
Adaptive Scheduling and Voltage Scaling for Multiprocessor Real-time
Applications with Non-deterministic Workload

Parth Malani, Prakash Mukre, Qinru Qiu and Qing Wu

Department of Electrical and Computer Engineering, Binghamton University
Binghamton, NY 13902

{parth, pmukre1, qqiu, qwu} @binghamton.edu

Abstract — The computational workload of some real-time
applications varies significantly during runtime, which makes
the task scheduling and power management a challenge. One of
the major influences to the workload of an application is the
selection of conditional branches which may activate or
deactivate a large set of operations. Focusing on real-time
applications with variable workload which is due to random
branch selection, this paper presents a framework of task
mapping, scheduling and dynamic voltage and frequency scaling
(DVFS) for a multiprocessor system. The proposed framework
maintains workload awareness using dynamic profiling of
branch probability. The profiled information is utilized by the
scheduling and DVFS algorithm that are adopted in this
framework to generate statistically optimal solution.

I. INTRODUCTION
Future generation embedded real-time systems will consists of

vast number of processing elements (PE). The sharp performance
boost achieved by such Multiprocessor System-on-Chip (MPSoC)
comes with increase in both computation and communication energy.
There have been continuous design efforts that target reducing the
energy of battery operated MPSoC using system level power
optimization techniques, such as task scheduling or dynamic voltage
and frequency scaling (DVFS). However, workload variations due to
the non-deterministic nature of application impact the efficiency of
these techniques. It is necessary to develop robust techniques which
can vigorously target power optimization and adapt to system
variation due to input data or environment.

Techniques of scheduling and DVFS for applications with
variable workload have been proposed for single processor [1][2] and
multiprocessor [3] systems. These works consider a set of preemptive
tasks with uncertain execution time. Reference [1] models the voltage
scaling process as a filter system and proposes the time-variant
voltage scaling algorithm based on the water-filling process in
information theory. The authors of [2] propose several workload
prediction models which assist the voltage selection. The authors of
[3] target at partition a set of tasks with uncertain execution time and
map them to a multiprocessor system so that the expected workload is
balanced. The cycle demand of each task is divided into several bins
and the frequency and voltage of each bin is calculated to minimize
the total expected energy consumption.

All of the above works focus on the workload variations caused
by uncertain execution time of tasks, which are the atomic scheduling
or mapping units in an application. Another major influence to the
workload of an application is the selection of conditional branches
which may activate or deactivate a large set of operations. In contrast
to instruction level branch, here we consider conditional branches that
activate or deactivate an entire task and hence generate more visible
workload variation. Some examples of such task level branching
include branches that either enable or disable IDCT function during
MPEG decoding or branches that select different modulation schemes
for preamble and payload based on 802.11b physical layer standard.

This work focuses on the set of applications which can be
decomposed into a set of tasks with relatively constant execution
time. The uncertainty of the workload is reflected by the random
activation and deactivation of certain tasks during runtime and it is
captured by branch selections among tasks. We assume that such
branch information is observable to the scheduling software to assist
runtime scheduling and power management of the system.

Complex systems running such non-deterministic applications
can be modeled by a conditional task graph (CTG) [7]~[10],[17]. The
conditional behavior of application is captured by branching tasks and
it may affect the execution of other tasks depending on the branch
selection. Although branch prediction is a common practice in high
performance processors, the prediction will not be perfect.
Furthermore, the task graphs that we are working with are high level
descriptions of large applications. Their selection of conditional
branches depends mostly on the input data, which are random in
nature. Hence a branch selection should be considered as a random
variable and characterized by its probability distribution. The branch
probability can be obtained through online or offline profiling. And it
can be predicted based on history. For a technique to provide robust
scheduling and energy reduction for an application with non-
deterministic workload due to random branch selection, it should be
able to

(1) handle mutual exclusiveness among tasks that belong to
different branches;

(2) consider the branch selection probabilities and minimize the
expected energy dissipation instead of worst case or best case
energy dissipation;

(3) predict the distribution of branch probabilities; and

(4) adapt to the changes of probability distribution.

Statistical scheduling and voltage scaling techniques for the
CTGs running on multiprocessor systems have been proposed
[10][17]. Both works solve the scheduling and DVFS problem in two
separate stages. During the first stage, tasks that are mapped to the
same processor are ordered for a maximum slack. In the second stage,
tasks are stretched to minimize the energy while meeting the deadline
constraint. Shin et al. [10] proposed an algorithm for task ordering
and stretching of CTG which considers the run-time behavior. The
probabilistic distribution of the branch selections is considered during
task stretching. The authors of [17] consider task mapping and
ordering concurrently and they utilize the branch probability to assist
task scheduling as well as task stretching, hence achieve higher
energy savings. Both [10] and [17] use NLP based task stretching
which has high complexity and they cannot be applied during
runtime. Hence, they do not track or adapt to the change of
probability distribution. A DVFS algorithm for the CTG on
multiprocessor system based on slack distribution is proposed in [9].
However, it does not differentiate tasks with high activation
probability from the tasks with low activation probability during slack
distribution. Therefore, it will not adapt to the change of the
workload.

