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Abstract – In this paper we propose an adaptive scheduling and 
voltage/frequency selection algorithm which targets at energy 
harvesting systems. The proposed algorithm adjusts the processor 
operating frequency under the timing and energy constraints based 
on workload information so that the system-wide energy efficiency 
is achieved. In this approach, we decouple the timing and energy 
constraints and simplify the original scheduling problem by 
separating constraints in timing and energy domains. The proposed 
algorithm utilizes maximum task slack for energy saving. 
Experimental results show that the proposed method improves the 
system performance in remaining energy, deadline miss rate and 
the minimum storage capacity requirement for zero deadline miss 
rate. Comparing to the existing algorithms, the new algorithm 
decreases the deadline miss rate by at least 23%, and the minimum 
storage capacity by at least 20% under various processor 
utilizations.  
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I.  Introduction 

The energy constraint remains a major issue for battery powered devices, despite that a lot of researchers have been working actively to solve this problem. Generally the research activities can 
be grouped into two categories: one is to focus on the reduction of the power consumption of the battery powered device, such as dynamic power management (DPM) [1-3] and dynamic voltage and 
frequency selection (DVFS) [4-6]. The other is to focus on seeking new energy sources for the device, such as energy harvesting [7-9]. Although both DPM and DVFS techniques are able to effectively reduce the power consumption of a device, the limited energy in the battery will be exhausted eventually; and then the battery has to be either recharged or replaced before the device can continue to function.  

However, in some applications, neither recharging nor replacing batteries is practical. One example is the sensor nodes that are deployed in the radioactive surroundings and they are networked 
together for environment surveillance.  In order to increase the lifespan of such application, the energy harvesting technologies 

 
[7-9] have been actively explored recently. Energy harvesting is 
considered as a promising method for overcoming the energy 
limitation for battery-powered systems and it could let systems 
achieve energy autonomy. Simply speaking, the energy harvesting 
system is a system that draws parts or all of its operating energy 
from its physical surroundings. Several prototypes have been 
proposed to demonstrate the effectiveness of energy harvesting 
system such as Heliomote [8] and Prometheus [9]. 

Several research works have been carried out in power 
minimization techniques for energy harvesting systems. An offline 
algorithm using dynamic voltage and frequency selection (DVFS) 
is proposed in [10] that targets at real-time tasks. The optimization 
is done by assuming that harvested energy from the ambient energy 
source is constant, which is not the case in real applications. The 
work in [11] chooses the solar power as the harvesting energy 
source and models it as time-variant. The energy source is assumed 
to work in two modes: daytime and nighttime. A lazy scheduling 
algorithm (LSA) is proposed in [12] that executes task as late as 
possible at full speed, in which the task slack is not exploited for 
energy savings.  
In order to utilize the task slack for energy saving, the authors of 
[13] proposed an energy-harvesting-aware dynamic voltage and 
frequency selection (EA-DVFS) algorithm. The proposed 
algorithm slows down the task execution if the system does not 
have sufficient available energy; otherwise, the tasks are executed 
at the full speed. The main shortcomings of this work are:  
1) The “sufficient available energy” is defined based on a single 

current task. As long as the remaining operation time of system 
at the full speed is more than the relative deadline of the task, 
then the system considers it has sufficient energy. However, 
there may be just as little as 1% energy left in the energy storage 
while the system can operate at full speed for more than the 
relative deadline of a task. Then EA-DVFS algorithm schedules 
the task at full speed. That is not the desired behavior.  

