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Abstract — The computational workload of some real-time 
applications varies significantly during runtime, which makes 
the task scheduling and power management a challenge. One of 
the major influences to the workload of an application is the 
selection of conditional branches which may activate or 
deactivate a large set of operations. Focusing on real-time 
applications with variable workload which is due to random 
branch selection, this paper presents a framework of task 
mapping, scheduling and dynamic voltage and frequency scaling 
(DVFS) for a multiprocessor system. The proposed framework 
maintains workload awareness using dynamic profiling of 
branch probability. The profiled information is utilized by the 
scheduling and DVFS algorithm that are adopted in this 
framework to generate statistically optimal solution.  

I. INTRODUCTION  
Future generation embedded real-time systems will consists of 

vast number of processing elements (PE). The sharp performance 
boost achieved by such Multiprocessor System-on-Chip (MPSoC) 
comes with increase in both computation and communication energy. 
There have been continuous design efforts that target reducing the 
energy of battery operated MPSoC using system level power 
optimization techniques, such as task scheduling or dynamic voltage 
and frequency scaling (DVFS). However, workload variations due to 
the non-deterministic nature of application impact the efficiency of 
these techniques. It is necessary to develop robust techniques which 
can vigorously target power optimization and adapt to system 
variation due to input data or environment.  

Techniques of scheduling and DVFS for applications with 
variable workload have been proposed for single processor [1][2] and 
multiprocessor [3] systems. These works consider a set of preemptive 
tasks with uncertain execution time. Reference [1] models the voltage 
scaling process as a filter system and proposes the time-variant 
voltage scaling algorithm based on the water-filling process in 
information theory. The authors of [2] propose several workload 
prediction models which assist the voltage selection. The authors of 
[3] target at partition a set of tasks with uncertain execution time and 
map them to a multiprocessor system so that the expected workload is 
balanced. The cycle demand of each task is divided into several bins 
and the frequency and voltage of each bin is calculated to minimize 
the total expected energy consumption. 

All of the above works focus on the workload variations caused 
by uncertain execution time of tasks, which are the atomic scheduling 
or mapping units in an application. Another major influence to the 
workload of an application is the selection of conditional branches 
which may activate or deactivate a large set of operations. In contrast 
to instruction level branch, here we consider conditional branches that 
activate or deactivate an entire task and hence generate more visible 
workload variation. Some examples of such task level branching 
include branches that either enable or disable IDCT function during 
MPEG decoding or branches that select different modulation schemes 
for preamble and payload based on 802.11b physical layer standard. 

This work focuses on the set of applications which can be 
decomposed into a set of tasks with relatively constant execution 
time. The uncertainty of the workload is reflected by the random 
activation and deactivation of certain tasks during runtime and it is 
captured by branch selections among tasks. We assume that such 
branch information is observable to the scheduling software to assist 
runtime scheduling and power management of the system. 

Complex systems running such non-deterministic applications 
can be modeled by a conditional task graph (CTG) [7]~[10],[17]. The 
conditional behavior of application is captured by branching tasks and 
it may affect the execution of other tasks depending on the branch 
selection. Although branch prediction is a common practice in high 
performance processors, the prediction will not be perfect. 
Furthermore, the task graphs that we are working with are high level 
descriptions of large applications. Their selection of conditional 
branches depends mostly on the input data, which are random in 
nature. Hence a branch selection should be considered as a random 
variable and characterized by its probability distribution. The branch 
probability can be obtained through online or offline profiling. And it 
can be predicted based on history. For a technique to provide robust 
scheduling and energy reduction for an application with non-
deterministic workload due to random branch selection, it should be 
able to  

(1) handle mutual exclusiveness among tasks that belong to 
different branches; 

(2) consider the branch selection probabilities and minimize the 
expected energy dissipation instead of worst case or best case 
energy dissipation; 

(3) predict the distribution of branch probabilities; and  

(4) adapt to the changes of probability distribution. 