978-3-9810801-3-1/DATE08 © 2008 EDAA

In this work, we propose a framework of adaptive scheduling and
voltage scaling for CTG on a multiprocessor system. The proposed
technique predicts the branch probability using a sliding window
based approach. When the change of the distribution exceeds certain
threshold, an online algorithm is called for re-scheduling and voltage
re-selection. Similar as [10] and [17], the online algorithm has a
separate task ordering and stretching stages. It employs a modified
Dynamic Level based Scheduling (DLS) that is adopted from [17]
while performs task stretching using a low complexity heuristic. The
proposed technique is applied to real-life applications such as MPEG
decoder or vehicle cruise control system as well as some random
CTG graphs generated by TGFF [14].

The rest of this paper is organized as follows. Section II
introduces the application and hardware architecture models. Section
III provides detailed introduction of our scheduling algorithm.
Sections IV and V present the experimental results and conclusions.

II. APPLICATION AND ARCHITECTURE MODELING
The CTG that we are using is similar as the one specified in [10].

A CTG is an acyclic graph <V, E>. Each vertex τ∈V represents a
task. An edge e=(τi, τj) in the graph represents that the task τi must
complete before τj can start. A conditional edge e is associated with a
condition C(e). We use prob(e) to denote the probability that the
condition C(e) is true. The node with output conditional edge is a
branch fork node.

A node can be either and-node or or-node [10]. An and-node is
activated when all its predecessor nodes are completed and the
conditions of the corresponding edges are satisfied. On the other
hand, an or-node is activated when one or more predecessors are
completed and the conditions of the corresponding edges are
satisfied.

The condition that the task τ is activated is denoted as X(τ). The
condition of an and-node τi can be written as ())(),(kikk XC ττττ ∧∧ ,
where τk is the predecessor of τi. The condition of an or-node τj can
be written as ())(),(kjkk XC ττττ ∧∨ , where τk is the predecessor of
τj. There also exist data dependency where a task can not begin its
execution until the predecessor tasks are finished and the respective
data transfers are completed. A minterm m is a possible combination
of all conditions of CTG. We use M to denote the set of all possible
minterms of CTG. A task τ is associated with a minterm m if m⊆X(τ).
In another word, a task τ is associated with a minterm m if X(τ) will
be true when m is evaluated to be 1. The set of minterms with which τ
is associated is denoted as Γ(τ). Two tasks τi and τj are mutually
exclusive if they cannot be activated at the same time, i.e. X(τi) ⊕
X(τj)=0. To simplify the implementation and discussion, we refer the
condition “1” (i.e. always true) as one of the minterms as well.

The volume of data that pass from one task to another is also
captured by the CTG. Each edge (τi, τj) in the CTG associates with a
value Comm(τi, τj) which gives the communication volume in the
unit of Kbytes. Finally, we assume a periodic graph and use a
common deadline for the entire CTG.

Figure 1 An example of CTG.

Example 1: Figure 1 shows an example of a CTG. All nodes
except node τ8 are and-nodes. The edges coming out from τ3 and τ5
are conditional edges. The symbol marked beside a conditional edge
gives the condition under which the edge will be activated. For
example C(τ3, τ4) = a1. There are total of 4 minterms in the CTG and
M={1, a1, a2b1, a2b2}. We have }1{)()()(321 =Γ=Γ=Γ τττ ,

}{)(14 a=Γ τ , }{)(25 a=Γ τ , }{)(126 ba=Γ τ , }{)(227 ba=Γ τ and
},1{)(18 a=Γ τ . The execution profile and communication volume are

given beside the CTG. The fact that τ8 is an or-node indicates that if
condition a1 is true then τ8 cannot start until τ2 and τ4 finish and if
condition a1 is false then τ8 does not have to wait for τ4. Note that, in
reality, we do not know weather a1 is true or false until τ3 finishes.
Therefore, in any case, τ8 must wait until both τ2 and τ3 finish. This
example shows an implied dependency between an or-node and the
branch fork node. More detailed discussion will be provided in the
next section.