2) When tasks are scheduled and operating voltages are selected, 
the EA-DVFS algorithm only considers one task instead of 
considering all tasks in the ready task queue.  This results in 
that the task slacks are not fully exploited for energy savings.  
In this paper we propose an adaptive task scheduling and DVFS 

algorithm for real-time energy harvesting systems. The goal of the 
proposed algorithm is to schedule all tasks in the ready queue at the 
lowest possible speed and allocate the workload to the processor as 
evenly as possible. The evenly distributed workload not only 
reduces the overhead from processor voltage and operating 
frequency switches, but also achieves system-wide energy 
efficiency [14]. The proposed algorithm also adaptively updates the 
scheduling and voltage/frequency selection when a new task arrives 
at the task ready queue. The main features of our approach can be 
summarized as follows,  
1) It decouples the energy constraints and timing constraints for 

the real-time energy harvesting system so that the scheduling 
problem subjected to constraints both in timing domain and 
energy domain can be easily handled.  

2) It fully explores the possibility of trading the task slack for 
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energy saving by adaptively solving the problem when 
considering multiple tasks in the queue at the same time. 

Comparing to the EA-DVFS algorithm, the proposed algorithm 
fully exploits the task slack for energy savings under timing and 
energy constraints. As long as the task can be slowed down for 
energy saving under given timing and energy constraints, the task is 
executed at a lower speed. The proposed algorithm results in more 
available/stored energy at any time, comparing to the EA-DVFS 
and LSA algorithms. Experimental results also show that, the 
proposed adaptive algorithm can significantly reduce the deadline 
miss rate under various processor utilizations; it also requires 
considerably less storage capacity for zero deadline miss rate, 
comparing to EA-DVFS and LSA algorithms.  

The rest of this paper is organized as follows. The energy 
harvesting system model and some assumptions are presented in 
Section II. The proposed adaptive scheduling algorithm is 
described in Section III. Simulation results and discussions are 
presented in Section IV. Finally Section V gives the conclusions.  
 

II. System Model and Assumptions 
As shown in Figure 1, the energy harvesting system we consider 

in this paper consists of four major modules: energy source module, 
energy storage module, the uniprocessor module and the real-time 
task queue module. The energy source module harvests energy and 
feeds into the energy storage at power Ps(t) at time instance t. The 
energy storage is the place to store energy and its capacity is 
denoted as C; the stored energy at time t is denoted by EC(t).  
When the stored energy reaches the capacity C, the incoming 
energy harvesting overflows the energy storage, so we have 

tCtEC ∀≤≤ )(0              (1) 
When the processor executes the real-time task, it draws energy 

from energy storage. If the energy storage is empty, the processor 
stops functioning.  

 
2.1. Energy source  

We denote PS(t) as the net power that the energy source feeds 
into the storage. The harvested energy ES(t1, t2) at time interval [t1, 
t2] can be calculate by integration: 

�= 2
1

)(),( 21
t
t SS dttPttE            (2) 

The power output of the energy source is a function of time, thus 
PS(t) can not be determined ahead. But we can predict it by tracing 
the energy source profile [15].  

 
Figure 1 A real-time system with energy harvesting module. 

2.2. Energy storage  
The energy storage is assumed to be ideal. It can be fully 

charged and also fully discharged no matter how many 
charge/discharge cycles it has gone through. The energy that the 
processor demands only comes from the storage and harvested 
energy. Let ED(t1, t2) denote the processor energy dissipation from 
time t1 to t2, then we have: 

),()(),( 21121 ttEtEttE SCD +≤      21 tt <∀     (3) 

Meanwhile, the stored energy should be the surplus that 
available energy deducts the energy dissipation by the processor if 
no overflow occurs, so we have: 

),(),()()( 212112 ttEttEtEtE DSCC −+≤   21 tt <∀     (4) 

2.3. DVFS-enabled processor and real-time 
tasks  

Assume the DVFS-enabled processor has N discrete operating 
frequencies fn: { fn | 1� n � N,  fmin = f1 < f2 <…<fN = fmax }; and the 
power consumption with regards to fn is denoted as Pn .  

We define a slowdown factor Sn as the normalized frequency of 
fn with respect to the maximum frequency fmax, that is:  

Sn = fn/fmax               (5) 
For the sake of convenience, we use notations fn, f(n) 
interchangeably in this paper. Similarly for notations Pn & P(n), 
and Sn & S(n). 

