difference. The workload balancing policy is based on SSTM 

described in 3.2. Firstly, 𝐺𝑖  and 𝐺𝑗  are evaluated (see equation 

(3)). Then, tasks are migrated from the PE with more tasks to the 

PE with fewer tasks one by one until the task difference is less 

than or equal to one. In every migration, (3) is computed and the 

task which minimize the  𝛥𝑇𝑘
𝑁
𝑘=1  will be selected. It can be 

proved that if 𝐺𝑖 > 𝐺𝑗  and  𝐿𝑇𝑖 >  𝐿𝑇𝑗  , the migration from PEi 

to PEj will start from the highest power task in PEi. On the other 

hand, if 𝐺𝑖 > 𝐺𝑗  and  𝐿𝑇𝑖 <  𝐿𝑇𝑗  , the migration from PEj to PEi 

will start from the lowest power task in PEj. 

4. EXPERIMENTAL RESULTS 
We implemented an event driven behavioral simulator of a 

multicore system using C++. Hotspot [9] is integrated to our 

multicore simulator to simulate the system thermal behavior. 

Though the model is scalable for any number of cores a 36 core 

system with 6x6 grids is chosen for our experiments due to the 

limitation of simulation time. Each core has a size of 4mm x 4mm 

with silicon layer of 24mm x 24mm. 

We evaluated the proposed thermal management policy using 

both static workload and dynamic workload. The system 

performance is characterized by the number of completed jobs 

within a given period of time. We assume that the temperature 

threshold to trigger thermal throttling is 78 oC and during thermal 

throttling, the CPU stalls its current execution. However, other 

low power techniques such as DVFS can easily be integrated into 

this framework. In all experiments, we set ntdiff = 2, tslice = 100ms, 

Tm = 80 oC, Tdiff = 10 oC for the DTB policy.  

We compared our migration policy with the state-of-the-art 

Predictive Dynamic Thermal management (PDTM) policy 

proposed in [11]. PDTM predicts a running process’s temperature 

based on its temperature history using Recursive Least Square 

method and based on the process’s steady state temperature. The 

PDTM policy moves a process to a core which is predicted to be 

cold in the near future before the process reaches high temperature 

on its current running core. Therefore the system temperature can 

be reduced. The proposed DTB policy and the reference policy 

are compared from the following perspectives. 

 Hotspot: The time spend above a temperature threshold which 

is 80 oC in our case. 

 Grad: i.e. thermal gradient, the percentage of time that any two 

cores have more than 15oC temperature difference. 

 NT: The number of tasks completed within a given period of 

time. This is our representation of performance in a system. 

 Mig: total number of migrations occurred during execution. 

This is our representation of overhead. 

We carried out experiments using power sequences collected from 

real applications. We used 9 different CPU benchmarks 

comprising of 3 SPEC2K benchmarks (bzip2, applu, mesa), 4 

Mediabench applications (mpeg2enc, mpeg2dec, jpegdec, 

jpegenc) and 2 telecom applications (crc32 and fft) from MiBench 

benchmark suite. We collected cycle level power trace by 

modifying the Wattch power analysis tool [3]. The average power 

consumptions and steady state temperatures of each task are 

summarized in table 2. The workloads of the following 

experiments are random combinations of multiple copies of these 

9 benchmarks. All experiment results reported below are the 

average of 10 runs. 

 Table 2 Average power and steady state temperature of CPU 

benchmarks 
Bench 

marks 
crc32 

mp2 

enc 

mp2 

dec 
fft applu mesa bzip2 

jpeg 

dec 

jpeg 

enc 

Avg. Power 

(mW) 
24.4 19.4 19 18.5 17.4 17.3 13.3 10.7 10.4 

Steady 

Temp. (oC) 
99.42 84.17 82.95 81.42 78.07 77.76 65.56 57.63 56.72 

4.1 Performance with Static Workload 
In the first experiment, we apply the DTB-M policy in a system 

with statistic workload. The workload consists of 144 tasks. Each 

task is randomly selected from the 9 benchmarks mentioned 

above. We determine the selection probability of a benchmark 

based on its average power consumption so that the average 

power consumption of the 144 tasks can follow a desired 

distribution. Five power consumption distributions are tested in 

this experiment.  

