
An Adaptive Scheduling and Voltage/Frequency Selection
Algorithm for Real-time Energy Harvesting Systems

Abstract – In this paper we propose an adaptive scheduling and
voltage/frequency selection algorithm which targets at energy
harvesting systems. The proposed algorithm adjusts the processor
operating frequency under the timing and energy constraints based
on workload information so that the system-wide energy efficiency
is achieved. In this approach, we decouple the timing and energy
constraints and simplify the original scheduling problem by
separating constraints in timing and energy domains. The proposed
algorithm utilizes maximum task slack for energy saving.
Experimental results show that the proposed method improves the
system performance in remaining energy, deadline miss rate and
the minimum storage capacity requirement for zero deadline miss
rate. Comparing to the existing algorithms, the new algorithm
decreases the deadline miss rate by at least 23%, and the minimum
storage capacity by at least 20% under various processor
utilizations.
 Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aides

General Terms
Algorithms, Design, Performance

Keywords
Energy harvesting, Dynamic voltage and frequency selection

I. Introduction

The energy constraint remains a major issue for battery powered devices, despite that a lot of researchers have been working actively to solve this problem. Generally the research activities can
be grouped into two categories: one is to focus on the reduction of the power consumption of the battery powered device, such as dynamic power management (DPM) [1-3] and dynamic voltage and
frequency selection (DVFS) [4-6]. The other is to focus on seeking new energy sources for the device, such as energy harvesting [7-9]. Although both DPM and DVFS techniques are able to effectively reduce the power consumption of a device, the limited energy in the battery will be exhausted eventually; and then the battery has to be either recharged or replaced before the device can continue to function.

However, in some applications, neither recharging nor replacing batteries is practical. One example is the sensor nodes that are deployed in the radioactive surroundings and they are networked
together for environment surveillance. In order to increase the lifespan of such application, the energy harvesting technologies

[7-9] have been actively explored recently. Energy harvesting is
considered as a promising method for overcoming the energy
limitation for battery-powered systems and it could let systems
achieve energy autonomy. Simply speaking, the energy harvesting
system is a system that draws parts or all of its operating energy
from its physical surroundings. Several prototypes have been
proposed to demonstrate the effectiveness of energy harvesting
system such as Heliomote [8] and Prometheus [9].

Several research works have been carried out in power
minimization techniques for energy harvesting systems. An offline
algorithm using dynamic voltage and frequency selection (DVFS)
is proposed in [10] that targets at real-time tasks. The optimization
is done by assuming that harvested energy from the ambient energy
source is constant, which is not the case in real applications. The
work in [11] chooses the solar power as the harvesting energy
source and models it as time-variant. The energy source is assumed
to work in two modes: daytime and nighttime. A lazy scheduling
algorithm (LSA) is proposed in [12] that executes task as late as
possible at full speed, in which the task slack is not exploited for
energy savings.
In order to utilize the task slack for energy saving, the authors of
[13] proposed an energy-harvesting-aware dynamic voltage and
frequency selection (EA-DVFS) algorithm. The proposed
algorithm slows down the task execution if the system does not
have sufficient available energy; otherwise, the tasks are executed
at the full speed. The main shortcomings of this work are:
1) The “sufficient available energy” is defined based on a single

current task. As long as the remaining operation time of system
at the full speed is more than the relative deadline of the task,
then the system considers it has sufficient energy. However,
there may be just as little as 1% energy left in the energy storage
while the system can operate at full speed for more than the
relative deadline of a task. Then EA-DVFS algorithm schedules
the task at full speed. That is not the desired behavior.

2) When tasks are scheduled and operating voltages are selected,
the EA-DVFS algorithm only considers one task instead of
considering all tasks in the ready task queue. This results in
that the task slacks are not fully exploited for energy savings.
In this paper we propose an adaptive task scheduling and DVFS

algorithm for real-time energy harvesting systems. The goal of the
proposed algorithm is to schedule all tasks in the ready queue at the
lowest possible speed and allocate the workload to the processor as
evenly as possible. The evenly distributed workload not only
reduces the overhead from processor voltage and operating
frequency switches, but also achieves system-wide energy
efficiency [14]. The proposed algorithm also adaptively updates the
scheduling and voltage/frequency selection when a new task arrives
at the task ready queue. The main features of our approach can be
summarized as follows,
1) It decouples the energy constraints and timing constraints for

the real-time energy harvesting system so that the scheduling
problem subjected to constraints both in timing domain and
energy domain can be easily handled.