The triplet (am, dm, wm) is used for characterizing a real-time task 
�m, where am, dm, wm indicate the arrival time, the relative deadline 
and the worst case execution time of task �m, respectively. Before 
the real-time task �m is released, the triplet (am, dm, wm) is unknown. 
Once the task �m is released, the triplet is finalized, and �m is pushed 
into the ready task queue Q.  

If task �m is stretched by a slowdown factor Sn, then its actual 
execution time at frequency fn is wm/Sn.  All tasks are scheduled 
based on earliest deadline first (EDF) policy. The system is 
considered to be preemptive. The task with the earliest deadline has 
the highest priority and should be executed first; and it preempts 
any other task if needed. 
 

III. Adaptive Scheduling Algorithm  
In this section we will introduce the proposed adaptive 

scheduling and voltage/frequency selection algorithm for real-time 
systems with energy harvesting module. This algorithm 
dynamically adjusts the processor speed to achieve system-wide 
energy efficiency based on the workload and available energy 
information. The key point is that the proposed algorithm 
decouples the energy constraints and timing constraints originated 
from a real-time system so that the problem can be easily tackled. 
The framework of the proposed algorithm consists of three steps:   
1) Create an initial schedule for all tasks in the ready task queue; 

that schedule is based on the lazy scheduling policy with tasks 
having earlier deadline having higher priority. This step 
guarantees that timing constraints of the real-time system are 
met. 

2) Distribute the workload as evenly as possible on the processor; 
dynamic voltage and frequency selection (DVFS) policy is 
used for slowing down the processor so that the system power 
consumption goes down under given timing and performance 
constraints.  

3) Tune up the scheduling from step (2) by taking into account 
the energy constraints. The schedule from step (2) is the 
energy efficient schedule under the timing constraints [14], but 
it does not consider the available energy for energy-harvesting 
system. If the schedule from step (2) is invalidated due to 
energy shortage, we do not simply remove the tasks. Instead 
an adaptive policy is adopted: if the system is able to harvest 
enough energy to finish the task under its given timing 
constraints, then the task is delayed until the system has 
sufficient energy; otherwise, the task is removed. Removing 
the task gives the system a chance to purely accumulate 
energy by harvesting, which improves the available energy for 
future tasks.  

In the following part, we will explain each step in more details.  
 
3.1 Generate an initial schedule 
All tasks in the ready task queue Q are sorted ascendingly in terms 
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of the task deadline. The task with earliest deadline is put in the 
head of the queue, and the one with latest deadline in the tail of the 
queue. In the initial schedule, all tasks are executed at full speed.  
Then the lazy policy is used to schedule tasks in Q and tasks are 
always executed as late as possible. In other words, the task in the 
tail gets executed right at its deadline, and it starts being executed 
at the time instance when its deadline minuses its worst case 
execution time.  

Assuming that there are M tasks in the task queue, and the first 
task is located in the head, the last one (M-th) in the tail. In order to 
get the initial schedule easily, the initial starting time (istm) and 
initial finishing time (iftm) of each task �m (m=1,2,…, M) are 
calculated in a reversed order . Hence, istM and iftM are calculated 
first, while ist1 and ift1 last.  

