
Energy Aware Dynamic Voltage and Frequency Selection for Real-Time Systems with
Energy Harvesting

Shaobo Liu, Qinru Qiu, and Qing Wu

Department of Electrical and Computer Engineering
Binghamton University, State University of New York

Binghamton, New York 13902, USA
{sliu5, qqiu, qwu}@binghamton.edu

Abstract

In this paper, an energy aware dynamic voltage and frequency
selection (EA-DVFS) algorithm is proposed. The EA-DVFS
algorithm adjusts the processor’s behavior depending on the
summation of the stored energy and the harvested energy in a future
duration. Specifically, if the system has sufficient energy, tasks are
executed at full speed; otherwise, the processor slows down task
execution to save energy. Simulation results show that when the
utilization is low, the EA-DVFS algorithm gives a deadline miss rate
that is at least 50% lower than the one given by the lazy scheduling
policy. Similarly, when the workload is low, the minimum storage size
is reduced by at least 25%.

1. Introduction
Though a lot of research efforts have been made to solve the energy

problem of battery-powered embedded electronic system, it continues
to be a chief challenge for researchers. This is particularly true for
systems where replacing or recharging batteries manually is
impracticable. One example is sensor nodes deployed in radioactive
surroundings, where the energy constraint has become a main obstacle
for increasing its lifespan. In order to solve the energy problem and
prolong the system operating duration, a new technology called energy
harvesting, also known as energy scavenging, has recently been
explored. Energy harvesting is regarded as an especially prospective
approach to decouple the energy constraint of battery-powered systems
and increase system autonomy.

Simply put, energy scavenging system is a system that draws parts
or all of its operating energy from its ambient energy sources. It has
two advantages:

1) It has potential to overcome the energy constraint imposed by
traditional battery-powered embedded systems;

2) It may operate perennially until its mechanical failure.
Possible energy harvesting sources include solar, thermal,

vibrational and kinetic energy, etc. [1]. Two prototypes, namely
Heliomote [2] and Prometheus [3], have been developed to extract
solar energy. Both prototypes show that systems may operate
perpetually through scavenging solar energy. However, the common
drawback of these two prototypes is that they do not target at real-time
task sets.

Targeting at real-time task sets, A. Allavena et.al proposed an
offline algorithm using dynamic voltage and frequency selection
(DVFS) [4]. Specifically, this algorithm is designed to schedule a set
of independent periodic tasks in a frame. Although it does allow the
system to slow down task execution under deadline constraints and
therefore reduce power consumption, this approach is based on an
unpractical assumption that the harvested energy from the ambient
energy source is constant.

The performance of a practical energy-harvesting-capable real-time
system, measured by the deadline miss rate, heavily depends upon the
stored energy and the energy harvested from the environment.
Unfortunately, the scavenging power is time-varying and thus very
unstable. Therefore, the accurate modeling for energy source plays
a key role in designing a good policy to schedule the task and reduce
the deadline miss rate.

The work in [5] moves toward the direction of accurately modeling
energy source. The authors assume that the energy source is

scavenged from solar cells, which work in two modes: day and night;
and correspondingly output two types of power. But the modeling is
still coarse-grained because the output power is changing due to the
varying sunlight strength in daytime.

A better model is proposed by A. Kansal et al. [6]. Their model
captures the behavior of an actual solar energy source through tracing
its power profile. In that paper, the authors proposed algorithms for
tuning system duty cycle based on the parameters of the solar energy
source. The system switches between active mode and sleep mode
depending on harvesting energy. As such, it may operate perpetually.
However, the proposed algorithms do not target at concrete tasks in a
real-time pattern. It therefore remains unclear how to deal with the
real-time tasks under the strong variation of energy source with respect
to time.

Based on the work in [6], the authors in [7] proposed a real-time
scheduling algorithm called lazy scheduling algorithm (LSA).
According to LSA, the processor executes all tasks at full power; and
the system starts executing a task if the following three conditions are
met simultaneously:

1) The task is ready;
2) The task has the earliest deadline among all ready tasks
3) The system is able to keep on running at the maximum power

until the deadline of the task.
Since a task is executed at the maximum power, it may be finished

well before its deadline. In this case, the task slack would be wasted;
more importantly, the limited energy is unnecessarily squandered. As
a consequence, future tasks have to violate their deadlines because of
energy shortage.