Statistical scheduling and voltage scaling techniques for the 
CTGs running on multiprocessor systems have been proposed 
[10][17]. Both works solve the scheduling and DVFS problem in two 
separate stages. During the first stage, tasks that are mapped to the 
same processor are ordered for a maximum slack. In the second stage, 
tasks are stretched to minimize the energy while meeting the deadline 
constraint.  Shin et al. [10] proposed an algorithm for task ordering 
and stretching of CTG which considers the run-time behavior. The 
probabilistic distribution of the branch selections is considered during 
task stretching. The authors of [17] consider task mapping and 
ordering concurrently and they utilize the branch probability to assist 
task scheduling as well as task stretching, hence achieve higher 
energy savings. Both [10] and [17] use NLP based task stretching 
which has high complexity and they cannot be applied during 
runtime. Hence, they do not track or adapt to the change of 
probability distribution. A DVFS algorithm for the CTG on 
multiprocessor system based on slack distribution is proposed in [9]. 
However, it does not differentiate tasks with high activation 
probability from the tasks with low activation probability during slack 
distribution. Therefore, it will not adapt to the change of the 
workload. 
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In this work, we propose a framework of adaptive scheduling and 
voltage scaling for CTG on a multiprocessor system. The proposed 
technique predicts the branch probability using a sliding window 
based approach. When the change of the distribution exceeds certain 
threshold, an online algorithm is called for re-scheduling and voltage 
re-selection. Similar as [10] and [17], the online algorithm has a 
separate task ordering and stretching stages. It employs a modified 
Dynamic Level based Scheduling (DLS) that is adopted from [17] 
while performs task stretching using a low complexity heuristic. The 
proposed technique is applied to real-life applications such as MPEG 
decoder or vehicle cruise control system as well as some random 
CTG graphs generated by TGFF [14]. 

The rest of this paper is organized as follows. Section II 
introduces the application and hardware architecture models. Section 
III provides detailed introduction of our scheduling algorithm. 
Sections IV and V present the experimental results and conclusions.  

II. APPLICATION AND ARCHITECTURE MODELING 
The CTG that we are using is similar as the one specified in [10]. 

A CTG is an acyclic graph <V, E>. Each vertex τ∈V represents a 
task. An edge e=(τi, τj) in the graph represents that the task τi must 
complete before τj can start. A conditional edge e is associated with a 
condition C(e). We use prob(e) to denote the probability that the 
condition C(e) is true. The node with output conditional edge is a 
branch fork node. 

A node can be either and-node or or-node [10]. An and-node is 
activated when all its predecessor nodes are completed and the 
conditions of the corresponding edges are satisfied. On the other 
hand, an or-node is activated when one or more predecessors are 
completed and the conditions of the corresponding edges are 
satisfied. 

The condition that the task τ is activated is denoted as X(τ). The 
condition of an and-node τi can be written as ( ))(),( kikk XC ττττ ∧∧ , 
where τk is the predecessor of τi. The condition of an or-node τj can 
be written as ( ))(),( kjkk XC ττττ ∧∨ , where τk is the predecessor of 
τj.  There also exist data dependency where a task can not begin its 
execution until the predecessor tasks are finished and the respective 
data transfers are completed. A minterm m is a possible combination 
of all conditions of CTG. We use M to denote the set of all possible 
minterms of CTG. A task τ is associated with a minterm m if m⊆X(τ). 
In another word, a task τ is associated with a minterm m if X(τ) will 
be true when m is evaluated to be 1. The set of minterms with which τ 
is associated is denoted as Γ(τ). Two tasks τi and τj are mutually 
exclusive if they cannot be activated at the same time, i.e. X(τi) ⊕ 
X(τj)=0. To simplify the implementation and discussion, we refer the 
condition “1” (i.e. always true) as one of the minterms as well. 

The volume of data that pass from one task to another is also 
captured by the CTG. Each edge (τi, τj) in the CTG associates with a 
value Comm(τi, τj) which gives the communication volume in the 
unit of Kbytes. Finally, we assume a periodic graph and use a 
common deadline for the entire CTG. 

 

 

 

 

 

 

Figure 1 An example of CTG. 