Based on lazy scheduling policy, for the last task �M, we have: 
MMM daift +=                (6) 

MMMM wcetdaist −+=            (7) 
For all other tasks left, the initial schedule is easily obtained by the 
following equations,   

),min( 1++= mmmm istdaift            (8) 
)),,min(max( 1 mmmmmmm wcetistawcetdaist −−+= +  (9) 

where index variable m ranges from M-1 to 1.  In order to make 
the schedule practical, the istm can not be smaller than am.  
Note that am+dm-wcetm is no less than am; otherwise task �m is not 
schedulable under the given timing constraint; so we have 

),min( 1 mmmmmm wcetistwcetdaist −−+= +      (10) 
The indication of the above equation is clear that task �m starts 

being executed either at time instance mmm wcetda −+ , when its 
deadline minuses its worst case execution time, or at the time 
instance, istm+1-wcetm, when the starting executing time of its next 
task istm+1 minus its worst case execution time wcetm, no matter 
which one is earlier. That scheduling is justified by the following 
facts: 1) task �m is delayed as much as possible so that system may 
have more energy to execute task by energy harvesting; 2) the 
timing constraints of task �m is guaranteed.  
 
3.2 Balance workload  

As long as each task (�m) is finished at its initial finishing time 
(iftm), the timing constraint is met. However, based on the initial 
schedule, all tasks are executed at the full speed of the processor, 
which is not an energy-efficient scheme. We need to make use of 
the task slacks for energy saving. The dynamic voltage and 
frequency selection (DVFS) [13] is applied to stretch the execution 
time of each task and slow down the processor. 
The DVFS-enabled processor has multiple operating voltage and 
frequency levels. In order to achieve the maximum power savings, 
all tasks should be stretched uniformly [14]. In other words, the 
processor should avoid operating frequency switches as much as 
possible.  

In terms of the initial schedule, all tasks are executed at the full 
speed, with the same slowdown factor index SIm equal to N.  Then 
all tasks in the ready queues are stretched by N rounds of DVFS 
policy, where N is equal to the number of available operating 
frequencies to the processor. The effort of using N round of DVFS 
policy is to make all tasks executed in the same frequency level so 
that the switch activity of the processor is minimized and the 
system-wide energy efficiency is maximized.   

For a given round, the starting time (stm) of task �m for execution 
is determined by: 
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      (11) 

where m is from 1 to M.  
However, its finishing time (ftm) is more complicated to obtain. 

Before calculating ftm, two questions need to be answered. First, 

check if the slowdown factor index SIm for task �m can be reduced 
further.  If the following inequality holds,  
  stm+wcetm/S(SIm-1) < iftm            (12)      
then the timing constraint is still met after further stretching task �m.  
Second, check if the slowdown factors for tasks indexed from m+1 
to M is still valid. If the answers to these two questions are yes, 
then SIm for task �m is decremented by 1; in other words, the 
operating frequency of task �m is reduced to f(SIm-1) from f(SIm). 
Otherwise, SIm is kept as it is.  

The slowdown factor Sn is called valid for a given task �m if task 
�m can be executed by the processor at frequency fn subjected to the 
timing constraints.  
Now ftm can be easily calculated as:  
 ftm = stm + wcetm/S(SIm).             (13) 

The workload balance algorithm is shown in Figure 2. Line 10 
in Figure 2 tells us that the slowdown index SIm for each task �m is 
decreased at most by 1 at a given round of DVFS. The meaning is 
two-fold: 1) each task has the same opportunity to be stretched, 
which avoids some tasks getting overstretched by squeezing out the 
slack of other tasks; 2) the slack time of tasks is sufficiently 
exploited for energy savings.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Workload balance algorithm. 
3.3 Check energy availability and tune up 
schedule 

One of the features of the energy harvesting systems is that the 
available energy is limited by the energy storage capacity. The 
available energy dynamically fluctuates with time in two opposite 
directions: increasing or decreasing. Therefore we need to tailor the 
workload-balanced schedule to that feature.  

When tasks are scheduled based on the workload-balanced 
algorithm in Section 3.2, the energy constraint is not considered. If 
the energy availability invalidates the schedule, then the processor 
has to stop the task execution before the task can be finished. In 
order to overcome that problem, we have to check the energy 
availability after getting the workload balanced schedule; then tune 
up the schedule.  

If the workload-balanced schedule is invalidated by energy 
shortage, tasks are not directly removed from the ready task queue. 
Instead the task execution is first delayed.  