In this paper, we propose an energy aware dynamic voltage and
frequency selection (EA-DVFS) algorithm. The purpose of our
algorithm is to efficiently use the task slack and further reduce the
deadline miss rate. In our algorithm, whether or not the system slows
down the task execution for energy saving depends on the available
energy. If the system has sufficient energy, the task is executed at its
full speed; otherwise, it is stretched and executed at a lower speed.
Compared to LSA, the proposed EA-DVFS algorithm significantly
reduces the deadline miss rate and the storage size when the utilization
ratio is not high. We will show this point later in section 5.

The remainder of this paper is organized as follows. In Section 2,
we illustrate a motivational example. The energy harvesting system
model and some assumptions are presented in section 3. In section 4,
the proposed EA-DVFS algorithm is described in details. Simulation
results and discussions are presented in Section 5. Finally section 6
concludes the paper.

2. A Motivational Example
Consider the following application: there are two tasks τ1 and τ2,

shown in Figure 1. Task τ1 and task τ2 are represented by triples (a1, d1,
w1) = (0, 16, 4) and (a2, d2, w2) = (5, 16, 1.5), where symbols ai, di, wi
(i = 1,2) indicate the arrival time, the relative deadline and the worst
case execution time of task τ1 and task τ2, respectively.

Assuming at time instance 0, the stored energy in the energy storage
is 24, the system maximum power consumption is 8, and the harvested
power from time 0 to 25 is set to 0.5. Now we know that the
harvested energy from 0 to 16 is 8, the total energy available for the
system up to time instance 16 is 32, and the running time is 4 if the

978-3-9810801-3-1/DATE08 © 2008 EDAA

system operates at the maximum power.

Figure 1: A motivational example

Based on lazy scheduling policy, the system starts running task τ1 at

time 12, shown in a short arrow in Figure 1, and finishes it at time 16.
The system depletes all energy exactly at time 16, shown in Figure 1.
As to task τ2, the system needs 12 units of energy to finish it at the
maximum power before its deadline time instance 21. However,
from time instance 16 to 21, the energy that the system harvests is only
2.5(5*0.5), which is 9.5 shy of 12. In the end, the deadline of task τ2
is violated because of the energy shortage.

On the other hand, we assume that the processor operates in two
speeds: a high speed and a low speed, with the former twice as fast as
the latter. The power at high speed is 3 times as much as that in low
speed. We run task τ1 at the low speed, the remaining energy at 16 is
32/3, which is calculated from the expression 24+8-4/(1/2)*8/3. At
time 21, the available energy is 32/3+5*0.5 = 13.16. This time the
system has enough available energy to finish task τ2 by its deadline
even if the task is executed at the maximum power.

The example suggests that we should slow down the task execution
if possible to reduce the deadline miss rate. Before moving to describe
the proposed energy aware DVFS algorithm, we would like to
introduce the system model and some assumptions.

3. Energy Harvesting System Model and Assumptions
This paper deals with a real-time system with the energy harvesting

ability, shown in Figure 2. At some time t, the energy source module
harvests the energy from its ambient environment and then converts it
into electrical energy at power Ps(t). The electrical energy can be
stored in the energy storage, whose capacity is C. The stored energy is
donated as EC(t) at time t. Apparently, at any time, the stored energy is
no more than the storage capacity, that is

tCtEC ∀≤)((1)

Figure 2: A real-time system with energy harvesting module

On the other hand, the real-time system draws the energy and uses it
to process tasks with arrival time, deadline, and worst case execution
time. The worst case execution time represents the maximum energy

demand of the task. We assume that the real-time system is a
uniprocessor system, and only one task is executed at any time t. The
preemption is allowed in this system. The high priority task has
privilege to preempt the low priority task for the execution. The
earlier the task deadline, the higher priority the task has. Therefore, the
task with the earliest deadline always has the highest priority among
all ready tasks, and it is always executed earliest by the system. The
more details about the real-time system are introduced in subsection
3.3 real-time system model.