2) It fully explores the possibility of trading the task slack for

Shaobo Liu, Qing Wu, and Qinru Qiu
Department of Electrical and Computer Engineering
Binghamton University, State University of New York

Binghamton, New York 13902, USA
{sliu5, qwu, qqiu}@binghamton.edu

45.2

782

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

energy saving by adaptively solving the problem when
considering multiple tasks in the queue at the same time.

Comparing to the EA-DVFS algorithm, the proposed algorithm
fully exploits the task slack for energy savings under timing and
energy constraints. As long as the task can be slowed down for
energy saving under given timing and energy constraints, the task is
executed at a lower speed. The proposed algorithm results in more
available/stored energy at any time, comparing to the EA-DVFS
and LSA algorithms. Experimental results also show that, the
proposed adaptive algorithm can significantly reduce the deadline
miss rate under various processor utilizations; it also requires
considerably less storage capacity for zero deadline miss rate,
comparing to EA-DVFS and LSA algorithms.

The rest of this paper is organized as follows. The energy
harvesting system model and some assumptions are presented in
Section II. The proposed adaptive scheduling algorithm is
described in Section III. Simulation results and discussions are
presented in Section IV. Finally Section V gives the conclusions.

II. System Model and Assumptions
As shown in Figure 1, the energy harvesting system we consider

in this paper consists of four major modules: energy source module,
energy storage module, the uniprocessor module and the real-time
task queue module. The energy source module harvests energy and
feeds into the energy storage at power Ps(t) at time instance t. The
energy storage is the place to store energy and its capacity is
denoted as C; the stored energy at time t is denoted by EC(t).
When the stored energy reaches the capacity C, the incoming
energy harvesting overflows the energy storage, so we have

tCtEC ∀≤≤)(0 (1)
When the processor executes the real-time task, it draws energy

from energy storage. If the energy storage is empty, the processor
stops functioning.

2.1. Energy source

We denote PS(t) as the net power that the energy source feeds
into the storage. The harvested energy ES(t1, t2) at time interval [t1,
t2] can be calculate by integration:

�= 2
1

)(),(21
t
t SS dttPttE (2)

The power output of the energy source is a function of time, thus
PS(t) can not be determined ahead. But we can predict it by tracing
the energy source profile [15].

Figure 1 A real-time system with energy harvesting module.

2.2. Energy storage
The energy storage is assumed to be ideal. It can be fully

charged and also fully discharged no matter how many
charge/discharge cycles it has gone through. The energy that the
processor demands only comes from the storage and harvested
energy. Let ED(t1, t2) denote the processor energy dissipation from
time t1 to t2, then we have:

),()(),(21121 ttEtEttE SCD +≤ 21 tt <∀ (3)

Meanwhile, the stored energy should be the surplus that
available energy deducts the energy dissipation by the processor if
no overflow occurs, so we have:

),(),()()(212112 ttEttEtEtE DSCC −+≤ 21 tt <∀ (4)

2.3. DVFS-enabled processor and real-time
tasks

Assume the DVFS-enabled processor has N discrete operating
frequencies fn: { fn | 1� n � N, fmin = f1 < f2 <…<fN = fmax }; and the
power consumption with regards to fn is denoted as Pn .

We define a slowdown factor Sn as the normalized frequency of
fn with respect to the maximum frequency fmax, that is:

Sn = fn/fmax (5)
For the sake of convenience, we use notations fn, f(n)
interchangeably in this paper. Similarly for notations Pn & P(n),
and Sn & S(n).

The triplet (am, dm, wm) is used for characterizing a real-time task
�m, where am, dm, wm indicate the arrival time, the relative deadline
and the worst case execution time of task �m, respectively. Before
the real-time task �m is released, the triplet (am, dm, wm) is unknown.
Once the task �m is released, the triplet is finalized, and �m is pushed
into the ready task queue Q.

If task �m is stretched by a slowdown factor Sn, then its actual
execution time at frequency fn is wm/Sn. All tasks are scheduled
based on earliest deadline first (EDF) policy. The system is
considered to be preemptive. The task with the earliest deadline has
the highest priority and should be executed first; and it preempts
any other task if needed.