Example 1: Figure 1 shows an example of a CTG. All nodes 
except node τ8 are and-nodes. The edges coming out from τ3 and τ5 
are conditional edges. The symbol marked beside a conditional edge 
gives the condition under which the edge will be activated. For 
example C(τ3, τ4) = a1. There are total of 4 minterms in the CTG and 
M={1, a1, a2b1, a2b2}. We have }1{)()()( 321 =Γ=Γ=Γ τττ , 

}{)( 14 a=Γ τ , }{)( 25 a=Γ τ , }{)( 126 ba=Γ τ , }{)( 227 ba=Γ τ  and 
},1{)( 18 a=Γ τ . The execution profile and communication volume are 

given beside the CTG. The fact that τ8 is an or-node indicates that if 
condition a1 is true then τ8 cannot start until τ2 and τ4 finish and if 
condition a1 is false then τ8 does not have to wait for τ4. Note that, in 
reality, we do not know weather a1 is true or false until τ3 finishes. 
Therefore, in any case, τ8 must wait until both τ2 and τ3 finish. This 
example shows an implied dependency between an or-node and the 
branch fork node. More detailed discussion will be provided in the 
next section. 

The following models the architecture of an MPSoC: 

• The set of PEs, },...,,{ 21 npppP =  

• The energy E(τi, pj) and worst case execution time WCET(τi, pj), 
∀τi∈V and  ∀pj∈P. These values give the energy and delay of each 
task when it is running on different PEs at the nominal VDD. 

• The bandwidth B(pi, pj) and transmission energy Etr(pi, pj), ∀pi, 
pj∈P. These values specify the bandwidth as well as the 
transmission energy per byte of the communication link between pi 
and pj. We modeled a point-to-point communication link for our 
interconnect network and dedicated communication resource for 
each PE. We also assume that the voltage scaling cannot be applied 
to the communication tasks. 

III. FRAMEWORK OF ADAPTIVE SCHEDULING AND DVFS 

A. Online task scheduling and streching algorithm 
Similar as [10] and [17], the online algorithm has a separate task 

ordering and stretching stages. It employs a modified Dynamic Level 
based Scheduling (DLS) that is adopted from [17] while performs 
task stretching using a low complexity heuristic.  

The DLS algorithm is a list scheduling algorithm. It considers 
computation scheduling and communication scheduling altogether. 
The ready list is a list of tasks whose predecessors have been 
scheduled and mapped. For each task τi in the ready list, and each 
processor pj, the dynamic level DL(τi, pj) is calculated. The pair of (τi, 
pj) which gives the maximum dynamic level will be selected and the 
mapping is performed accordingly.  

The modified DLS algorithm considers the mutual exclusiveness 
among conditional tasks as well as the probabilistic distribution of 
branch selection. The dynamic level is calculated using the following: 

 ),),()(),( jpijpiATiSLjpiDL τδτττ (+−= ,                      (1) 

where  SL(τi) is the static level of task τi, . If τi is a non-branching 
node, SL(τi) is calculated as:  

}  {),(max)(*)( ijjii ofSuccessorsSLWCETSL τττττ ∈+=  , and if τi is 
branching node, SL(τi) is calculated as: 

}  {   ,)(*)()(*)( ijj jijii ofSuccessorsSLcprobWCETSL τττττ ∈∑+=  . 

δ(τi, pj) is the difference between average worst case execution time 
(WCET) of τi and the WCET of τi at pj, and AT(τi, pj) is the first time 
that  task τi can start on processor pj. The average WCET of a node 
for each PE is calculated for maximum operating speed/frequency of 
particular PE. Note that mutual exclusive task may be able to start on 
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the same processor during the same time. For the best pair (τi, pj) that 
has the highest DL, τi will be scheduled on pj at time AT(τi, pj). Since 
the schedule of τi imposes new precedence order between τi and other 
tasks that are scheduled on the same processor, we also update the 
CTG to reflect this change. After that, the ready list will be updated 
and the above mentioned procedure will repeat until the ready list is 
empty. More information of the modified DLS algorithm and its 
performance evaluation can be found in [17]. 