3.1. Energy source

Most of the environmental energy sources are strongly varying with
time. Hence, in many cases we need auxiliary circuitry [8] to
stabilize the output power of the energy source so that the system
works properly. In our energy source model, the output power PS(t)
has excluded the loss incurred by the auxiliary circuitry. In another
word, PS(t) is the net power to feed the storage. The harvested energy
ES(t1, t2) by PS(t) at time interval [t1, t2] is given as

∫= 2
1

)(),(21
t
t SS dttPttE (2)

The energy source is a time varying variable. We can not determine
PS(t) before time t. What we need to do is to predict PS(t) by tracing its
profile[9].

3.2. Energy storage

In this paper, we assume the energy storage is ideal. It can be
recharged up to its capacity. Likewise, it can also be completely
discharged to as less as zero. If the stored energy reaches the capacity,
the incoming harvested energy overflows the storage and is discarded.
When the processor runs the task, the system draws the energy from
the storage. Let ED(t1, t2) indicate the energy the system draws from
time t1 to t2, we have the following relations:

),()(),(21121 ttEtEttE SCD +≤ 21 tt <∀ (3)
),(),()()(212112 ttEttEtEtE DSCC −+≤ 21 tt <∀ (4)

Since the energy needed for the system solely comes from the
stored and harvested energy, the system cannot consume more than the
summation of these two at any time. So the constraint imposed by
inequality (3) must hold. The harvested energy ES(t1, t2) contributes to
the stored energy; on the contrary, the processor draws energy ED(t1, t2)
and reduces the reservoir of the storage by ED(t1, t2). Therefore, the
stored energy EC(t2) at time t2 can not be more than EC(t1)+ES(t1,
t2)-ED(t1, t2) , which is guaranteed by inequality (4).

3.3. Real-time system
We assume all tasks are independent and preemptive. Task τm is

represented by a triple (am, dm, wm), where am, dm, wm indicate the
arrival time, the relative deadline and the worst case execution time of
task τm under the maximum frequency, respectively. The arrival time
of the task is not known beforehand. We do not have the knowledge of
the deadline as well as the worst case execution time of the task before
it is released, either. However, as long as the task is released, all
these parameters are determined.

We consider a real-time system equipped with a DVFS-enabled
processor. The processor has N discrete clock speeds: fmin = f1 < f2
<…<fN = fmax; each clock speed fn corresponds to a power consumption
Pn, where 1≤ n ≤ N and Pmax=PN. We define a slowdown factor Sn
associated with each clock speed fn, where Sn is the normalized
frequency of fn with respect to the maximum frequency fmax. Obviously,
Sn is equal to fn/fmax. If the clock speed of the processor decreases to fn,
its power consumption reduces to Pn correspondingly.

If the execution of task τm is slowed down by Sn, then its actual

execution time at frequency fn increases to wm/Sn from wm. All tasks
are scheduled according to earliest deadline first (EDF) policy. The
task with the earliest deadline has the highest priority, and it will
preempt any other task if the processor is busy, letting the processor
execute itself first.

4 Energy-aware Dynamic Voltage and Frequency
Selection Algorithm

DVFS has been proven to be a powerful way to reduce the system
power consumption [12-15]. We are going to introduce the energy
aware DVFS algorithm in this section.

4.1 Execute tasks at full speed
The energy storage usually consists of a rechargeable battery or a

super capacitor or both, so the capacity of the energy storage could not
be unlimited. When the energy storage is full, the incoming harvested
energy can not be stored any more and has to be discarded. In that
situation, there is no need to slow down task execution for energy
saving. More generally, system can run tasks at its maximum power
as long as there is enough remaining energy in the storage. The reason
is that the harvested energy will automatically replenish the storage
when the system is idle afterwards. In some cases, the harvested
energy even overflows the storage, which completely counteracts the
previous effort to save energy by slowing down task execution.