III. Adaptive Scheduling Algorithm
In this section we will introduce the proposed adaptive

scheduling and voltage/frequency selection algorithm for real-time
systems with energy harvesting module. This algorithm
dynamically adjusts the processor speed to achieve system-wide
energy efficiency based on the workload and available energy
information. The key point is that the proposed algorithm
decouples the energy constraints and timing constraints originated
from a real-time system so that the problem can be easily tackled.
The framework of the proposed algorithm consists of three steps:
1) Create an initial schedule for all tasks in the ready task queue;

that schedule is based on the lazy scheduling policy with tasks
having earlier deadline having higher priority. This step
guarantees that timing constraints of the real-time system are
met.

2) Distribute the workload as evenly as possible on the processor;
dynamic voltage and frequency selection (DVFS) policy is
used for slowing down the processor so that the system power
consumption goes down under given timing and performance
constraints.

3) Tune up the scheduling from step (2) by taking into account
the energy constraints. The schedule from step (2) is the
energy efficient schedule under the timing constraints [14], but
it does not consider the available energy for energy-harvesting
system. If the schedule from step (2) is invalidated due to
energy shortage, we do not simply remove the tasks. Instead
an adaptive policy is adopted: if the system is able to harvest
enough energy to finish the task under its given timing
constraints, then the task is delayed until the system has
sufficient energy; otherwise, the task is removed. Removing
the task gives the system a chance to purely accumulate
energy by harvesting, which improves the available energy for
future tasks.

In the following part, we will explain each step in more details.

3.1 Generate an initial schedule
All tasks in the ready task queue Q are sorted ascendingly in terms

Energy
source

Energy
Storage

uniprocessor

R
eal tim

e
task

Ps(t)

Ec(t)

783

of the task deadline. The task with earliest deadline is put in the
head of the queue, and the one with latest deadline in the tail of the
queue. In the initial schedule, all tasks are executed at full speed.
Then the lazy policy is used to schedule tasks in Q and tasks are
always executed as late as possible. In other words, the task in the
tail gets executed right at its deadline, and it starts being executed
at the time instance when its deadline minuses its worst case
execution time.

Assuming that there are M tasks in the task queue, and the first
task is located in the head, the last one (M-th) in the tail. In order to
get the initial schedule easily, the initial starting time (istm) and
initial finishing time (iftm) of each task �m (m=1,2,…, M) are
calculated in a reversed order . Hence, istM and iftM are calculated
first, while ist1 and ift1 last.

Based on lazy scheduling policy, for the last task �M, we have:
MMM daift += (6)

MMMM wcetdaist −+= (7)
For all other tasks left, the initial schedule is easily obtained by the
following equations,

),min(1++= mmmm istdaift (8)
)),,min(max(1 mmmmmmm wcetistawcetdaist −−+= + (9)

where index variable m ranges from M-1 to 1. In order to make
the schedule practical, the istm can not be smaller than am.
Note that am+dm-wcetm is no less than am; otherwise task �m is not
schedulable under the given timing constraint; so we have

),min(1 mmmmmm wcetistwcetdaist −−+= + (10)
The indication of the above equation is clear that task �m starts

being executed either at time instance mmm wcetda −+ , when its
deadline minuses its worst case execution time, or at the time
instance, istm+1-wcetm, when the starting executing time of its next
task istm+1 minus its worst case execution time wcetm, no matter
which one is earlier. That scheduling is justified by the following
facts: 1) task �m is delayed as much as possible so that system may
have more energy to execute task by energy harvesting; 2) the
timing constraints of task �m is guaranteed.

3.2 Balance workload

As long as each task (�m) is finished at its initial finishing time
(iftm), the timing constraint is met. However, based on the initial
schedule, all tasks are executed at the full speed of the processor,
which is not an energy-efficient scheme. We need to make use of
the task slacks for energy saving. The dynamic voltage and
frequency selection (DVFS) [13] is applied to stretch the execution
time of each task and slow down the processor.
The DVFS-enabled processor has multiple operating voltage and
frequency levels. In order to achieve the maximum power savings,
all tasks should be stretched uniformly [14]. In other words, the
processor should avoid operating frequency switches as much as
possible.