The task stretching algorithm is a profile-based approach 
considering branch probabilities. It calculates only single speed for 
each task and it facilitates different scaling ratio for different PEs. 
Once the CTG is updated, all possible paths in CTG are calculated 
using Breadth First Search (BFS) algorithm. Also associated with 
each path p is the slack and delay which are denoted as slk(p) and 
delay(p) respectively. A path’s delay is the sum of execution time of 
all nodes along that path with mapping already known through 
scheduling algorithm. Associated with each task τ on path p, there is a 
probability prob(p, τ), which indicates the probability of path p given 
the condition that task τ is activated. prob(p, τ) is calculated as the 
joint probability of all the conditional branches lying on the path after 
node τ. For example, consider the example in Figure 1, the 
probability prob(τ1-τ3-τ5-τ6, τ5)=prob(b1)=0.5 because the only 
conditional branch along the path τ1-τ3-τ5-τ6 after node τ5 is b1. For 
another example, the probability prob(τ1-τ3-τ4-τ8, τ8)=1, because 
there is no conditional branch in this path after node τ8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Online task stretching heuristic. 

For each task, step4 of main routine shown in Figure 2 
determines the available slack by calling CalculateSlack(τi) routine. 
This routine finds the most critical path that has a minimum slack 
applicable to task τi. In case of multiple paths pertaining to different 
minterms with probabilities less than 1, first the critical path that has 
the lowest distributable slack ratio (slk(p)/delay(p)) and has the 
probability less than 1 is identified for each minterm. After that the 
initial slack of τi is taken as a probability weighted sum of all these 
critical path slacks corresponding to each minterm m∈Γ(τi) as shown 
in step 4 of routine. Note that the weight for each path is prob(p, τi), 
which is the probability of path p given the condition that task τi is 
activated. One more slack value is calculated as shown in step 7 for 

critical paths with probability equal to 1. It is noteworthy that both 
slack values are further weighted by the activation probability of node 
τi. This allows more slack to be distributed to tasks that are more 
likely to be activated. The slack of τi is now minimum of these two 
slack values. Because the slack is the average for all possible 
minterms, at the end of the routine, we need to check for each path 
that the deadline can be met otherwise, the slack will be adjusted. 

Once slack is calculated for a task, the task is stretched and its 
schedule and speed are locked. Next, all paths that span this task are 
updated in terms of their respective delay and slack. Effectively the 
delay and slack of these paths are reduced, reflecting the effect of the 
already stretched task. Updating these variables dynamically alters 
the criticality of paths for different nodes and subsequently releasing 
the tasks that are being stretched from consideration. The online task 
stretching heuristic then updates CTG and repeats the above 
mentioned procedure for another task following the task order 
generated by ordering algorithm. 

Being simple to implement but energy efficient, online stretching 
heuristic also displays low complexity. Given a CTG with total nodes 
|V| and edges |E|, the time complexity of step-1 and step-2 in  

Figure 2 is O(|V|3 + |E|). Step-4 has a complexity of O(|V|3)) while 
the complexity of step-5 and step-6 is O(1). Assume that the number 
of outgoing edges from each node can be bounded by a constant C, 
the time complexity of step-7 is O (C|V|). The total time complexity 
of the online stretching heuristic is O (2|V|3 + C|V| + |E|). This low 
complexity enables the algorithm to be used for dynamic scheduling 
in a system with the capability of runtime branch prediction. The next 
subsection describes the algorithm that performs adaptive scheduling 
and DVFS. 

B. Adaptive scheduling and DVFS  
One of the limitations of the on-line algorithm is that its 

efficiency relies heavily on the accuracy of the probabilistic 
distribution of the branch selections. Such distribution is not fixed 
during the runtime. For example, the vehicle cruise controller selects 
to increase or decrease the reference speed based on the road 
condition. In other real-life application of MPEG video decoder, the 
decoding process keeps varying according to the contents of the 
visual scene.  Each video frame in the encoded video stream is 
composed of various macroblocks that represents 16x16 pixel area of 
the image. The macroblock decoding is the core of the decoding 
process of the software MPEG player [16] which is repeated for the 
entire video stream. The macroblocks are encoded differently for 
changing visual scene and this difference impacts the workload of 
decoding process. Such a selective behavior can be easily depicted by 
a conditional task graph. Figure 3 shows the CTG for decoding one 
MPEG macroblock. In the figure, the light and dark dotted lines 
forked from the same node indicate mutually exclusive branches. 