For example, if we define that mth task �m in Q is the first task 
whose schedule is invalidated by the energy shortage, so we have: 

EC(stm)+ES(stm, ftm) < ED(stm, ftm)        (14) 
where ES(stm, ftm) is the harvested energy between stm and ftm, and it 
can be estimated based on the profile of energy-harvesting source. 
Then task �m is rescheduled by delaying dlm until the following 
equality holds, 

EC(stm)+ES(stm, ftm+dlm) = ED(stm+dlm,  ftm+dlm)   (15) 
If the deadline of task �m is not violated, that is:  

ftm+dlm � am+ dm    (16) 

1. Require: get the initial schedule for M tasks in queue Q 
2. for n = 1:N do 
3.   for m =1:M do 
4.     if m = = 1, then 
5.       stm = max(am, current_time) 
6.     else 
7.       stm = max(am, ftm-1) 
8.     endif 
9.       if stm+wcetm/S(SIm-1) < iftm && the slowdown factors  

for tasks with lower priority is valid, then 
10.        SIm = SIm – 1 
11.     end if  
12.     ftm = stm + wcetm/S(SIm)    
13.   end for 
14. end for 
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and the slowdown factors for tasks indexed by m+1, …, M are still 
valid, then task �m is executed at time interval [stm+dlm, ftm+dlm] at 
the frequency f(SIm), obtained from workload-balanced schedule; 
and the schedule for tasks with lower priority is updated, as shown 
in lines 7~10 in Figure 3; otherwise, task �m is simply removed 
from task ready queue, as shown in line 12 in Figure 3.  

Note that the tune-up algorithm presented in Figure 3 is 
executed on the fly and the scheduler has to check the energy 
availability before the task’s execution. We would like to give an 
example to explain how the tune-up algorithm works. Assuming 
that the DVFS-enabled processor has 4 operating frequency levels 
with slowdown factor 1, 0.6, 0.4 and 0.15; and the corresponding 
power levels are 32, 10, 4, and 0.8. Also assume that there are 2 
tasks �1 and �2 in Q, and they are scheduled by the 
workload-balanced schedule with (st1, ft1, deadline1)=(50, 56, 59), 
and (st2, ft2, deadline2)=(56, 62, 68). Both tasks are scheduled to 
execute at the lowest speed, and the power consumption of the 
processor is 0.8 at lowest operating frequency. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

Figure 3: The tune-up schedule algorithm to guarantee the 
energy availability.  

 
The available energy in the storage at time instance 50 is set to 1. 

The harvesting power from time instance 50 to 68 is set to 0.5.  If 
the system executes those two tasks based on the workload balance 
schedule, then the execution of both tasks will be suspended due to 
the energy shortage. The following calculation verifies our 
conclusion: The total energy the system provides at time instance 
56 is 1+6*0.5=4; and the total energy demand for executing task �1 
is 6*0.8=4.8. So the energy shortage forces the processor to stop 
running at time instance 53.3 and the schedule for task �1 can not be 
carried out, shown by the “lime” color long dash line in Figure 4.  

On the other hand, before running task �1, the energy availability 
is checked by equation (15), and then task will be delayed by 2 
time units; accordingly task �1 is executed between time interval [52, 
58], and the schedule for task �2 is updated as (st2, ft2, 
deadline2)=(58, 64, 68).  After finishing task execution, the 
remaining energy is 0.2 shown by the “lime” color solid line in 
Figure 4; energy is not a concern any more for the schedule of task 
�1. The similar argument holds for task �2. 

3.4 Put all together 
As we stated earlier, the proposed algorithm comprises three steps:  

1) generate the initial schedule; 
2) balance workload for the processor;  
3) tune up the schedule under the constraints of energy 

availability. 

 
Figure 4: Tuning up scheduling algorithm illustration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5: The proposed adaptive and voltage/frequency 
selection algorithm for real-time energy harvesting system. 