4.2 Slow down the task execution
When the available energy is zero, the system has to stop running

any tasks. If it happens some task, say τm, needs to be executed while
the available energy is zero, the system will delay task τm execution
until it has scavenged energy. So the deadline of task τm may be
violated. However, if the system slows down the execution of tasks
prior to task τm when the system nearly depletes the available energy,
the system may still have enough energy to finish task τm before its
deadline, which has been illustrated in Figure 1.

Therefore, we need develop an algorithm to automatically let the
system know when it runs the task at the full speed, and when at a
reduced speed by DVFS. Before making the decision, the system
should know the available energy, and that is measured indirectly in
our algorithm.

Assume task τm arrives at time instance am, its worst case execution
time is wm and its relative deadline is dm; the stored energy in the
energy storage is EC(am); the harvested energy from am to am +dm is
ES(am, am +dm), we can calculate the system running time srn such
that all available energy is completed depleted at power Pn until time
instance am+dm.

() (,)C m S m m m
n

n

E a E a a dsr
P

+ +
= . (5)

It will take the system wm/Sn to finish task τm at frequency fn.
When choosing frequency fn to slow down the system, we must make
sure the actual execution time of task τm is no more than the time
interval between its arrival time and deadline; otherwise, there is no
way to respect the deadline of task τm. Therefore, the following
inequality holds,

 mm
n

m ad
S
w

−≤ (6)

The slack of the task can be traded for energy savings. The slack
is defined as the maximum amount of time that a task can use for
slowing the processor down without violating timing constraints.
The more slack of the task, the greater potential for energy saving.
When the remaining energy is small, the task slack should be exploited

sufficiently to save as much energy as possible. So we need to find
the minimum frequency fn (1 ≤ n ≤ N) under the constraint of
inequality (6). Then the starting running time of task τm at frequency fn
can be determined

1 max(,)m m m ns a a d sr= + − (7)
Specifically, if task τm is executed at full speed, the system should start
running it at time

2 maxmax(,)m m ms a a d sr= + − (8)
where srmax is calculated by the following equation

max
max

() (,)C m S m m mE a E a a dsr
P

+ +
= (9)

If s1 is equal to s2, it means they are both equal to am. So we have
maxm m ma d sr a+ − ≤ , (10)

and
m m n ma d sr a+ − ≤ (11)

That is
maxn msr sr d≥ ≥ (12)

The constraint (12) means that the system running time at
maximum power is larger than dm. In another words, the system still
has enough available energy EC(am)+ ES(am, am +dm) between task
arrival time and its deadline, so the task is executed in the maximum
power Pmax.

If s1 is not equal to s2, their inequality is interpreted as that the
available energy EC(am)+ ES(am, am +dm) between time instance am and
am +dm is not sufficient, so task τm is executed at a reduced clock speed
fn for energy savings.

4.3 Prevent from stealing excessive time from future tasks
Meanwhile, the task can not be stretched greedily for energy saving;

otherwise, the current task steals excessive time from the future task
and so that the future task has no way to respect its deadline, although
the available energy is sufficient. Assume there are two tasks τ1 and
τ2, shown in Figure 3, where task τ1 and task τ2 are represented by tripe
(a1, d1, w1) = (0, 16, 4) and (a2, d2, w2) = (5, 12, 1.5) respectively. If
task τ1 is stretched excessively, then under no circumstance is the
system able to finish task τ2 before its deadline. We will explain it in
details in the following paragraphs.

Figure 3: Preventing from excessively stretching task

Assuming at time instance 0, the predicted available energy EC(0)+

ES(0, 16) between time instance 0 and 16 is 32, and the system
maximum power is 8. In terms of equation (5), the system running
time at maximum power is 32/8 = 4. If task τ1 is executed at the full
speed, it should be run at time instance s2 = max(0, 16-4) = 12, as
shown in Figure 3.