 

 

 

 

 

 

 

 

Figure 3 MPEG decoder modeled as Conditional Task Graph 
Due to space limitations we can not show the whole graph which 

is little more complex than the one shown in Figure 3. The original 

Online task stretching heuristic for CTG G 
1. Process initial schedule generated by DLS based task ordering 

algorithm; 
2. Calculate possible paths in CTG using BFS; 
3. For each task τi { 
4. CalculateSlack (τi); 
5. Stretchτi , lock its schedule and speed; 
6. Update the delay and  slack of all paths spanning τi ; 
7. Update the schedule for CTG G;  

    } 
CalculateSlack (τi) 

1. For each minterm m ∈Γ(τi) { 
2. For all  paths of m ∈Γ(τi)  that span node τi { 
3. Find the critical path pworst where  prob(pworst, τi) ≠ 1; 
4. slk1+= prob(pworst,τi) * wcet(τi) *(slk(pworst) / delay(pworst) ) 

* prob(τi);     
} 

} 
5. For each path of  m ∈Γ(τi) where prob(m) = 1 
6. Find the critical path tworst ; 
7. slk2 = wcet(τi) * (slk(tworst) / delay(tworst) ) * prob(τi); 
8. slk(τi) = min [slk1, slk2]; 
9. If there is a path p that spans nodeτi and slk(τi)>deadline-

delay(p) then, 
10. slk(τi)=deadline-delay(p); 
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CTG consists of 40 tasks including 9 branching nodes. The task 
labeled as Skipped is a branch fork node with two branches. The 
branches in this CTG model of MPEG are marked as a~h with their 
respective numbers. Note that branches d, e, f and g are not shown in 
the graph, however, they are identical as branches c and h. The 
software first determines if a macroblock is a skipped block. If it is 
true, then branch a2 is taken otherwise branch a1 is taken and the 
software further determines if the macroblock belongs to type I. 
Again, if the answer is true then branch b1 is taken and otherwise 
branch b2 is taken. If the macroblock is an Intra block (type I block) 
then the IDCT function will be performed. Otherwise, there are 6 
blocks that belong to a macroblock and each block may require or not 
require the IDCT function. This is represented by branches (c~h). To 
decode a macroblock in an I frame, branch a1 and b1 will be selected 
with probability 1. However, the major portion of a video stream 
belongs to B or P frames. To decode a macroblock in a B or P frame, 
all branches in the CTG have the chance to be selected.  

We applied the software MPEG decoder to decode a sequence of 
1000 macroblocks inside a video stream. This is equivalent as invoke 
the CTG in Figure 3 1000 times. The actual branch selection during 
this period is extracted and plotted in Figure 4 as the first data series 
(labeled as Selection.) A “1” (“0”) indicates that branch b1 is selected 
(not selected). The branch probability within a window of 50 
iterations is plotted as the second data series (labeled as prob.) The 
figure shows that the branch selection is a random variable and is 
very difficult to be predicted accurately. On the other hand, its 
probability distribution has relatively less variation during a longer 
period, and hence may be predictable. This is because nearby 
macroblocks tend to be encoded in a similar way due to the locality of 
images. However, local fluctuations and slow drifting of branch 
probability exist which motivates us to develop an adaptive algorithm 
which captures such changes. 