In this section, we put the prior discussions together, and construct 
a complete adaptive scheduling and voltage/frequency algorithm 
for real-time energy harvesting system, presented in Figure 5.  

In the beginning, we assume the ready task queue Q is empty, 
shown in line 2. Every time the new task comes, it is pushed into Q, 
as shown in line 5, and then all tasks in Q are sorted ascendingly 
based on their deadlines.  

The event that the new task comes triggers rescheduling all tasks 
in Q, so that the task with higher priority (the earlier deadline) in 
the new task queue is scheduled to run earlier, as shown from lines 
6~9 in Figure 5.  

If there is no new task coming, the processor executes tasks 
based on the schedule obtained before, as shown in line 11. Once 
the task is finished, it is removed from Q, as shown in line 13.  
The key of the proposed algorithm is in lines 6~9. The initial 
schedule guarantees that tasks meet the timing requirement. The 
workload balance scheduling algorithm achieves the system-level 
energy efficiency by two ways: 1) trading the task slack for energy 
savings by slowing down processor execution speed; and 2) the 
balanced workload reduces the frequency switch activities for the 
processor and then the correspondent overhead goes down. The 
tune-up algorithm makes sure the system has needed energy to 
execute each task based on the schedule. 

IV. Simulations and Discussions 
In this section, we evaluate the performance of the proposed 

scheduling algorithm based on simulations. We have developed a 
discrete event-driven simulator in C++ and implement the proposed 
scheduling algorithm. For comparison purposes, the lazy 
scheduling algorithm (LSA) in [12, 16] and energy aware DVFS 
algorithm (EA-DVFS) in [13] are also implemented as 
benchmarks.   

We design three sets of experiments. The first set is designed to 
show how the system remaining energy is improved by the 

Energy/Power 
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1. Require: the workload balanced schedule for M tasks in Q 
2. if EC(stm)+ES(stm, ftm) < ED(stm, ftm), then 
3.   calculate dlm from equation (16) 
4.     if ftm+dlm � dm && the slowdown factors for tasks with 

lower priority is valid, then 
5.     stm = stm+dlm 
6.     ftm = ftm+dlm 
       //update schedule for tasks with lower priority in for 

loop 
7.     for i = m+1:M do 
8.       sti = max(sti, fti-1) 
9.       fti = sti + exei; 
10.     endfor 
11.    else 
12.      remove task �m from queue Q 
13.    endif 
14. endif 

1. Require: maintain a ready task queue Q  
2. set task queue Q empty 
3. while (true) do  
4.   if new task coming, then 
5.     push new task in Q, 
6.     sort all tasks ascendingly in Q based on the deadline 
7.     get initial schedule for tasks in Q,   
8.       balance the workload based on algorithm shown in 

Figure 2 
9.     tune up scheduling, shown in Figure 3 
10.   endif 
11.   execute task  
12.   if the task is finished, then  
13.     remove task from the ready task queue Q 
14.   end if 
15. end while 
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proposed scheduling algorithm, comparing to LSA and EA-DVFS. 
The second set of experiments reports how much the deadline miss 
rate is reduced based on the proposed algorithm, comparing to the 
other two; the third set of experiments shows the minimum energy 
storage capacity requirement in order to maintain zero deadline 
miss rate for three different scheduling algorithms.  
 
4.1 Simulation setup 

We choose the solar energy as the energy harvesting source in 
our simulations. In order to exhibit the stochastic and periodic 
characteristics of the solar energy source, we multiply a random 
number generation function with two deterministic cosine functions 
together [13, 17], as shown in:  

)
120

cos()
70

cos()(10)(
ππ

tttNtPS ⋅⋅⋅=     (17) 

where N(t) is a random number generator and it is subject to the 
normal distribution with mean 0 and variance 1. 
A DVFS-enabled processor similar to Intel’s Xscale processor [18] 
is used in the simulations. The processor has five operating 
frequencies: 150MHz, 400MHz, 600MHz, 800MHz and 1000MHz. 
Accordingly, the processor also has 5 power levels: 80mW, 400mW, 
1000mW, 2000mW and 3200mW, each corresponding to a specific 
operating frequency. The overhead from the processor operating 
frequency switching is ignored in the simulations.  

