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Abstract  

In this paper, an energy aware dynamic voltage and frequency 
selection (EA-DVFS) algorithm is proposed.  The EA-DVFS 
algorithm adjusts the processor’s behavior depending on the 
summation of the stored energy and the harvested energy in a future 
duration. Specifically, if the system has sufficient energy, tasks are 
executed at full speed; otherwise, the processor slows down task 
execution to save energy.  Simulation results show that when the 
utilization is low, the EA-DVFS algorithm gives a deadline miss rate 
that is at least 50% lower than the one given by the lazy scheduling 
policy. Similarly, when the workload is low, the minimum storage size 
is reduced by at least 25%.  

1. Introduction 
Though a lot of research efforts have been made to solve the energy 

problem of battery-powered embedded electronic system, it continues 
to be a chief challenge for researchers. This is particularly true for 
systems where replacing or recharging batteries manually is 
impracticable. One example is sensor nodes deployed in radioactive 
surroundings, where the energy constraint has become a main obstacle 
for increasing its lifespan.  In order to solve the energy problem and 
prolong the system operating duration, a new technology called energy 
harvesting, also known as energy scavenging, has recently been 
explored.  Energy harvesting is regarded as an especially prospective 
approach to decouple the energy constraint of battery-powered systems 
and increase system autonomy.   

Simply put, energy scavenging system is a system that draws parts 
or all of its operating energy from its ambient energy sources.  It has 
two advantages:  

1) It has potential to overcome the energy constraint imposed by 
traditional battery-powered embedded systems;  

2) It may operate perennially until its mechanical failure.  
Possible energy harvesting sources include solar, thermal, 

vibrational and kinetic energy, etc. [1].  Two prototypes, namely 
Heliomote [2] and Prometheus [3], have been developed to extract 
solar energy. Both prototypes show that systems may operate 
perpetually through scavenging solar energy. However, the common 
drawback of these two prototypes is that they do not target at real-time 
task sets.  

Targeting at real-time task sets, A. Allavena et.al proposed an 
offline algorithm using dynamic voltage and frequency selection 
(DVFS) [4]. Specifically, this algorithm is designed to schedule a set 
of independent periodic tasks in a frame. Although it does allow the 
system to slow down task execution under deadline constraints and 
therefore reduce power consumption, this approach is based on an 
unpractical assumption that the harvested energy from the ambient 
energy source is constant.  

The performance of a practical energy-harvesting-capable real-time 
system, measured by the deadline miss rate, heavily depends upon the 
stored energy and the energy harvested from the environment.  
Unfortunately, the scavenging power is time-varying and thus very 
unstable.    Therefore, the accurate modeling for energy source plays 
a key role in designing a good policy to schedule the task and reduce 
the deadline miss rate. 

The work in [5] moves toward the direction of accurately modeling 
energy source.  The authors assume that the energy source is 

scavenged from solar cells, which work in two modes: day and night; 
and correspondingly output two types of power.  But the modeling is 
still coarse-grained because the output power is changing due to the 
varying sunlight strength in daytime. 

A better model is proposed by A. Kansal et al. [6]. Their model 
captures the behavior of an actual solar energy source through tracing 
its power profile.  In that paper, the authors proposed algorithms for 
tuning system duty cycle based on the parameters of the solar energy 
source. The system switches between active mode and sleep mode 
depending on harvesting energy. As such, it may operate perpetually.  
However, the proposed algorithms do not target at concrete tasks in a 
real-time pattern.  It therefore remains unclear how to deal with the 
real-time tasks under the strong variation of energy source with respect 
to time.   

Based on the work in [6], the authors in [7] proposed a real-time 
scheduling algorithm called lazy scheduling algorithm (LSA).  
According to LSA, the processor executes all tasks at full power; and 
the system starts executing a task if the following three conditions are 
met simultaneously:  

1) The task is ready;  
2) The task has the earliest deadline among all ready tasks 
3) The system is able to keep on running at the maximum power 

until the deadline of the task.   
Since a task is executed at the maximum power, it may be finished 

well before its deadline.  In this case, the task slack would be wasted; 
more importantly, the limited energy is unnecessarily squandered.  As 
a consequence, future tasks have to violate their deadlines because of 
energy shortage.  

In this paper, we propose an energy aware dynamic voltage and 
frequency selection (EA-DVFS) algorithm.  The purpose of our 
algorithm is to efficiently use the task slack and further reduce the 
deadline miss rate. In our algorithm, whether or not the system slows 
down the task execution for energy saving depends on the available 
energy.  If the system has sufficient energy, the task is executed at its 
full speed; otherwise, it is stretched and executed at a lower speed.  
Compared to LSA, the proposed EA-DVFS algorithm significantly 
reduces the deadline miss rate and the storage size when the utilization 
ratio is not high.  We will show this point later in section 5. 