On the other hand, we assume the minimum frequency for task τ1
under the constraint of inequality (6) is fn = 0.25fmax, and the
corresponding power consumption is Pn = 1. Hence, the system
running time at frequency fn is 32/1=32. If task τ1 is executed at
frequency fn, the system starts running it at s1= max(0, 16 - 32) = 0.
If the system executes task at frequency fn until task τ1 is finished at

time instance 0+4/0.25=16, then the system has no way to finish task
τ2 before its deadline. Even if the system runs task τ2 at the maximum
power, task τ2 can not be finished until time instance 16+1.5=17.5,
which is later than the deadline of task τ2 17. However, if task τ1 is
executed at frequency fn between s1 and s2, and it is executed at the
maximum frequency after s2, then the system finishes task τ1 at time
instance 12+(4-(12-0)*0.25)= 13, which is labeled by a short black
arrow, shown in Figure 2. The energy consumption for task τ1 is
12+8=19.

Before the deadline of task τ2, the available energy for the system is
(32-19)+ ES(16, 17.5), which is no less than 13. If task τ2 is executed
at the full speed, the system will consume energy 8*1.5=12, which is
less than the available energy. If task τ2 is executed at the maximum
power at time instance 14.5, then the system finishes running it at time
16, which is earlier than the deadline of task τ2. Therefore, through
carefully stretching tasks, we can guarantee the deadlines of both
tasks.

In order to reduce the deadline miss rate of the system, we adopt the
following policy to slow down tasks.
1. find the task with the earliest deadline among ready tasks.
2. compute the earliest starting execution time s1 of the task if the

system executes it at power pn(frequency fn) under the constraint of
inequality (6)

3. compute the earliest starting execution time s2 of the task if the
system executes it at the maximum power

4. compare s1 against s2;
a) if s1 and s2 are equal to each other, we assume that there is

sufficient available energy in the system, and the task is
executed at the full speed;

b) if s1 is not equal to s2, the available energy is considered to be
nearly depleted; the task is executed at frequency fn between s1
and s2; the task is executed at the full speed after s2 if the task
has not been finished.

Figure 4: Energy aware DVFS algorithm
The proposed energy aware DVFS algorithm is shown in Figure4.

The proposed algorithm schedule tasks in a preemptive way. The task
with earliest deadline has the highest priority. Once the scheduler

selects the task with the earliest deadline, the calculations of s1 as well
as s2 has to be performed; then the scheduler determines at which
frequency/power to run the task depending upon comparison of s1 and
s2. If s1 is not equal to s2, then the system deems that the available
energy is quite small. Therefore, system slows down the task execution
between s1 and s2 for energy saving. After time instance s2, if the task
is not finished, it is executed at full speed to avoid its stealing
excessive time from the future task. Otherwise, the system delays the
future task too much, resulting in that the future task does not have
enough time to finish before its deadline, although the system has
sufficient energy, as illustrated in Figure 3.

Meanwhile, parameters s1 and s2 actually decouple the energy
constraint. As long as the task is executed no earlier than s1, the system
is guaranteed to have enough available energy to keep on running until
its deadline at a proper frequency. Parameter s2 plays the same role
as s1.

Consider a special case: if the energy storage is infinite, what
happens to the proposed energy-aware DVFS?

Assume the scheduler selects a task with the earliest deadline, the
next step is to calculate s1 and s2. Before that, we need to know srn
and srmax. Since the capacity of the energy storage is infinite, srn and
srmax are both equal to infinite. In terms of equation (7) and equation
(8), we have that s1 and s2 are both equal to the arrival time of the task.
It means that as long as the task is ready, it is executed at the
maximum power by the system. In effect, in that case the proposed
energy aware DVFS is equivalent to that the system schedules the task
following earliest deadline first (EDF) policy. That is a justifiable
behavior. Because the available energy is infinite, the system no
longer needs make any effort for energy saving.

In summary, when the energy storage capacity is infinite, the
proposed energy aware DVFS algorithm is reduced to EDF. When
the capacity is finite, the proposed algorithm changes its behavior
based upon the available energy. If there is sufficient energy available
for the system, our algorithm is tantamount to the algorithm proposed
in [7, 10]. Otherwise, the task is stretched and the system slows down
the task execution by dynamic voltage and frequency selection
(DVFS). Though this way, the system trades the task slack for energy
savings and reduces the deadline miss rate.