In terms of the initial schedule, all tasks are executed at the full
speed, with the same slowdown factor index SIm equal to N. Then
all tasks in the ready queues are stretched by N rounds of DVFS
policy, where N is equal to the number of available operating
frequencies to the processor. The effort of using N round of DVFS
policy is to make all tasks executed in the same frequency level so
that the switch activity of the processor is minimized and the
system-wide energy efficiency is maximized.

For a given round, the starting time (stm) of task �m for execution
is determined by:

�
�
�

=
=

=
− Mmfta

mtimecurrenta
st

mm
m ,,2),,max(

1),_,max(

1

1
�

 (11)

where m is from 1 to M.
However, its finishing time (ftm) is more complicated to obtain.

Before calculating ftm, two questions need to be answered. First,

check if the slowdown factor index SIm for task �m can be reduced
further. If the following inequality holds,
 stm+wcetm/S(SIm-1) < iftm (12)
then the timing constraint is still met after further stretching task �m.
Second, check if the slowdown factors for tasks indexed from m+1
to M is still valid. If the answers to these two questions are yes,
then SIm for task �m is decremented by 1; in other words, the
operating frequency of task �m is reduced to f(SIm-1) from f(SIm).
Otherwise, SIm is kept as it is.

The slowdown factor Sn is called valid for a given task �m if task
�m can be executed by the processor at frequency fn subjected to the
timing constraints.
Now ftm can be easily calculated as:
 ftm = stm + wcetm/S(SIm). (13)

The workload balance algorithm is shown in Figure 2. Line 10
in Figure 2 tells us that the slowdown index SIm for each task �m is
decreased at most by 1 at a given round of DVFS. The meaning is
two-fold: 1) each task has the same opportunity to be stretched,
which avoids some tasks getting overstretched by squeezing out the
slack of other tasks; 2) the slack time of tasks is sufficiently
exploited for energy savings.

Figure 2: Workload balance algorithm.
3.3 Check energy availability and tune up
schedule

One of the features of the energy harvesting systems is that the
available energy is limited by the energy storage capacity. The
available energy dynamically fluctuates with time in two opposite
directions: increasing or decreasing. Therefore we need to tailor the
workload-balanced schedule to that feature.

When tasks are scheduled based on the workload-balanced
algorithm in Section 3.2, the energy constraint is not considered. If
the energy availability invalidates the schedule, then the processor
has to stop the task execution before the task can be finished. In
order to overcome that problem, we have to check the energy
availability after getting the workload balanced schedule; then tune
up the schedule.

If the workload-balanced schedule is invalidated by energy
shortage, tasks are not directly removed from the ready task queue.
Instead the task execution is first delayed.

For example, if we define that mth task �m in Q is the first task
whose schedule is invalidated by the energy shortage, so we have:

EC(stm)+ES(stm, ftm) < ED(stm, ftm) (14)
where ES(stm, ftm) is the harvested energy between stm and ftm, and it
can be estimated based on the profile of energy-harvesting source.
Then task �m is rescheduled by delaying dlm until the following
equality holds,

EC(stm)+ES(stm, ftm+dlm) = ED(stm+dlm, ftm+dlm) (15)
If the deadline of task �m is not violated, that is:

ftm+dlm � am+ dm (16)

1. Require: get the initial schedule for M tasks in queue Q
2. for n = 1:N do
3. for m =1:M do
4. if m = = 1, then
5. stm = max(am, current_time)
6. else
7. stm = max(am, ftm-1)
8. endif
9. if stm+wcetm/S(SIm-1) < iftm && the slowdown factors

for tasks with lower priority is valid, then
10. SIm = SIm – 1
11. end if
12. ftm = stm + wcetm/S(SIm)
13. end for
14. end for

784

and the slowdown factors for tasks indexed by m+1, …, M are still
valid, then task �m is executed at time interval [stm+dlm, ftm+dlm] at
the frequency f(SIm), obtained from workload-balanced schedule;
and the schedule for tasks with lower priority is updated, as shown
in lines 7~10 in Figure 3; otherwise, task �m is simply removed
from task ready queue, as shown in line 12 in Figure 3.