The following models the architecture of an MPSoC:

• The set of PEs, },...,,{ 21 npppP =

• The energy E(τi, pj) and worst case execution time WCET(τi, pj),
∀τi∈V and ∀pj∈P. These values give the energy and delay of each
task when it is running on different PEs at the nominal VDD.

• The bandwidth B(pi, pj) and transmission energy Etr(pi, pj), ∀pi,
pj∈P. These values specify the bandwidth as well as the
transmission energy per byte of the communication link between pi
and pj. We modeled a point-to-point communication link for our
interconnect network and dedicated communication resource for
each PE. We also assume that the voltage scaling cannot be applied
to the communication tasks.

III. FRAMEWORK OF ADAPTIVE SCHEDULING AND DVFS

A. Online task scheduling and streching algorithm
Similar as [10] and [17], the online algorithm has a separate task

ordering and stretching stages. It employs a modified Dynamic Level
based Scheduling (DLS) that is adopted from [17] while performs
task stretching using a low complexity heuristic.

The DLS algorithm is a list scheduling algorithm. It considers
computation scheduling and communication scheduling altogether.
The ready list is a list of tasks whose predecessors have been
scheduled and mapped. For each task τi in the ready list, and each
processor pj, the dynamic level DL(τi, pj) is calculated. The pair of (τi,
pj) which gives the maximum dynamic level will be selected and the
mapping is performed accordingly.

The modified DLS algorithm considers the mutual exclusiveness
among conditional tasks as well as the probabilistic distribution of
branch selection. The dynamic level is calculated using the following:

),),()(),(jpijpiATiSLjpiDL τδτττ (+−= , (1)

where SL(τi) is the static level of task τi, . If τi is a non-branching
node, SL(τi) is calculated as:

} {),(max)(*)(ijjii ofSuccessorsSLWCETSL τττττ ∈+= , and if τi is
branching node, SL(τi) is calculated as:

} { ,)(*)()(*)(ijj jijii ofSuccessorsSLcprobWCETSL τττττ ∈∑+= .

δ(τi, pj) is the difference between average worst case execution time
(WCET) of τi and the WCET of τi at pj, and AT(τi, pj) is the first time
that task τi can start on processor pj. The average WCET of a node
for each PE is calculated for maximum operating speed/frequency of
particular PE. Note that mutual exclusive task may be able to start on

τ1

τ8

τ3

τ6

τ5

τ2

τ7

a1
a2

b1
b2

prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
comm(τ1, τ2)=1kB
comm(τ2, τ8)=2kB
comm(τ3, τ4)=0.1kB
comm(τ3, τ5)=10kB
comm(τ5, τ6)=0.5kB
comm(τ5, τ7)=0.5kB
comm(τ4, τ8)=0.8kB

Communication
Volume

τ4

τ1

τ8τ8

τ3

τ6τ6

τ5τ5

τ2

τ7τ7

a1
a2

b1
b2

prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
comm(τ1, τ2)=1kB
comm(τ2, τ8)=2kB
comm(τ3, τ4)=0.1kB
comm(τ3, τ5)=10kB
comm(τ5, τ6)=0.5kB
comm(τ5, τ7)=0.5kB
comm(τ4, τ8)=0.8kB

Communication
Volume

τ4τ4

the same processor during the same time. For the best pair (τi, pj) that
has the highest DL, τi will be scheduled on pj at time AT(τi, pj). Since
the schedule of τi imposes new precedence order between τi and other
tasks that are scheduled on the same processor, we also update the
CTG to reflect this change. After that, the ready list will be updated
and the above mentioned procedure will repeat until the ready list is
empty. More information of the modified DLS algorithm and its
performance evaluation can be found in [17].

The task stretching algorithm is a profile-based approach
considering branch probabilities. It calculates only single speed for
each task and it facilitates different scaling ratio for different PEs.
Once the CTG is updated, all possible paths in CTG are calculated
using Breadth First Search (BFS) algorithm. Also associated with
each path p is the slack and delay which are denoted as slk(p) and
delay(p) respectively. A path’s delay is the sum of execution time of
all nodes along that path with mapping already known through
scheduling algorithm. Associated with each task τ on path p, there is a
probability prob(p, τ), which indicates the probability of path p given
the condition that task τ is activated. prob(p, τ) is calculated as the
joint probability of all the conditional branches lying on the path after
node τ. For example, consider the example in Figure 1, the
probability prob(τ1-τ3-τ5-τ6, τ5)=prob(b1)=0.5 because the only
conditional branch along the path τ1-τ3-τ5-τ6 after node τ5 is b1. For
another example, the probability prob(τ1-τ3-τ4-τ8, τ8)=1, because
there is no conditional branch in this path after node τ8.

Figure 2 Online task stretching heuristic.