 

 

 

 

 

 

Figure 4 Dynamic branch selection in MPEG decoder 
We propose a window-based adaptive algorithm for the best 

energy saving in a system with slowly varying branch selection 
probabilities. For each branch fork task, a fixed length buffer/window 
is maintained that stores the most recent L branch decisions 
pertaining to L instances of the CTG. Each time after a branch fork 
task is executed; a new branch decision is shifted into the buffer. The 
branch probabilities are then recalculated. If the difference between 
the new distribution and the old distribution is greater than a 
threshold value, the on-line scheduling and DVFS will be triggered. 
All the tasks will be executed with their newly evaluated speed until 
the next threshold crossing occurs. The third series of data in Figure 4 
shows how our algorithm adapts to such dynamic behavior of the 
application. Each time the difference between the newly computed 
probabilities crosses the threshold, which is set to 0.1 in this example, 
the branch probability is updated with this new value. This update 
also results in invocation of scheduling and DVFS. Because the 
procedure is similar as a low-pass filter, the third data series in Figure 
4 is labeled as filtered Prob. As we can see, the window size and the 
threshold determine how frequently the online scheduling and DVFS 
is called and they also impact how well the algorithm adapts.  

IV. EXPERIMENTAL RESULTS 
We begin by comparing the proposed online algorithm against 

the works suggested in [10] and [17]. We assume all algorithms have 
the accurate information about average branch probability and we do 
not consider the adaptive behavior of the online algorithm for a fair 
comparison. Also, for simplicity, we assume unit load capacitance to 
calculate energy and the only variable is speed/frequency of the PE. 
We do not consider switching overhead for DVFS. Table 1 shows the 
normalized energy dissipation of the 5 randomly generated CTGs 
under these three scheduling and DVFS algorithms, where the 
reference algorithm 1 and 2 represent the algorithms presented in [10] 
and [17] respectively. The energy results are normalized by taking 
energy given by online algorithm as a base of 100 in each case. The 5 
CTGs are modified from the random task graphs by TGFF [14]. The 
branching probabilities for all branching nodes were randomly 
generated. The first column indicates the test CTG index while the 
second column displays the characteristics of the graph. We use a 
triplet (a/b/c) to characterize a test case where a represents the 
number of nodes in the CTG, b represents the number of PEs in the 
MPSoC and c represents the number of conditional branching nodes 
in the CTG. Online algorithm provides an average of 39% energy 
reduction over the reference algorithm 1. It results 8% more energy in 
average compared to the reference algorithm 2. However, the average 
runtime of reference algorithm 2 was 70 seconds while the online 
algorithm took merely 0.6 ms in average for each CTG, which 
represents about 120,000X average speedup. The speed up mainly 
comes from replacing the NLP based DVFS algorithm with a slack 
distribution based heuristic. As a matter of fact, the complexity of the 
NLP based algorithm is so high that we cannot apply the reference 
algorithm 2 to the MPEG problem. 

Table 1 Energy consumption of online algorithm 

CTG a/b/c Reference 
Algorithm 1 

Reference 
Algorithm 2 

Online 
Algorithm 

1 25/3/3 195 87 100 
2 16/3/1 145 93 100 
3 15/4/2 130 95 100 
4 15/4/2 139 91 100 
5 25/4/3 290 97 100 
The next set of experiments compares the effectiveness of the 

online algorithm when being applied adaptively or non-adaptively. 
We first report the results achieved by applying the proposed 
algorithms on a software MPEG decoder [16]. The modeled CTG is 
shown in Figure 3. The multiprocessor system consists of 3 PEs. We 
inserted monitors in decoder code to record the branch selection by 
running real movie clips. The decisions of braches a~h are encoded as 
avector <x1, x2, …, xn>.  The ith position of such vector indicates the 
branch decision for the ith branching node in the graph.  

A sequence of 2000 vectors is generated from a movie chip. The 
first 1000 vectors are considered as a training sequence while the 
second 1000 vectors are considered as testing sequence. The non-
adaptive online algorithm uses the profiled branch probability from 
the training sequence. From this point onwards we will use the terms 
online and non-adaptive interchangeably to refer to non-adaptive 
online algorithm. The adaptive algorithm uses a sliding window of 
size 20. The average energy for 1000 testing vectors is compared. All 
the movies except Shuttle are SIF resolution and the series of 1000 
vectors constitutes little more than 3 video frames.  The movie Shuttle 
is of lower resolution (QCIF) comprising of roughly 10 frames. We 
tested for a threshold of 0.5 and 0.1 for adaptive algorithm.  