Note that the tune-up algorithm presented in Figure 3 is
executed on the fly and the scheduler has to check the energy
availability before the task’s execution. We would like to give an
example to explain how the tune-up algorithm works. Assuming
that the DVFS-enabled processor has 4 operating frequency levels
with slowdown factor 1, 0.6, 0.4 and 0.15; and the corresponding
power levels are 32, 10, 4, and 0.8. Also assume that there are 2
tasks �1 and �2 in Q, and they are scheduled by the
workload-balanced schedule with (st1, ft1, deadline1)=(50, 56, 59),
and (st2, ft2, deadline2)=(56, 62, 68). Both tasks are scheduled to
execute at the lowest speed, and the power consumption of the
processor is 0.8 at lowest operating frequency.

Figure 3: The tune-up schedule algorithm to guarantee the
energy availability.

The available energy in the storage at time instance 50 is set to 1.

The harvesting power from time instance 50 to 68 is set to 0.5. If
the system executes those two tasks based on the workload balance
schedule, then the execution of both tasks will be suspended due to
the energy shortage. The following calculation verifies our
conclusion: The total energy the system provides at time instance
56 is 1+6*0.5=4; and the total energy demand for executing task �1
is 6*0.8=4.8. So the energy shortage forces the processor to stop
running at time instance 53.3 and the schedule for task �1 can not be
carried out, shown by the “lime” color long dash line in Figure 4.

On the other hand, before running task �1, the energy availability
is checked by equation (15), and then task will be delayed by 2
time units; accordingly task �1 is executed between time interval [52,
58], and the schedule for task �2 is updated as (st2, ft2,
deadline2)=(58, 64, 68). After finishing task execution, the
remaining energy is 0.2 shown by the “lime” color solid line in
Figure 4; energy is not a concern any more for the schedule of task
�1. The similar argument holds for task �2.

3.4 Put all together
As we stated earlier, the proposed algorithm comprises three steps:

1) generate the initial schedule;
2) balance workload for the processor;
3) tune up the schedule under the constraints of energy

availability.

Figure 4: Tuning up scheduling algorithm illustration.

Figure 5: The proposed adaptive and voltage/frequency
selection algorithm for real-time energy harvesting system.

In this section, we put the prior discussions together, and construct
a complete adaptive scheduling and voltage/frequency algorithm
for real-time energy harvesting system, presented in Figure 5.

In the beginning, we assume the ready task queue Q is empty,
shown in line 2. Every time the new task comes, it is pushed into Q,
as shown in line 5, and then all tasks in Q are sorted ascendingly
based on their deadlines.

The event that the new task comes triggers rescheduling all tasks
in Q, so that the task with higher priority (the earlier deadline) in
the new task queue is scheduled to run earlier, as shown from lines
6~9 in Figure 5.

If there is no new task coming, the processor executes tasks
based on the schedule obtained before, as shown in line 11. Once
the task is finished, it is removed from Q, as shown in line 13.
The key of the proposed algorithm is in lines 6~9. The initial
schedule guarantees that tasks meet the timing requirement. The
workload balance scheduling algorithm achieves the system-level
energy efficiency by two ways: 1) trading the task slack for energy
savings by slowing down processor execution speed; and 2) the
balanced workload reduces the frequency switch activities for the
processor and then the correspondent overhead goes down. The
tune-up algorithm makes sure the system has needed energy to
execute each task based on the schedule.

IV. Simulations and Discussions
In this section, we evaluate the performance of the proposed

scheduling algorithm based on simulations. We have developed a
discrete event-driven simulator in C++ and implement the proposed
scheduling algorithm. For comparison purposes, the lazy
scheduling algorithm (LSA) in [12, 16] and energy aware DVFS
algorithm (EA-DVFS) in [13] are also implemented as
benchmarks.

We design three sets of experiments. The first set is designed to
show how the system remaining energy is improved by the

Energy/Power

52 54 58 62 56 60 64

.5

.8

time 50

Power harvested

Power consumed

Net energy

1

2

1. Require: the workload balanced schedule for M tasks in Q
2. if EC(stm)+ES(stm, ftm) < ED(stm, ftm), then
3. calculate dlm from equation (16)
4. if ftm+dlm � dm && the slowdown factors for tasks with

lower priority is valid, then
5. stm = stm+dlm
6. ftm = ftm+dlm
 //update schedule for tasks with lower priority in for

loop
7. for i = m+1:M do
8. sti = max(sti, fti-1)
9. fti = sti + exei;
10. endfor
11. else
12. remove task �m from queue Q
13. endif
14. endif