Uniform distribution evenly generates tasks with different power 

consumptions. Triangular (cool) distribution generates more low 

power tasks than high power tasks, whereas triangular (hot) 

distribution generates more high power tasks. Normal distribution 

generates a set of tasks whose power consumption is mostly 

clustered around the medium power. Inverse normal distribution 

generates more high power tasks and low power tasks than the 

medium power tasks. 

Table 3 shows the comparison between the DTB policy and the 

reference policy over those 5 different distributions. We can see 

that DTB reduces the thermal gradients by 66.23% and hotspots 



by 66.79% and improves the performance by 40.21% while 

maintaining a 33.84% lower migration overhead. The reason that 

the DTB gives improved performance is because the DTB 

exchanges tasks and tends to distribute workload evenly across 

the system and hence increases the parallelism while PDTM will 

move tasks from different hot PEs to the same cooler PE, thus 

making the load on different PEs unbalanced. PDTM also creates 

much larger thermal gradients for the same reason. Without load 

balancing, a PE may become idle and hence drop to a very low 

temperature before new tasks moved in. 

Table 3 Performance with static workload 
Workload 

distribution 
Policy Uni. 

Tri. 

(cool) 

Tri. 

(hot) 
Norm. 

Inv. 

Norm. 

NT 

DTB-M 144 144 144 144 144 

PDTM 84.4 90.8 82.9 86.2 86.2 

%Impr. 41.39 36.94 42.43 40.14 40.14 

Mig. # 

DTB-M 489.6 273.8 566.6 468.2 459.6 

PDTM 582 418 1392.9 1009.3 488.5 

%Impr. 15.88 34.50 59.32 53.61 5.92 

Grad. 

DTB-M 3.66% 2.62% 4.02% 2.95% 3.76% 

PDTM 5.73% 9.02% 14.37% 9.02% 10.83% 

%Impr. 36.19 70.89 72.00 67.28 65.31 

Hotspot 

DTB-M 115 135 147 238 150 

PDTM 354 300 991 834 332 

%Impr. 67.51 55.00 85.17 71.46 54.82 

Note that although each time the DTB migrates two tasks (one 

task in and one task out), the total number of migrated tasks of 

DTB policy is still much less than that of PDTM. This is because 

the DTB will analysis migration decisions first. If it finds that a 

migration could cause hot spots on target PE, it will stop the 

migration, therefore reduces the number of unnecessary 

migrations. DTB also maintains a good mixture of high power and 

low power tasks in each PE, the low power tasks can help reduce 

the heat generated by high power tasks. Thus the high power tasks 

do not have to be moved among neighbor PEs again and again. 

This mixture of high power and lower power tasks also reduces 

the hotspots. On the other hand, PDTM does not analyze the 

thermal effect a migration would bring to the target PE. Therefore, 

a high power task has a high chance to be moved among different 

PEs frequently. We also observed in our experiment that the 

average distance of each migration in PDTM is 3.41 hops while 

the distance in DTB is always 1 hop. Our experimental results 

also show that the neural network predictor is very accurate. The 

average difference between the predicted peak temperature and 

the actual peak temperature is only 1.5 oC. And the percentage of 

times the actual temperature of a PE exceeds Tm, but our predictor 

failed to catch that is within 6%. 

Table 4 Performance with dynamic workload 

Policy NT Mig. # Grad.(%) Hotspot 

DTB-M 161 965.7 5.82% 174 

PDTM 125.8 1279.4 13.11% 493.6 

Improvement (%) 27.98 24.52 55.62 64.75 

4.2 Performance with Dynamic Workload 
In the second experiment, we further introduce some randomness 

in the workload to model a dynamic system where new tasks 

enters and existing tasks leaves. The initial task set consists of 144 

tasks generated as described in section 4.1 with uniformly 

distributed power consumptions. Instead of fixed durations, the 

execution time of a task is uniformly distributed between 15 to 30 

time slices, which is equivalent to 1.5 to 3 seconds. Every 

execution interval, a new task is generated on a PE with 0.02 

probability. The execution time of the new tasks follows the same 

distribution. Table 4 gives the performance comparison between 

DTB-M and PDTM. The experimental results show that DTB-M 

can effectively improve the system performance and balance the 
temperature in dynamic workload as well. 