For each task, step4 of main routine shown in Figure 2
determines the available slack by calling CalculateSlack(τi) routine.
This routine finds the most critical path that has a minimum slack
applicable to task τi. In case of multiple paths pertaining to different
minterms with probabilities less than 1, first the critical path that has
the lowest distributable slack ratio (slk(p)/delay(p)) and has the
probability less than 1 is identified for each minterm. After that the
initial slack of τi is taken as a probability weighted sum of all these
critical path slacks corresponding to each minterm m∈Γ(τi) as shown
in step 4 of routine. Note that the weight for each path is prob(p, τi),
which is the probability of path p given the condition that task τi is
activated. One more slack value is calculated as shown in step 7 for

critical paths with probability equal to 1. It is noteworthy that both
slack values are further weighted by the activation probability of node
τi. This allows more slack to be distributed to tasks that are more
likely to be activated. The slack of τi is now minimum of these two
slack values. Because the slack is the average for all possible
minterms, at the end of the routine, we need to check for each path
that the deadline can be met otherwise, the slack will be adjusted.

Once slack is calculated for a task, the task is stretched and its
schedule and speed are locked. Next, all paths that span this task are
updated in terms of their respective delay and slack. Effectively the
delay and slack of these paths are reduced, reflecting the effect of the
already stretched task. Updating these variables dynamically alters
the criticality of paths for different nodes and subsequently releasing
the tasks that are being stretched from consideration. The online task
stretching heuristic then updates CTG and repeats the above
mentioned procedure for another task following the task order
generated by ordering algorithm.

Being simple to implement but energy efficient, online stretching
heuristic also displays low complexity. Given a CTG with total nodes
|V| and edges |E|, the time complexity of step-1 and step-2 in

Figure 2 is O(|V|3 + |E|). Step-4 has a complexity of O(|V|3)) while
the complexity of step-5 and step-6 is O(1). Assume that the number
of outgoing edges from each node can be bounded by a constant C,
the time complexity of step-7 is O (C|V|). The total time complexity
of the online stretching heuristic is O (2|V|3 + C|V| + |E|). This low
complexity enables the algorithm to be used for dynamic scheduling
in a system with the capability of runtime branch prediction. The next
subsection describes the algorithm that performs adaptive scheduling
and DVFS.

B. Adaptive scheduling and DVFS
One of the limitations of the on-line algorithm is that its

efficiency relies heavily on the accuracy of the probabilistic
distribution of the branch selections. Such distribution is not fixed
during the runtime. For example, the vehicle cruise controller selects
to increase or decrease the reference speed based on the road
condition. In other real-life application of MPEG video decoder, the
decoding process keeps varying according to the contents of the
visual scene. Each video frame in the encoded video stream is
composed of various macroblocks that represents 16x16 pixel area of
the image. The macroblock decoding is the core of the decoding
process of the software MPEG player [16] which is repeated for the
entire video stream. The macroblocks are encoded differently for
changing visual scene and this difference impacts the workload of
decoding process. Such a selective behavior can be easily depicted by
a conditional task graph. Figure 3 shows the CTG for decoding one
MPEG macroblock. In the figure, the light and dark dotted lines
forked from the same node indicate mutually exclusive branches.

Figure 3 MPEG decoder modeled as Conditional Task Graph
Due to space limitations we can not show the whole graph which

is little more complex than the one shown in Figure 3. The original

Online task stretching heuristic for CTG G
1. Process initial schedule generated by DLS based task ordering

algorithm;
2. Calculate possible paths in CTG using BFS;
3. For each task τi {
4. CalculateSlack (τi);
5. Stretchτi , lock its schedule and speed;
6. Update the delay and slack of all paths spanning τi ;
7. Update the schedule for CTG G;

 }
CalculateSlack (τi)

1. For each minterm m ∈Γ(τi) {
2. For all paths of m ∈Γ(τi) that span node τi {
3. Find the critical path pworst where prob(pworst, τi) ≠ 1;
4. slk1+= prob(pworst,τi) * wcet(τi) *(slk(pworst) / delay(pworst))

* prob(τi);
}

}
5. For each path of m ∈Γ(τi) where prob(m) = 1
6. Find the critical path tworst ;
7. slk2 = wcet(τi) * (slk(tworst) / delay(tworst)) * prob(τi);
8. slk(τi) = min [slk1, slk2];
9. If there is a path p that spans nodeτi and slk(τi)>deadline-

delay(p) then,
10. slk(τi)=deadline-delay(p);

ParseMBAddr

DecMBType Skipped

INTRA DecodeCBP

IDCT

DCT
Coded?

Rec.
Block

IDCT

DCT
Coded?