The task set consists of limited specific periodic tasks and the 
cardinality of the task set is arbitrary. The period of the specific 
task is uniformly drawn from a set {10, 20, 30, …, 120}; the 
relative deadline of the task is set to its period; and the worst case 
execution time is calculated based on its period and harvesting 
power. Assume that the average harvesting power is SP , and the 
task period is p, the worst case energy consumption e of the task is 
uniformly drawn from interval [0, pPS ⋅ ] ; so e is a sample of a 

uniform-distributed random variable with distribution [0, pPS ⋅ ]. 
Then the worst case execution time of the task can be computed as 
e/Pmax. 

We define the processor utilization U as  

�=
m m

m
p
wU             (18) 

where wm is the worst case execution time of task �m, and pm is the 
period. The processor utilization stands for the ratio of its busy time 
over the summation of its busy time plus its idle time when the 
processor operates at full speed. So the utilization U cannot be 
larger than 1. To obtain a specific U, we need scale the worst case 
execution time of each task in a task set in the same ratio in some 
cases.  

The energy storage is assumed to be full in the beginning of the 
simulation. The simulation terminates after 10,000 time units. For a 
specific utilization, we repeat experiments for 5,000 task sets.  

4.2 Remaining energy comparison 
In this set of experiments, we focus on comparing the remaining 

energy for systems using proposed scheduling algorithm, against 
systems using two baseline scheduling algorithms, LSA and 
EA-DVFS.  In order to have fair comparison, all simulations are 
performed under the same condition, except for scheduling 
algorithms.  

From the discussion of the proposed scheduling algorithm, we 
know that the processor utilization has significant impact on the 
remaining energy. We do experiments sweeping utilization U from 
0.2 to 0.8 with a step of 0.2. 

When the utilization U is given, all experiments show the 
similar trend in the remaining energy, we present the results with 6 
periodic tasks in a task set. Note that the reported remaining energy 

is normalized to the storage capacity. 
 The simulation results with 4 different processor utilization 
ratios are plotted in Figure 6.  As shown in Figure 6, the proposed 
algorithm has the most available remaining energy in various 
processor utilization, comparing to the other algorithms.  

When utilization is set to 0.2, the proposed algorithm is able to 
keep the energy storage almost full for most of the time shown in 
Figure 6(a).  The reason is that most of tasks are scheduled at the 
lowest speed and the energy consumption goes down considerably; 
furthermore, the harvesting energy replenishes to the energy 
storage. The EA-DVFS algorithm only slows down task execution 
when the system available energy is not sufficient. Therefore, some 
tasks are executed at full speed, and the others at reduced speed, 
which leads to the EA-DVFS-based system has less available 
energy. LSA-based system always executed tasks at full speed, and 
it accordingly has least available energy at any time.  

With the processor utilization increasing from 0.4 to 0.8, the 
proposed algorithm has less task slack to take advantage for energy 
savings, therefore the available energy difference among LSA, 
EA-DVFS and the proposed algorithm decreases, as shown in 
Figure 6(b-d).  
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(c) U=0.6 
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(d) U=0.8 

Figure 6: Remaining energy with different utilizations. 