1. Require: maintain a ready task queue Q
2. set task queue Q empty
3. while (true) do
4. if new task coming, then
5. push new task in Q,
6. sort all tasks ascendingly in Q based on the deadline
7. get initial schedule for tasks in Q,
8. balance the workload based on algorithm shown in

Figure 2
9. tune up scheduling, shown in Figure 3
10. endif
11. execute task
12. if the task is finished, then
13. remove task from the ready task queue Q
14. end if
15. end while

785

proposed scheduling algorithm, comparing to LSA and EA-DVFS.
The second set of experiments reports how much the deadline miss
rate is reduced based on the proposed algorithm, comparing to the
other two; the third set of experiments shows the minimum energy
storage capacity requirement in order to maintain zero deadline
miss rate for three different scheduling algorithms.

4.1 Simulation setup

We choose the solar energy as the energy harvesting source in
our simulations. In order to exhibit the stochastic and periodic
characteristics of the solar energy source, we multiply a random
number generation function with two deterministic cosine functions
together [13, 17], as shown in:

)
120

cos()
70

cos()(10)(
ππ

tttNtPS ⋅⋅⋅= (17)

where N(t) is a random number generator and it is subject to the
normal distribution with mean 0 and variance 1.
A DVFS-enabled processor similar to Intel’s Xscale processor [18]
is used in the simulations. The processor has five operating
frequencies: 150MHz, 400MHz, 600MHz, 800MHz and 1000MHz.
Accordingly, the processor also has 5 power levels: 80mW, 400mW,
1000mW, 2000mW and 3200mW, each corresponding to a specific
operating frequency. The overhead from the processor operating
frequency switching is ignored in the simulations.

The task set consists of limited specific periodic tasks and the
cardinality of the task set is arbitrary. The period of the specific
task is uniformly drawn from a set {10, 20, 30, …, 120}; the
relative deadline of the task is set to its period; and the worst case
execution time is calculated based on its period and harvesting
power. Assume that the average harvesting power is SP , and the
task period is p, the worst case energy consumption e of the task is
uniformly drawn from interval [0, pPS ⋅] ; so e is a sample of a

uniform-distributed random variable with distribution [0, pPS ⋅].
Then the worst case execution time of the task can be computed as
e/Pmax.

We define the processor utilization U as

�=
m m

m
p
wU (18)

where wm is the worst case execution time of task �m, and pm is the
period. The processor utilization stands for the ratio of its busy time
over the summation of its busy time plus its idle time when the
processor operates at full speed. So the utilization U cannot be
larger than 1. To obtain a specific U, we need scale the worst case
execution time of each task in a task set in the same ratio in some
cases.

The energy storage is assumed to be full in the beginning of the
simulation. The simulation terminates after 10,000 time units. For a
specific utilization, we repeat experiments for 5,000 task sets.

4.2 Remaining energy comparison
In this set of experiments, we focus on comparing the remaining

energy for systems using proposed scheduling algorithm, against
systems using two baseline scheduling algorithms, LSA and
EA-DVFS. In order to have fair comparison, all simulations are
performed under the same condition, except for scheduling
algorithms.

From the discussion of the proposed scheduling algorithm, we
know that the processor utilization has significant impact on the
remaining energy. We do experiments sweeping utilization U from
0.2 to 0.8 with a step of 0.2.

When the utilization U is given, all experiments show the
similar trend in the remaining energy, we present the results with 6
periodic tasks in a task set. Note that the reported remaining energy

is normalized to the storage capacity.
 The simulation results with 4 different processor utilization
ratios are plotted in Figure 6. As shown in Figure 6, the proposed
algorithm has the most available remaining energy in various
processor utilization, comparing to the other algorithms.

When utilization is set to 0.2, the proposed algorithm is able to
keep the energy storage almost full for most of the time shown in
Figure 6(a). The reason is that most of tasks are scheduled at the
lowest speed and the energy consumption goes down considerably;
furthermore, the harvesting energy replenishes to the energy
storage. The EA-DVFS algorithm only slows down task execution
when the system available energy is not sufficient. Therefore, some
tasks are executed at full speed, and the others at reduced speed,
which leads to the EA-DVFS-based system has less available
energy. LSA-based system always executed tasks at full speed, and
it accordingly has least available energy at any time.