The remainder of this paper is organized as follows.  In Section 2, 
we illustrate a motivational example.  The energy harvesting system 
model and some assumptions are presented in section 3.  In section 4, 
the proposed EA-DVFS algorithm is described in details. Simulation 
results and discussions are presented in Section 5. Finally section 6 
concludes the paper.   

2. A Motivational Example 
Consider the following application: there are two tasks τ1 and τ2, 

shown in Figure 1. Task τ1 and task τ2 are represented by triples (a1, d1, 
w1) = (0, 16, 4) and (a2, d2, w2) = (5, 16, 1.5), where symbols ai, di, wi 
(i = 1,2) indicate the arrival time, the relative deadline and the worst 
case execution time of task τ1 and task τ2, respectively.   

Assuming at time instance 0, the stored energy in the energy storage 
is 24, the system maximum power consumption is 8, and the harvested 
power from time 0 to 25 is set to 0.5.  Now we know that the 
harvested energy from 0 to 16 is 8, the total energy available for the 
system up to time instance 16 is 32, and the running time is 4 if the 
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system operates at the maximum power.  

 
Figure 1: A motivational example  

 
Based on lazy scheduling policy, the system starts running task τ1 at 

time 12, shown in a short arrow in Figure 1, and finishes it at time 16. 
The system depletes all energy exactly at time 16, shown in Figure 1.  
As to task τ2, the system needs 12 units of energy to finish it at the 
maximum power before its deadline time instance 21.  However, 
from time instance 16 to 21, the energy that the system harvests is only 
2.5(5*0.5), which is 9.5 shy of 12.  In the end, the deadline of task τ2 
is violated because of the energy shortage. 

On the other hand, we assume that the processor operates in two 
speeds: a high speed and a low speed, with the former twice as fast as 
the latter.  The power at high speed is 3 times as much as that in low 
speed. We run task τ1 at the low speed, the remaining energy at 16 is 
32/3, which is calculated from the expression 24+8-4/(1/2)*8/3. At 
time 21, the available energy is 32/3+5*0.5 = 13.16.  This time the 
system has enough available energy to finish task τ2 by its deadline 
even if the task is executed at the maximum power. 

The example suggests that we should slow down the task execution 
if possible to reduce the deadline miss rate. Before moving to describe 
the proposed energy aware DVFS algorithm, we would like to 
introduce the system model and some assumptions. 

3. Energy Harvesting System Model and Assumptions 
This paper deals with a real-time system with the energy harvesting 

ability, shown in Figure 2. At some time t, the energy source module 
harvests the energy from its ambient environment and then converts it 
into electrical energy at power Ps(t). The electrical energy can be 
stored in the energy storage, whose capacity is C. The stored energy is 
donated as EC(t) at time t. Apparently, at any time, the stored energy is 
no more than the storage capacity, that is  

tCtEC ∀≤)(                (1) 

 
Figure 2: A real-time system with energy harvesting module 

On the other hand, the real-time system draws the energy and uses it 
to process tasks with arrival time, deadline, and worst case execution 
time. The worst case execution time represents the maximum energy 

demand of the task.  We assume that the real-time system is a 
uniprocessor system, and only one task is executed at any time t. The 
preemption is allowed in this system. The high priority task has 
privilege to preempt the low priority task for the execution.  The 
earlier the task deadline, the higher priority the task has. Therefore, the 
task with the earliest deadline always has the highest priority among 
all ready tasks, and it is always executed earliest by the system.  The 
more details about the real-time system are introduced in subsection 
3.3 real-time system model. 

3.1. Energy source  

Most of the environmental energy sources are strongly varying with 
time.  Hence, in many cases we need auxiliary circuitry [8] to 
stabilize the output power of the energy source so that the system 
works properly.  In our energy source model, the output power PS(t) 
has excluded the loss incurred by the auxiliary circuitry. In another 
word, PS(t) is the net power to feed the storage. The harvested energy 
ES(t1, t2) by PS(t) at time interval [t1, t2] is given as  
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The energy source is a time varying variable. We can not determine 
PS(t) before time t. What we need to do is to predict PS(t) by tracing its 
profile[9].  