5. Simulations and Discussions
To evaluate the effectiveness of the proposed algorithm on energy

saving and performance improvement, we develop a discrete-event
simulation in C/C++. In the simulator, we implement the proposed
energy-aware DVFS algorithm. For the sake of comparison, we also
implement the lazy scheduling algorithm (LSA) proposed in [7, 10].

5.1 Simulation setup
Since the solar power not only exhibits the stochastic behavior, but

also the periodic and deterministic aspect, we use the following
random number generator [11] to model the solar energy source
behavior,

)
70

cos()
70

cos()(10)(
ππ

tttNtPS ⋅⋅⋅= (13)

where N(t) is subject to the normal distribution with mean 0 and
variance 1. Its behavior is shown in Figure 5. In the realistic
applications, we can not have the knowledge of the future harvested
energy ES. Therefore, in the simulation, we trace PS(t) profile to
predict the harvested energy from a future period.

We consider a DVFS-enabled processor with five speeds similar to
Intel’s Xscale processor [16]: 150MHz, 400MHz, 600MHz, 800MHz
and 1000MHz. And power consumptions are 80mW, 400mW,

1. Require: maintain a task queue Q containing all ready but
not finished tasks τm.

2. while (true) do
3. min{ : }j m md d Qτ⇐ ∈
4. calculate s1 and s2 for task τj
5. if s1 = s2, then
6. execute task τj at the maximum power/the maximum

frequency
7. end if
8. if s1 < s2, then
9. execute task τj at power Pn/frequency fn.
10. if task τj has not been finished at time s2, then
11. execute task at the maximum power afterwards,
12. end if
13. end if
14. t ⇐ current time
15. if t = ak, then
16. task τk is put into the ready task queue Q
17. end if
18. if task τj is finished, then
19. remove task τj from the ready task queue Q
20. end if
21. end while

1000mW, 2000mW and 3200mW respectively. The overhead from
voltage switching is assumed to be negligible.

0 1000 2000 3000 4000 5000
0

5

10

15

20

t

P
S(t)

Figure 5: Energy source behavior

The number of periodic tasks in a task set is arbitrary, and the task
period is chosen from a set {10, 20, 30, …, 100}, where each value has
the same opportunity of being selected. For the sake of simplicity,
the relative deadline of the periodic task is set to its period. The worst
case execution time of the task is obtained in the following way:
assuming the average harvested power is SP , and the task period is p.
The energy consumption e for the task under the worst case is
generated in terms of the uniform distribution [0, pPS ⋅]. Then its
worst case execution time is equal to e/Pmax.

The utilization U of a processor is defined as

∑=
m m

m
p
wU (14)

where wm is the worst case execution time of task τm, and pm is the
period of task τm. The utilization U cannot be larger than 1. Otherwise,
the processor is not able to schedule tasks while respecting their
deadlines. In order to get the specific utilization, we scale the worst
case execution time of each task in a task set in the same ratio.

In the beginning of the simulation, the energy storage is full. The
simulation terminates after 10,000 time units and is repeated for 5,000
task sets for a specific utilization.

5.2 Improvement in remaining energy
First we take interest in the remaining energy in the system. For the

fair comparison of LSA and EA-DVFS, all simulations are performed
under the same condition. The utilization has significant impact on
the stored energy. In this subsection, we set U to 0.4 and 0.8
respectively.

As results from all simulation scenarios show similar trends of
remaining energy if U is set to the same value, we only exhibit the
results with 5 periodic tasks in a task set.

When the storage capacity is varying, the absolute remaining
energy varies accordingly. In order to eliminate the effect of the
storage capacity, the remaining energy is normalized. In this set of
simulations, the capacity is set to 200, 300, 500, 1000, 2000, 3000 and
5000. Then the weighted average of normalized remaining energy
for each capacity is calculated to get the final remaining energy, each
normalized remaining energy having the same weight.