With the processor utilization increasing from 0.4 to 0.8, the
proposed algorithm has less task slack to take advantage for energy
savings, therefore the available energy difference among LSA,
EA-DVFS and the proposed algorithm decreases, as shown in
Figure 6(b-d).

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

time

no
rm

al
iz

ed
 r

em
ai

ni
ng

 e
ne

rg
y

EA-DVFS

LSA

our algorithm

(a) U = 0.2

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

time

no
rm

al
iz

ed
 r

em
ai

ni
ng

 e
ne

rg
y

EA-DVFS

LSA
our algorithm

(b) U= 0.4

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

time

no
rm

al
iz

ed
 r

em
ai

ni
ng

 e
ne

rg
y

EA-DVFS

LSA
our algorithm

(c) U=0.6

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

time

no
rm

al
iz

ed
 r

em
ai

ni
ng

 e
ne

rg
y

EA-DVFS

LSA
our algorithm

(d) U=0.8

Figure 6: Remaining energy with different utilizations.

4.3 Deadline miss rate comparison
From the last sub-section, we know that the system based on the

proposed scheduling algorithm has significantly more available
energy than LSA-based/EA-DVFS-based systems no matter the
processor utilization is low or high. The more available energy
helps reduce the deadline miss rate due to energy shortage for
future tasks. Hence, the proposed algorithm significantly decreases
the deadline miss rate, comparing to LSA-based/EA-DVFS-based
system, as shown in Figure 7, when U is set to 0.4 and 0.8,
respectively.
Note that when utilization is set to 0.8, EA-DVFS performs the
same as LSA, as shown in Figure 7(b); nevertheless our algorithm
is able to reduce the deadline miss rate by at least 23% on average,
comparing to LSA and EA-DVFS. When utilization is high,
EA-DVFS schedules almost all of tasks at the full speed, and it can
not achieve much energy efficiency. However, the proposed
algorithm is able to squeeze out the task slack for energy savings
and still improves the system energy efficiency. Hence, the
proposed algorithm decreases the deadline miss rate even when the
processor utilization is high.

786

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized storage capacity

D
ea

dl
in

e
m

is
s

ra
te

LSA

EA-DVFS
our algorithm

(a) U=0.4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized storage capacity

D
ea

dl
in

e
m

is
s

ra
te

LSA

EA-DVFS
our algorithm

(b) U=0.8

Figure 7: Deadline miss rate with two workloads.

4.4 Storage capacity comparison
Finally, we compare the minimum storage capacity requirement

for three scheduling algorithms in order to avoid any deadline miss
for any task. Notations Cmin-LSA, Cmin,EA-DVFS and Cmin,our represent
the minimum storage requirement for LSA, EA-DVFS and our
algorithm, respectively. They are all normalized to Cmin-LSA.
We sweep the processor utilization U from 0.2 to 0.8 to run
experiments with a step 0.2. The results are reported in table 1.

Table 1 Normalized storage capacities.
U 0.2 0.4 0.6 0.8

Cmin-LSA 1 1 1 1
Cmin,EA-DVFS 0.43 0.73 0.92 0.98

Cmin,our 0.04 0.34 0.62 0.79
To visualize the storage capacity difference, the normalized storage
capacities for LSA , EA-DVFS and the proposed algorithm, are
presented in a bar chart in Figure 8.

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8

Utilization

N
or

m
al

iz
ed

 c
ap

ac
ity

LSA
EA-DVFS
our algorithm

Figure 8: Normalized storage capacity comparison

Observing the results in Table 1 and in Figure 8, we can see that
the proposed algorithm requires less storage capacity to achieve
zero deadline miss rate in all cases. When utilization is set to 0.2,
our algorithm needs as little as 1/10 of the storage capacity that
EA-DVFS needs, and as little as 1/23 of the storage capacity that
LSA needs. With the utilization going up, the difference between
Cmin-LSA, Cmin,EA-DVFS and Cmin,our reduces. Note that when
utilization is set to 0.8, Cmin,our is about 21% less than Cmin-LSA ,
while Cmin-LSA and Cmin,EA-DVFS are almost the same.

Whether the processor utilization is high or low, the proposed
algorithm aggressively trades task slack for energy savings under
timing and energy constraints. When utilization is low, the
processor are scheduled to run task at lower speed; while utilization
high, the task are executed at higher speed but not full speed.
Under any circumstances the proposed algorithm saves more
energy than LSA and EA-DVFS algorithms. That’s why the
proposed algorithm requires less storage capacity in all cases.