Rec.
Block

IDCT &
Rec.
block

IDCT &
Rec.
block

6

6

a1 a2

b1 b2

c1
c2

h1

h2

ParseMBAddr

DecMBType Skipped

INTRA DecodeCBP

IDCT

DCT
Coded?

Rec.
Block

IDCT

DCT
Coded?

Rec.
Block

IDCT &
Rec.
block

IDCT &
Rec.
block

6

6

a1 a2

b1 b2

c1
c2

h1

h2

0

0.2

0.4

0.6

0.8

1

1.2

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976

Selection
Prob.
filtered Prob.

CTG consists of 40 tasks including 9 branching nodes. The task
labeled as Skipped is a branch fork node with two branches. The
branches in this CTG model of MPEG are marked as a~h with their
respective numbers. Note that branches d, e, f and g are not shown in
the graph, however, they are identical as branches c and h. The
software first determines if a macroblock is a skipped block. If it is
true, then branch a2 is taken otherwise branch a1 is taken and the
software further determines if the macroblock belongs to type I.
Again, if the answer is true then branch b1 is taken and otherwise
branch b2 is taken. If the macroblock is an Intra block (type I block)
then the IDCT function will be performed. Otherwise, there are 6
blocks that belong to a macroblock and each block may require or not
require the IDCT function. This is represented by branches (c~h). To
decode a macroblock in an I frame, branch a1 and b1 will be selected
with probability 1. However, the major portion of a video stream
belongs to B or P frames. To decode a macroblock in a B or P frame,
all branches in the CTG have the chance to be selected.

We applied the software MPEG decoder to decode a sequence of
1000 macroblocks inside a video stream. This is equivalent as invoke
the CTG in Figure 3 1000 times. The actual branch selection during
this period is extracted and plotted in Figure 4 as the first data series
(labeled as Selection.) A “1” (“0”) indicates that branch b1 is selected
(not selected). The branch probability within a window of 50
iterations is plotted as the second data series (labeled as prob.) The
figure shows that the branch selection is a random variable and is
very difficult to be predicted accurately. On the other hand, its
probability distribution has relatively less variation during a longer
period, and hence may be predictable. This is because nearby
macroblocks tend to be encoded in a similar way due to the locality of
images. However, local fluctuations and slow drifting of branch
probability exist which motivates us to develop an adaptive algorithm
which captures such changes.

Figure 4 Dynamic branch selection in MPEG decoder
We propose a window-based adaptive algorithm for the best

energy saving in a system with slowly varying branch selection
probabilities. For each branch fork task, a fixed length buffer/window
is maintained that stores the most recent L branch decisions
pertaining to L instances of the CTG. Each time after a branch fork
task is executed; a new branch decision is shifted into the buffer. The
branch probabilities are then recalculated. If the difference between
the new distribution and the old distribution is greater than a
threshold value, the on-line scheduling and DVFS will be triggered.
All the tasks will be executed with their newly evaluated speed until
the next threshold crossing occurs. The third series of data in Figure 4
shows how our algorithm adapts to such dynamic behavior of the
application. Each time the difference between the newly computed
probabilities crosses the threshold, which is set to 0.1 in this example,
the branch probability is updated with this new value. This update
also results in invocation of scheduling and DVFS. Because the
procedure is similar as a low-pass filter, the third data series in Figure
4 is labeled as filtered Prob. As we can see, the window size and the
threshold determine how frequently the online scheduling and DVFS
is called and they also impact how well the algorithm adapts.

IV. EXPERIMENTAL RESULTS
We begin by comparing the proposed online algorithm against

the works suggested in [10] and [17]. We assume all algorithms have
the accurate information about average branch probability and we do
not consider the adaptive behavior of the online algorithm for a fair
comparison. Also, for simplicity, we assume unit load capacitance to
calculate energy and the only variable is speed/frequency of the PE.
We do not consider switching overhead for DVFS. Table 1 shows the
normalized energy dissipation of the 5 randomly generated CTGs
under these three scheduling and DVFS algorithms, where the
reference algorithm 1 and 2 represent the algorithms presented in [10]
and [17] respectively. The energy results are normalized by taking
energy given by online algorithm as a base of 100 in each case. The 5
CTGs are modified from the random task graphs by TGFF [14]. The
branching probabilities for all branching nodes were randomly
generated. The first column indicates the test CTG index while the
second column displays the characteristics of the graph. We use a
triplet (a/b/c) to characterize a test case where a represents the
number of nodes in the CTG, b represents the number of PEs in the
MPSoC and c represents the number of conditional branching nodes
in the CTG. Online algorithm provides an average of 39% energy
reduction over the reference algorithm 1. It results 8% more energy in
average compared to the reference algorithm 2. However, the average
runtime of reference algorithm 2 was 70 seconds while the online
algorithm took merely 0.6 ms in average for each CTG, which
represents about 120,000X average speedup. The speed up mainly
comes from replacing the NLP based DVFS algorithm with a slack
distribution based heuristic. As a matter of fact, the complexity of the
NLP based algorithm is so high that we cannot apply the reference
algorithm 2 to the MPEG problem.