Figure 5 shows the average energy dissipation under the adaptive 
and online algorithm for eight different movie clips. The average 
energy savings of the adaptive algorithm over online algorithm for 
the threshold value of 0.5 is 21% while for threshold value of 0.1 is 
23%.  



Table 2 shows the number of times the online scheduling and 
DVFS was called for each movie. The average re-scheduling number 
is 9 (less than 3 per frame) for threshold T=0.5 and 162 for threshold 
T=0.1 (54 per frame). The results show that the appropriate threshold 
selection minimizes the overhead at negligible loss in energy savings 
(2% in this case). 
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Figure 5 MPEG energy consumption with varying thresholds 

 
Table 2 Algorithm call count for MPEG movies 

Movie Airwolf Bike Bus Coaster Flower Shuttle Tennis Train 

T=0.5 7 7 14 9 9 32 10 5 

T=0.1 164 164 238 153 198 276 198 157 

 
Table 3 Energy consumption of vehicle cruise controller system 

Vector sequence 1 2 3 
Non-adaptive 155 206 147 

Adaptive 148 196 139 

In our second experiment, we analyzed the energy consumption 
of a vehicle cruise controller system modeled as a conditional task 
graph [15]. The application is mapped on to a system with 5 PEs and 
consists of 32 tasks including two branching nodes. We generated 
three sets of 1000 vectors simulating a branch selection pertaining to 
real run of vehicle that encounters uphill, downhill, straight and 
bumpy road condition. Again, the first set of vectors is the training 
sequence which provides the profiled average branch probabilities for 
non-adaptive online algorithm. We then tested the adaptive and non-
adaptive methods using all of the 3 sequences. We used threshold 
value of 0.1 for first two sets and 0.5 for the third vector set.  

Table 3 shows the energy values. The energy savings over online 
algorithm in all three cases were almost identical hovering around 
5%. The low energy savings can be contributed to the fact that there 
are only three minterms in the CTG model of the cruise control 

system. Also the deadline we used was double of the optimum 
schedule length. The combined effect results in less room for adaptive 
algorithm to extract its potential. The CTG typically has two 
minterms resulting from a same branching node that are almost equal 
in energy and thus change in probability least affects the energy. 
Although the non-adaptive method has perfect information on the 
long term average of the branch probability for sequence 1, it still 
provides less optimal scheduling than the adaptive algorithm because 
it does not consider the local fluctuation of the probability 
distribution. The call count to adaptive algorithm (re-scheduling) was 
150 in average for 0.1 threshold value and 9 for threshold of 0.5. 

Finally, we tested our algorithm on some random conditional task 
graphs which are modified from the task graphs generated by TGFF 
[14]. The MPSoC architecture consists of either 3 or 4 PEs. We tested 
10 different graphs with two different graph structures. Graphs 1~5 
are fork-join task graphs and they contain nested conditional 
branches. They will be referred as Category 1 CTG. Graphs 6~10 do 
not have fork-join structure or nested conditional branch. And they 
will be referred as Category 2 CTG. Both MPEG and cruise 
controller CTGs belong to category 1. Our experimental results show 
that the adaptive algorithm favors the application in the first category.  

Observed from the MPEG decoding application, the average 
probability fluctuation per branch was 0.4~0.5 during runtime. We 
generated testing vectors for random CTGs with similar fluctuation in 
branch probabilities. The test vectors are generated in a way so that 
the average probabilities of all branches of any branching node for the 
entire set of vectors were equal. However there was considerable 
fluctuation. Three scenarios are considered for the non-adaptive 
algorithm 

1. The profiled average branch probability favors the minterm 
with the lowest energy. 

2. The profiled average branch probability favors the minterm 
with the highest energy. 

3. The profiled average branch probability is accurate. 

For the adaptive algorithm, a window size of 20 and threshold of 
0.1 and 0.5 are used.  