V. Conclusions
In this paper we have proposed an adaptive scheduling and

voltage/frequency selection algorithm targeting at real-time

systems with energy harvesting capability. The proposed algorithm
consists of three steps:1) generate initial schedule; 2) balance
workload; and 3) check energy availability for each scheduled task
and tune up the schedule. The first step is to guarantee the timing
constraints are met; the second step is to trade task slack for energy
savings and the third step is to make sure the energy constraints are
met. By dividing the original scheduling problem into three steps,
we separate the constraints in timing and energy domains. So the
problem can be easily handled.

Experimental results show that, the proposed algorithm
aggressively trade the task slacks for energy saving. Hence, no
matter the processor utilization is high or low, the proposed
algorithm, comparing to LSA and EA-DVFS, increases the system
available energy, decreases the deadline miss rate and reduces the
energy storage capacity requirement for zero deadline miss rate.

References [

1] Lu, Y.-H., Benini, L., and De Micheli, G, “Low-power task scheduling
for multiple device”, Proc. Int. Workshop HW/SW Co-design,
Mar.2000, pp. 39–43

[

2] Mishra, R., Rastogi, N., Zhu, D., Mosse, D., and Melhem, R, “Energy
aware scheduling for distributed real-time systems”, Proc. Int. Parallel
& Distributed Processing Symp., Apr. 2003

[

3] S. Liu, Q. Qiu, Q. Wu, “Task merging for dynamic power management
of cyclic applications in real-time multi-processor systems”, in Proc of
ICCD, 2006.

[4] F. Yao, A. Demers, et al,“A scheduling model for reduced CPU
energy,” in IEEE symposium on Foundations of Comp. Science, 1995.

[

5] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. srivastava.
“Power Optimization of Variable-Voltage Core-Based systems,”
IEEE Trans. On Computer-Aided Design, 1999.

[6] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems,”
In Proc. Of Int. Conf. on VLSI Design, pp.719-726, 2002

[7] S. Roundy, et.al, “Power sources for wireless sensor networks,”. In
Proc. Of Wireless Sensor Networks, First Europeean Workshop, 2004.

[

8] V. Raghunathan, A. Kansal, et al, “Design considerations for solar
energy harvesting wireless embedded systems”, In Proc. of the
International Symposium on Information Processing in Sensor
Networks, 2005

[

9] X. Jiang, J. Polastre, and D. E. Culler, “Perpetual environmentally
powered sensor networks”, In Proc. of the International symposium on
Information Processing in Sensor Networks , 2005

[10] A. Allavena and D. Mosse, “Scheduling of frame-based embedded
systems with rechargeable batteries,” In Workshop on Power
Management for Real-time and Embedded Systems, 2001

[

11] C. Rusu, R. G. Melhen, and D. Mosse, “Multi-version scheduling in
rechargeable energy-aware real-time systems”, In 15th Euromicro
Conference on Real-time systems, ECRTS 2003, , 2004.

[

12] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Lazy scheduling for
energy-harvesting sensor ndoes,” in Fifth Working Conference on
Distributed and Parallel Embedded Systems , 2006

[13] S. Liu, Q. Qiu, Q. Wu, “Energy Aware Dynamic Voltage and
Frequency Selection for Real-Time Systems with Energy Harvesting”,
In Proc. of DATE 2008, 236-241.

[

14] C. Xian, Y. Lu, Z. Li, “Energy-Aware Scheduling for Real-Time
Multiprocessor Systems with Uncertain Task Execution Time”, In Proc.
of DAC 2007: 664-669

[

15] A. Kansal, J. Hsu, S. Zahedi and M. Srivastava, “Power Management
in Energy Harvesting Sensor Networks,” In ACM Transactions on
Embedded Computing Systems (in revision) , 35 pages , May 2006.

[

16] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling
with regenerative energy,” in Proc. of the 18th Euromicro Conference
on Real-time Systems (ECRTS06),, 2006.

[

17] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-Time
Scheduling for Energy Harvesting Sensor Nodes,”MICS Scientific
Conference and SNF Panel Review, 2006.

[

18] Intel-Xscale Micro-architecture, available at http://www.intel.com

787