5. CONCLUSION 
In this paper, we proposed a distributed thermal balancing policy 

which stabilizes the operating temperature and improves the 

performance of many core systems. A lightweight agent is 

proposed for each core which independently monitors the 

temperature and work towards maintaining a feasible thermal 

profile and improve the core performance. Together all cores 

collaboratively balance the thermal gradient on chip. 

Experimental results show that performance is improved with 

reduced overhead. 

6. ACKNOWLEDGMENTS 
This material is based upon work supported by the National 

Science Foundation under Grant No. CNS-0845947 

7. REFERENCES 
[1] S. Borkar, “Thousand Core Chips – A Technology Perspective,” In 

Proc. Design Automation Conference, June 2007. 
[2] D. Brooks and M. Martonosi, “Dynamic Thermal Management for 

High Performance Microprocessors,” In Proc. Int. Symp. High 
Performance Computer Architecture, pages 171-182, Jan. 2001. 

[3] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for 
Architectural Level Power Analysis and Optimizations,” In Proc.  
Int. Symp. Computer Architecture, pages 83-94, June 2000. 

[4] A. Coskun,  T. Rosing and K. Gross, “Proactive Temperature 
Management in MPSoCs,” In Proc. Int. Symp. on Low Power 
Electronics and Design, pages 165-170, Aug. 2008. 

[5] J. Donald and M. Martonosi, “Techniques for Multicore Thermal 
Management: Classification and New Exploration,” In Proc. Int. 
Symp. Computer Architecture, pages 78-88, June 2006. 

[6] T. Ebi, M. Faruque and J. Henekl, “TAPE: Thermal-Aware Agent-
Based Power Economy for Muti/Many-Core Architectures”, In Proc. 
Int. Conf. on Computer-Aided Design, pages 302-309, Nov. 2009. 

[7] R. Jayaseelan, T. Mitra, “Dynamic Thermal Management via 
Architectural Adaption”, In Proc. Design Automation Conference, 
pages 484-489, Jul. 2009.  

[8] F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini, D. 
Atienza and G. De Micheli, “Thermal Balancing Policy for 
Streaming Computing on Multiprocessor Architectures,” In Proc. 
Design Automation and Test in Europe, pages 734-739, March 2008. 

[9] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy 
and D. Tarjan, “Temperature-Aware Microarchitecture: Modeling 
and Implementation,” ACM Trans. on Architecture and Code 
Optimization, Vol. 1 Issue 1, pages 94-125,Mar. 2004. 

[10] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. 
Finan, P. Lyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. 
Hoskote and N. Borkar “An 80-Tile 1.28 TFLOPS Network-on-Chip 
in 65nm CMOS,” In Proc. Int. Solid-State Circuits Conf., pages 98-
589, Feb. 2007. 

[11] I. Yeo, C. Liu and E. Kim “Predictive Dynamic Thermal 
Management for Multicore Systems,” In Proc. Design Automation 
Conf., pages 734-739, June 2008. 

[12] L. Shang, L. Peh, A. Kumar and N. Jha, “Thermal Modeling, 
Characterization and Management of On-chip Networks,” In Proc. 
Int. Symp. Microarchitecture, Dec., 2004.  

[13] W. Dally, B. Towles “Route packets, not wires: on-chip 
interconnection networks,” In Proc. Design Automation Conf.,  Jun. 
2001. 

[14] S. Liu, J. zhang, Q. Wu and Q. Qiu, “Thermal-Aware Job Allocation 
and Scheduling for Three Dimensional Chip Multiprocessor,” in 
Proc. International Symposium on Quality Electronic Design, Mar. 
2010. 



 