When U is set to 0.4, the remaining energy curves in the LSA-based
system and the EA-DVFS-based system are both plotted in Figure 6.
As shown in Figure 6, the EA-DVFS-based system stores significantly
more energy than the LSA-based system on average. That is because
EA-DVFS algorithm slows down the task execution for energy savings;

however, LSA-based system always executes the task at the full speed
and it consume more energy to finish an identical task.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

time

no
rm

al
iz

ed
 re

m
ai

ni
ng

 e
ne

rg
y

EA-DVFS
LSA

Figure 6: Remaining energy with low utilization

When U is set to 0.8, we get another plot shown in Figure 7. By

observing the stored energy, we find that EA-DVFS-based system
only has slightly more stored energy than the LSA-based system. The
reason is twofold: On one hand, when the utilization is high, the
processor rarely has chance to slow down the task execution for energy
saving; most of time both algorithms execute the task at the full speed.
On the other hand, the system also reduces the chance to be
completely idle for energy harvesting from the environmental energy
source, which results in that the consumed energy can not be
supplemented in time.

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

time

no
rm

al
iz

ed
 re

m
ai

ni
ng

 e
ne

rg
y

EA-DVFS
LSA

Figure 7: Remaining energy with high utilization

5.3 Reduction in deadline miss rate
As observed in Figure 6, the EA-DVFS based system has

significantly more stored energy that LSA based system when
utilization is low. The more stored energy means that more tasks are
able to be finished before their deadlines. Hence, the EA-DVFS
system significantly reduces the deadline miss rate due to energy
shortage, compared to LSA-based system, as shown in Figure 8, where
U is set to 0.4.

Through observing the results shown in Figure 8, we know that
when both systems have the same storage capacity, EA-DVFS
algorithm reduces the deadline miss rate over 50% on average,
compared to LSA algorithm.

If we increase U to 0.8 and run the simulation again, we find
EA-DVFS algorithms performs as well as LSA algorithm does, shown
in Figure 9. That is because the EA-DVFS based system seldom has
chance to slow down the execution for energy savings when utilization
is high, and most of tasks are just executed at the full speed, as LSA
algorithm does.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized storage capacity

D
ea

dl
in

e
m

is
s

ra
te

LSA
EA-DVFS

Figure 8: Deadline miss rate with low workload (U=0.4)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalzied storage capacity

de
ad

lin
e

m
is

s
ra

te

LSA
EA-DVFS

Figure 9: Deadline miss rate with high workload (U=0.8)

5.4 Decrease in storage capacity
We also run another set of simulations to get the minimum storage

capacity which is the threshold capacity to maintain zero deadline miss
rate. Symbols Cmin,EA-DVFS and Cmin-LSA are used to represent the
minimum storage from EA-DVFS algorithm and LSA algorithm
respectively. The utilization U is swept from 0.2 to 0.8 with a step 0.2.
The simulations results are shown in table 1.

Table 1: The ratio of the minimum storage capacities

U 0.2 0.4 0.6 0.8

Cmin-LSA/Cmin,EA-DVFS 2.5 1.33 1.05 1.01

When utilization is as low as 0.2, Cmin-LSA is 2.5 times as large as
Cmin,EA-DVFS to maintain the zero deadline miss rate. However, the
difference reduces with the utilization increasing. When utilization is
0.8, Cmin-LSA is only 1% larger than Cmin,EA-DVFS. The reason is just as
before: when the utilization is low, the EA-DVFS-based system is able
to reduce the task execution for energy savings. The saved energy is
used for running future tasks, so the system just needs a smaller
capacity to keep the zero deadline miss rate, compared to the LAS
based system. While the workload increases, both algorithms execute
the task in the similar way, accordingly they nearly have the same
requirement on the energy storage to keep zero deadline miss rate.