Table 4 shows energy results for online algorithm profiled for 
lowest energy minterm bias. The overall average energy savings of 
adaptive algorithm over online in this case is approximately 22% for 
0.5 threshold and 23% for 0.1. Because of the inaccurate profiled 
information, the non-adaptive algorithm provides efficient scheduling 
for low energy minterms. Any occurrence of higher energy minterms 
imposes severe penalty. Adaptive algorithm on the other hand does 
not depend on profile information and also sustain the local 
fluctuation in probabilities inside the vector set. There is an exception 
in case of CTG4 though. Energy given by adaptive algorithm for both 
threshold values is higher compared to online algorithm. We analyzed 
the case and observed that CTG4 has only three minterms that are 
almost equal in energy and thus online algorithm performs very well 
in this case. We also noticed that average improvement in case of 
Category 1 CTGs is 8% higher than the Category 2 CTGs. The results 
favors adaptive algorithm for nested CTGs. We would be interested 
in future to verify this trend. The number of calls to online scheduling 
and DVFS is also listed in each case and the trend is similar to MPEG 
experiment. 

Table 5 shows the results with online algorithm profiled for 
highest energy minterm bias. The energy savings in this case is now 
3% and 5% for threshold values of 0.5 and 0.1 respectively. The 
online energy reduces considerably as the misprediction penalty only 
occurs for lowest energy minterm. The average energy savings of 
Category 1 CTGs is 7% compared to 3% in case of Category 2 CTGs. 
Although the vector set used to evaluate the energy is same, the 



energy results for adaptive algorithm are slightly different for same 
threshold values in both tables. This is because the initial branch 
probabilities of algorithm are taken same as the profiled probabilities 
of online algorithm, which is different in both cases. 

Table 4 Energy savings with online algorithm profiled for lowest 
energy minterm bias vector set 

Adaptive 
Threshold = 0.5 Threshold = 0.1 CTG a/b/c Online 

Energy # of 
calls Energy # of 

calls 
1 25/3/3 329 148 10 132 251 
2 16/3/1 578 532 3 530 164 
3 15/4/2 263 193 8 183 203 
4 15/4/1 471 557 3 544 187 
5 25/4/3 381 165 10 166 240 
6 25/3/3 877 535 8 529 223 
7 16/3/1 494 453 4 482 104 
8 15/4/2 332 268 5 254 227 
9 15/4/1 488 452 3 453 174 
10 25/4/3 299 240 9 237 231 

 
 

Table 5 Energy savings with online algorithm profiled for 
highest energy minterm bias vector set 

Adaptive 
Threshold = 0.5 Threshold = 0.1 CTG a/b/c Online 

Energy # of 
calls Energy # of 

calls 
1 25/3/3 150 147 10 131 251 
2 16/3/1 538 532 3 530 164 
3 15/4/2 190 192 8 182 203 
4 15/4/1 575 558 3 544 187 
5 25/4/3 186 165 10 165 240 
6 25/3/3 522 530 8 525 223 
7 16/3/1 521 454 4 482 104 
8 15/4/2 237 266 5 252 227 
9 15/4/1 531 451 3 452 174 
10 25/4/3 240 240 9 236 231 

 

Figure 6 shows comparison of the energy consumption of the 
non-adaptive algorithm with ideal profiling information versus the 
adaptive algorithm. The threshold value of 0.5 was used. The 
resulting energy graph is shown in Figure 6. The overall energy 
savings of adaptive algorithm over non-adaptive algorithm in this 
case is 10%. The average improvement is 16% for Category 1 CTGs 
and 5% for Category 2 CTGs.  
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Figure 6 Energy consumption with ideal profiling 

 

V. CONCLUSIONS 
A framework for task mapping, scheduling and DVFS is 

proposed for real-time applications with non-deterministic workload 
running on multiprocessor platform. The proposed algorithm adapts 
to rapidly changing system and input conditions, which affect the 
entire execution flow, to achieve better energy savings by utilizing 
the profile information. Experimental results show the effectiveness 
and applicability of proposed approach for variety of real-life 
applications. Our future efforts target the development of 
mathematical model to verify the capability of proposed approach for 
wide range of applications. 
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