Table 1 Energy consumption of online algorithm

CTG a/b/c Reference
Algorithm 1

Reference
Algorithm 2

Online
Algorithm

1 25/3/3 195 87 100
2 16/3/1 145 93 100
3 15/4/2 130 95 100
4 15/4/2 139 91 100
5 25/4/3 290 97 100
The next set of experiments compares the effectiveness of the

online algorithm when being applied adaptively or non-adaptively.
We first report the results achieved by applying the proposed
algorithms on a software MPEG decoder [16]. The modeled CTG is
shown in Figure 3. The multiprocessor system consists of 3 PEs. We
inserted monitors in decoder code to record the branch selection by
running real movie clips. The decisions of braches a~h are encoded as
avector <x1, x2, …, xn>. The ith position of such vector indicates the
branch decision for the ith branching node in the graph.

A sequence of 2000 vectors is generated from a movie chip. The
first 1000 vectors are considered as a training sequence while the
second 1000 vectors are considered as testing sequence. The non-
adaptive online algorithm uses the profiled branch probability from
the training sequence. From this point onwards we will use the terms
online and non-adaptive interchangeably to refer to non-adaptive
online algorithm. The adaptive algorithm uses a sliding window of
size 20. The average energy for 1000 testing vectors is compared. All
the movies except Shuttle are SIF resolution and the series of 1000
vectors constitutes little more than 3 video frames. The movie Shuttle
is of lower resolution (QCIF) comprising of roughly 10 frames. We
tested for a threshold of 0.5 and 0.1 for adaptive algorithm.

Figure 5 shows the average energy dissipation under the adaptive
and online algorithm for eight different movie clips. The average
energy savings of the adaptive algorithm over online algorithm for
the threshold value of 0.5 is 21% while for threshold value of 0.1 is
23%.

Table 2 shows the number of times the online scheduling and
DVFS was called for each movie. The average re-scheduling number
is 9 (less than 3 per frame) for threshold T=0.5 and 162 for threshold
T=0.1 (54 per frame). The results show that the appropriate threshold
selection minimizes the overhead at negligible loss in energy savings
(2% in this case).

Threshold = 0.5

0

100

200

300

400

500

600

700

Airw
olf Bike Bus

Coa
ste

r

Flow
er

Shu
ttle

Ten
nis

Tra
in

Ave
rag

e

Non-adaptive
Adaptive

Threshold = 0.1

0

100

200

300

400

500

600

700

Airw
olf Bike Bus

Coa
ste

r

Flow
er

Shu
ttle

Ten
nis

Tra
in

Ave
rag

e

Non-adaptive
Adaptive

Figure 5 MPEG energy consumption with varying thresholds

Table 2 Algorithm call count for MPEG movies

Movie Airwolf Bike Bus Coaster Flower Shuttle Tennis Train

T=0.5 7 7 14 9 9 32 10 5

T=0.1 164 164 238 153 198 276 198 157

Table 3 Energy consumption of vehicle cruise controller system

Vector sequence 1 2 3
Non-adaptive 155 206 147

Adaptive 148 196 139

In our second experiment, we analyzed the energy consumption
of a vehicle cruise controller system modeled as a conditional task
graph [15]. The application is mapped on to a system with 5 PEs and
consists of 32 tasks including two branching nodes. We generated
three sets of 1000 vectors simulating a branch selection pertaining to
real run of vehicle that encounters uphill, downhill, straight and
bumpy road condition. Again, the first set of vectors is the training
sequence which provides the profiled average branch probabilities for
non-adaptive online algorithm. We then tested the adaptive and non-
adaptive methods using all of the 3 sequences. We used threshold
value of 0.1 for first two sets and 0.5 for the third vector set.

Table 3 shows the energy values. The energy savings over online
algorithm in all three cases were almost identical hovering around
5%. The low energy savings can be contributed to the fact that there
are only three minterms in the CTG model of the cruise control

system. Also the deadline we used was double of the optimum
schedule length. The combined effect results in less room for adaptive
algorithm to extract its potential. The CTG typically has two
minterms resulting from a same branching node that are almost equal
in energy and thus change in probability least affects the energy.
Although the non-adaptive method has perfect information on the
long term average of the branch probability for sequence 1, it still
provides less optimal scheduling than the adaptive algorithm because
it does not consider the local fluctuation of the probability
distribution. The call count to adaptive algorithm (re-scheduling) was
150 in average for 0.1 threshold value and 9 for threshold of 0.5.