4.3 Deadline miss rate comparison 
From the last sub-section, we know that the system based on the 

proposed scheduling algorithm has significantly more available 
energy than LSA-based/EA-DVFS-based systems no matter the 
processor utilization is low or high. The more available energy 
helps reduce the deadline miss rate due to energy shortage for 
future tasks. Hence, the proposed algorithm significantly decreases 
the deadline miss rate, comparing to LSA-based/EA-DVFS-based 
system, as shown in Figure 7, when U is set to 0.4 and 0.8, 
respectively.   
Note that when utilization is set to 0.8, EA-DVFS performs the 
same as LSA, as shown in Figure 7(b); nevertheless our algorithm 
is able to reduce the deadline miss rate by at least 23% on average, 
comparing to LSA and EA-DVFS. When utilization is high, 
EA-DVFS schedules almost all of tasks at the full speed, and it can 
not achieve much energy efficiency. However, the proposed 
algorithm is able to squeeze out the task slack for energy savings 
and still improves the system energy efficiency. Hence, the 
proposed algorithm decreases the deadline miss rate even when the 
processor utilization is high. 
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(a) U=0.4 
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(b) U=0.8 

Figure 7: Deadline miss rate with two workloads.  

4.4 Storage capacity comparison 
Finally, we compare the minimum storage capacity requirement 

for three scheduling algorithms in order to avoid any deadline miss 
for any task. Notations Cmin-LSA, Cmin,EA-DVFS and Cmin,our represent 
the minimum storage requirement for LSA, EA-DVFS and our 
algorithm, respectively.  They are all normalized to Cmin-LSA.  
We sweep the processor utilization U from 0.2 to 0.8 to run 
experiments with a step 0.2. The results are reported in table 1.   

Table 1 Normalized storage capacities. 
U 0.2 0.4 0.6 0.8 

Cmin-LSA 1 1 1 1 
Cmin,EA-DVFS 0.43 0.73 0.92 0.98 

Cmin,our 0.04 0.34 0.62 0.79 
To visualize the storage capacity difference, the normalized storage 
capacities for LSA , EA-DVFS and the proposed algorithm, are 
presented in a bar chart in Figure 8. 
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Figure 8:  Normalized storage capacity comparison 

Observing the results in Table 1 and in Figure 8, we can see that 
the proposed algorithm requires less storage capacity to achieve 
zero deadline miss rate in all cases. When utilization is set to 0.2, 
our algorithm needs as little as 1/10 of the storage capacity that 
EA-DVFS needs, and as little as 1/23 of the storage capacity that 
LSA needs. With the utilization going up, the difference between 
Cmin-LSA, Cmin,EA-DVFS and Cmin,our reduces. Note that when 
utilization is set to 0.8, Cmin,our is about 21% less than Cmin-LSA , 
while Cmin-LSA and Cmin,EA-DVFS are almost the same.  

Whether the processor utilization is high or low, the proposed 
algorithm aggressively trades task slack for energy savings under 
timing and energy constraints. When utilization is low, the 
processor are scheduled to run task at lower speed; while utilization 
high, the task are executed at higher speed but not full speed.  
Under any circumstances the proposed algorithm saves more 
energy than LSA and EA-DVFS algorithms. That’s why the 
proposed algorithm requires less storage capacity in all cases.  

V. Conclusions   
In this paper we have proposed an adaptive scheduling and 

voltage/frequency selection algorithm targeting at real-time 

systems with energy harvesting capability. The proposed algorithm 
consists of three steps:1) generate initial schedule; 2) balance 
workload; and 3) check energy availability for each scheduled task 
and tune up the schedule. The first step is to guarantee the timing 
constraints are met; the second step is to trade task slack for energy 
savings and the third step is to make sure the energy constraints are 
met. By dividing the original scheduling problem into three steps, 
we separate the constraints in timing and energy domains. So the 
problem can be easily handled.  

Experimental results show that, the proposed algorithm 
aggressively trade the task slacks for energy saving. Hence, no 
matter the processor utilization is high or low, the proposed 
algorithm, comparing to LSA and EA-DVFS, increases the system 
available energy, decreases the deadline miss rate and reduces the 
energy storage capacity requirement for zero deadline miss rate.  
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