6. Conclusions
We have proposed an energy aware dynamic voltage and frequency

selection algorithm in this paper. The proposed algorithm runs tasks at
the full speed if the stored energy is sufficient; otherwise, the system
slows down the task execution for energy savings. The efficiency of

EA-DVFS algorithm to save energy depends on the processor
utilization. When the utilization is low, the processor has great
potential to save energy by slowing down the task execution.
Accordingly, when utilization is 0.4, the proposed EA-DVFS
algorithm reduces deadline miss rate by at least 50%, compared to
LSA algorithm. Similarly, the proposed EA-DVFS algorithm also
decrease the minimum storage size by at least 25% to keep the zero
deadline miss rate with low workload.

However, when utilization is high, the processor seldom has chance
to trade the task slack for energy saving, the proposed EA-DVFS
algorithm just performs as well as LSA algorithm does.

Finally we points out that the proposed EA-DVFS algorithm is very
effective in reducing deadline miss rate and storage size for a real-time
system with energy-harvesting ability when the workload is not high.

References
[1] S. Roundy, D. Steingart, L. Frechette, P.K. Wright, and J.m. Rabaey. Power

sources for wireless sensor networks. In Wireless Sensor Networks, First
Europeean Workshop, EWSN 2004, Proceedings, Lecture Notes in
Computer Science, Pages 1-17, Berlin, Germany, January 19-21 2004.

[2] V. Raghunathan, A. Kansal, et al, “Design considerations for solar energy
harvesting wireless embedded systems”, In Proceedings of the Fouth
International Symposium on Information Processing in Sensor Networks,
IPSN 2005, pp457-462, UCLA, Los Angeles, California, USA, April 25-25,
2005

[3] X. Jiang, J. Polastre, and D. E. Culler, “Perpetual environmentally powered
sensor networks”, In Proceedings of the Fourth International symposium on
Information Processing in Sensor Networks, IPSN 2005, pp463-468, UCLA,
Los Angeles, California, USA, April 25-25, 2005

[4]. A. Allavena and D. Mosse, “Scheduling of frame-based embedded systems
with rechargeable batteries,” In Workshop on Power Management for
Real-time and Embedded Systems, 2001

[5] C. Rusu, R. G. Melhen, and D. Mosse, “Multi-version scheduling in
rechargeable energy-aware real-time systems”, In 15th Euromicro
Conference on Real-time systems, ECRTS 2003, pp95-104, Berlin,
Germany, Jan., 2004.

[6] A. Kansal, J. Hsu, “Harvesting aware power management for sensor
networks”, In IEEE DAC 2006.

[7] C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Lazy scheduling for
energy-harvesting sensor ndoes,” in Fifth Working Conference on
Distributed and Parallel Embedded Systems, DIPES 2006, pp125-134,
Braga, Portugal, October, 2006

[8] Y. Lam, S. Koon, W.Ki and C. Tsui, “ Integrated direct output current control
switching converter using symmetrically-matched self-biased current
sensors,” ASP-DAC 2006: 102-103

[9] A. Kansal, J. Hsu, S. Zahedi and M. Srivastava, “Power Management in
Energy Harvesting Sensor Networks,” In ACM Transactions on Embedded
Computing Systems (in revision) , 35 pages , May 2006.

[10]C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-time scheduling with
regenerative energy,” in Proc. of the 18th Euromicro Conference on
Real-time Systems (ECRTS06), pp261-270, Dresden, Germany, October,
2006.

[11]C. Moser, D. Brunelli, L. Thiele, and L. Benini, “Real-Time Scheduling for
Energy Harvesting Sensor Nodes,”MICS Scientific Conference and SNF
Panel Review, Zurich, Switzerland October, 2006.

[12]F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU
energy,” in IEEE symposium on Foundations of Comp. Science, Pages
374-382, 1995.

[13]I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. srivastava. “Power
Optimization of Variable-Voltage Core-Based systems,” IEEE Trans. On
Computer-Aided Design, 18(12):1702-1714, Dec 1999.

[14]J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling
algorithms for real-time heterogeneous distributed embedded systems,” In
Proc. Of Int. Conf. on VLSI Design, pp.719-726, 2002

[15]N.K.Jha, “Low-power system scheduling, synthesis and displays,” In Proc.
IEE, 2005

[16] Intel-Xscale Micro-architecture, available at http://www.intel.com

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