Finally, we tested our algorithm on some random conditional task
graphs which are modified from the task graphs generated by TGFF
[14]. The MPSoC architecture consists of either 3 or 4 PEs. We tested
10 different graphs with two different graph structures. Graphs 1~5
are fork-join task graphs and they contain nested conditional
branches. They will be referred as Category 1 CTG. Graphs 6~10 do
not have fork-join structure or nested conditional branch. And they
will be referred as Category 2 CTG. Both MPEG and cruise
controller CTGs belong to category 1. Our experimental results show
that the adaptive algorithm favors the application in the first category.

Observed from the MPEG decoding application, the average
probability fluctuation per branch was 0.4~0.5 during runtime. We
generated testing vectors for random CTGs with similar fluctuation in
branch probabilities. The test vectors are generated in a way so that
the average probabilities of all branches of any branching node for the
entire set of vectors were equal. However there was considerable
fluctuation. Three scenarios are considered for the non-adaptive
algorithm

1. The profiled average branch probability favors the minterm
with the lowest energy.

2. The profiled average branch probability favors the minterm
with the highest energy.

3. The profiled average branch probability is accurate.

For the adaptive algorithm, a window size of 20 and threshold of
0.1 and 0.5 are used.

Table 4 shows energy results for online algorithm profiled for
lowest energy minterm bias. The overall average energy savings of
adaptive algorithm over online in this case is approximately 22% for
0.5 threshold and 23% for 0.1. Because of the inaccurate profiled
information, the non-adaptive algorithm provides efficient scheduling
for low energy minterms. Any occurrence of higher energy minterms
imposes severe penalty. Adaptive algorithm on the other hand does
not depend on profile information and also sustain the local
fluctuation in probabilities inside the vector set. There is an exception
in case of CTG4 though. Energy given by adaptive algorithm for both
threshold values is higher compared to online algorithm. We analyzed
the case and observed that CTG4 has only three minterms that are
almost equal in energy and thus online algorithm performs very well
in this case. We also noticed that average improvement in case of
Category 1 CTGs is 8% higher than the Category 2 CTGs. The results
favors adaptive algorithm for nested CTGs. We would be interested
in future to verify this trend. The number of calls to online scheduling
and DVFS is also listed in each case and the trend is similar to MPEG
experiment.

Table 5 shows the results with online algorithm profiled for
highest energy minterm bias. The energy savings in this case is now
3% and 5% for threshold values of 0.5 and 0.1 respectively. The
online energy reduces considerably as the misprediction penalty only
occurs for lowest energy minterm. The average energy savings of
Category 1 CTGs is 7% compared to 3% in case of Category 2 CTGs.
Although the vector set used to evaluate the energy is same, the

energy results for adaptive algorithm are slightly different for same
threshold values in both tables. This is because the initial branch
probabilities of algorithm are taken same as the profiled probabilities
of online algorithm, which is different in both cases.

Table 4 Energy savings with online algorithm profiled for lowest
energy minterm bias vector set

Adaptive
Threshold = 0.5 Threshold = 0.1 CTG a/b/c Online

Energy # of
calls Energy # of

calls
1 25/3/3 329 148 10 132 251
2 16/3/1 578 532 3 530 164
3 15/4/2 263 193 8 183 203
4 15/4/1 471 557 3 544 187
5 25/4/3 381 165 10 166 240
6 25/3/3 877 535 8 529 223
7 16/3/1 494 453 4 482 104
8 15/4/2 332 268 5 254 227
9 15/4/1 488 452 3 453 174
10 25/4/3 299 240 9 237 231

Table 5 Energy savings with online algorithm profiled for
highest energy minterm bias vector set

Adaptive
Threshold = 0.5 Threshold = 0.1 CTG a/b/c Online

Energy # of
calls Energy # of

calls
1 25/3/3 150 147 10 131 251
2 16/3/1 538 532 3 530 164
3 15/4/2 190 192 8 182 203
4 15/4/1 575 558 3 544 187
5 25/4/3 186 165 10 165 240
6 25/3/3 522 530 8 525 223
7 16/3/1 521 454 4 482 104
8 15/4/2 237 266 5 252 227
9 15/4/1 531 451 3 452 174
10 25/4/3 240 240 9 236 231

Figure 6 shows comparison of the energy consumption of the
non-adaptive algorithm with ideal profiling information versus the
adaptive algorithm. The threshold value of 0.5 was used. The
resulting energy graph is shown in Figure 6. The overall energy
savings of adaptive algorithm over non-adaptive algorithm in this
case is 10%. The average improvement is 16% for Category 1 CTGs
and 5% for Category 2 CTGs.

Energy with ideal profiling

0

100

200

300

400

500

600

700

25
/3

/3

16
/3

/1

15
/4

/2

15
/4

/1

25
/4

/3

25
/3

/3

16
/3

/1

15
/4

/2

15
/4

/1

25
/4

/3

1 2 3 4 5 6 7 8 9 10

Online
Adaptive

Figure 6 Energy consumption with ideal profiling

V. CONCLUSIONS
A framework for task mapping, scheduling and DVFS is

proposed for real-time applications with non-deterministic workload
running on multiprocessor platform. The proposed algorithm adapts
to rapidly changing system and input conditions, which affect the
entire execution flow, to achieve better energy savings by utilizing
the profile information. Experimental results show the effectiveness
and applicability of proposed approach for variety of real-life
applications. Our future efforts target the development of
mathematical model to verify the capability of proposed approach for
wide range of applications.

REFERENCES
[1] X. Zhong, C.Z. Xu, “Energy-aware Modeling and Scheduling of Real-

time Tasks for Dynamic Voltage Scaling,” Proceedings of Real-Time
Systems Symposium, December 2005.

[2] A. Sinha, A.P. Chandrakasan, “Dynamic Voltage Scheduling using
Adaptive Filtering of Workload Traces,” Proceedings of Fourteenth
International Conference on VLSI Design, January, 2001.

[3] C. Xian, Y.H. Lu, Z. Li, “Energy-Aware Scheduling for Real-Time
Multiprocessor Systems with Uncertain Task Execution Time,”
Proceedings of Design Automation Conference, June, 2007.

[4] J. Luo and N. K. Jha, “Static and Dynamic Variable Voltage Scheduling
Algorithms for Real-time Heterogeneous Distributed Embedded
Systems,” Proceeding Of International Conference on VLSI Design,
pp.719-726, 2002.

[5] Y. Zhang, X. Hu, and D. Z. Chen, “Task Scheduling and Voltage
Selection for Energy Minimization,” In Proc. Of Design Automation
Conference, pp.183-188, 2002.

[6] J. Hu and R. Marculescu, “Energy-Aware Communication and Task
Scheduling for Network-on-Chip Architectures under Real-Time
Constraints,” Proceeding of Conference and Exhibition on Design,
Automation and Test in Europe, 2004.

[7] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of
Conditional Process Graphs for the Synthesis of Embedded Systems,”
Proceedings of Design, Automation and Test in Europe, 1998.

[8] Y. Xie and W. Wolf, “Allocation and Scheduling of Conditional Task
Graph in Hardware/Software Co-synthesis,” Proceedings of
Conference and Exhibition on Design, Automation and Test in Europe,
2001.

[9] D. Wu, B.M. Al-Hashimi and P. Eles, “Scheduling and Mapping of
Conditional Task Graph for the Synthesis of Low Power embedded
Systems,” IEE Proceedings of Computers and Digital Techniques,
Volume 150, Issue 5, pp. 262-273, Sept. 2003.

[10] D. Shin and J. Kim, “Power-Aware Scheduling of Conditional Task
Graphs in Real-Time Multiprocessor Systems,” Proceedings of
International Symposium on Low Power Electronics and Design, 2003.

[11] E. Jacobsen, E. Rotenberg, and J.E. Smith, “Assigning Confidence to
Conditional Branch Predictions,” Proceedings of the 29th Annual
International Symposium on Microarchitecture, Nov. 1996.

[12] A. K. Uht and V. Sindagi, ‘‘Disjoint Eager Execution: An Optimal
Form of Speculative Execution,’’ Proceedings of the 28th Annual
International Symposium on Microarchitecture, Nov. 1995.

[13] G.C. Sih and E.A. Lee. “A Compile Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architecture,”
IEEE Transactions on Parallel and Distributed Systems, Volume 4,
Issue 2, Page(s):175 – 187, Feb. 1993.

[14] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”
Proc. of Int. Workshop Hardware/Software Codesign, Mar. 1998.

[15] Paul Pop, "Scheduling and Communication Synthesis for Distributed
Real-time Systems", Ph.D. thesis, Linkopings University,2000.

[16] http://bmrc.berkeley.edu/frame/research/mpeg
[17] P. Malani, P. Mukre, Q. Qiu, “Profile-Based Low Power Scheduling for

Conditional Task Graph: A Communication Aware Approach,”
Proceedings of IEEE International Symposium on Circuits and Systems,
May 2007.

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