3.2. Energy storage  

In this paper, we assume the energy storage is ideal. It can be 
recharged up to its capacity. Likewise, it can also be completely 
discharged to as less as zero.  If the stored energy reaches the capacity, 
the incoming harvested energy overflows the storage and is discarded. 
When the processor runs the task, the system draws the energy from 
the storage.  Let ED(t1, t2) indicate the energy the system draws from 
time t1 to t2, we have the following relations: 

),()(),( 21121 ttEtEttE SCD +≤       21 tt <∀     (3) 
),(),()()( 212112 ttEttEtEtE DSCC −+≤   21 tt <∀     (4) 

Since the energy needed for the system solely comes from the 
stored and harvested energy, the system cannot consume more than the 
summation of these two at any time. So the constraint imposed by 
inequality (3) must hold. The harvested energy ES(t1, t2) contributes to 
the stored energy; on the contrary, the processor draws energy ED(t1, t2)  
and reduces the reservoir of the storage by ED(t1, t2). Therefore, the 
stored energy EC(t2) at time t2 can not be more than EC(t1)+ES(t1, 
t2)-ED(t1, t2) , which is guaranteed by inequality (4).     

3.3. Real-time system  
We assume all tasks are independent and preemptive. Task τm is 

represented by a triple (am, dm, wm), where am, dm, wm indicate the 
arrival time, the relative deadline and the worst case execution time of 
task τm under the maximum frequency, respectively.  The arrival time 
of the task is not known beforehand. We do not have the knowledge of 
the deadline as well as the worst case execution time of the task before 
it is released, either.  However, as long as the task is released, all 
these parameters are determined. 

We consider a real-time system equipped with a DVFS-enabled 
processor. The processor has N discrete clock speeds: fmin = f1 < f2 
<…<fN = fmax; each clock speed fn corresponds to a power consumption 
Pn, where 1≤ n ≤ N and Pmax=PN.  We define a slowdown factor Sn 
associated with each clock speed fn, where Sn is the normalized 
frequency of fn with respect to the maximum frequency fmax. Obviously, 
Sn is equal to fn/fmax. If the clock speed of the processor decreases to fn, 
its power consumption reduces to Pn correspondingly.  

If the execution of task τm is slowed down by Sn, then its actual 



execution time at frequency fn increases to wm/Sn from wm.  All tasks 
are scheduled according to earliest deadline first (EDF) policy. The 
task with the earliest deadline has the highest priority, and it will 
preempt any other task if the processor is busy, letting the processor 
execute itself first. 

4 Energy-aware Dynamic Voltage and Frequency        
Selection Algorithm  

DVFS has been proven to be a powerful way to reduce the system 
power consumption [12-15]. We are going to introduce the energy 
aware DVFS algorithm in this section.  

4.1 Execute tasks at full speed 
The energy storage usually consists of a rechargeable battery or a 

super capacitor or both, so the capacity of the energy storage could not 
be unlimited.  When the energy storage is full, the incoming harvested 
energy can not be stored any more and has to be discarded. In that 
situation, there is no need to slow down task execution for energy 
saving.  More generally, system can run tasks at its maximum power 
as long as there is enough remaining energy in the storage. The reason 
is that the harvested energy will automatically replenish the storage 
when the system is idle afterwards. In some cases, the harvested 
energy even overflows the storage, which completely counteracts the 
previous effort to save energy by slowing down task execution.  

4.2 Slow down the task execution 
When the available energy is zero, the system has to stop running 

any tasks. If it happens some task, say τm, needs to be executed while 
the available energy is zero, the system will delay task τm execution 
until it has scavenged energy.  So the deadline of task τm may be 
violated. However, if the system slows down the execution of tasks 
prior to task τm when the system nearly depletes the available energy, 
the system may still have enough energy to finish task τm before its 
deadline, which has been illustrated in Figure 1.  

Therefore, we need develop an algorithm to automatically let the 
system know when it runs the task at the full speed, and when at a 
reduced speed by DVFS.  Before making the decision, the system 
should know the available energy, and that is measured indirectly in 
our algorithm. 

Assume task τm arrives at time instance am, its worst case execution 
time is wm and its relative deadline is dm; the stored energy in the 
energy storage is EC(am); the harvested energy from am to am +dm is 
ES(am, am +dm),  we can calculate the system running time srn such 
that all available energy is completed depleted at power Pn until time 
instance am+dm.  

( ) ( , )C m S m m m
n

n
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P
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= .          (5) 

It will take the system wm/Sn to finish task τm at frequency fn.  
When choosing frequency fn to slow down the system, we must make 
sure the actual execution time of task τm is no more than the time 
interval between its arrival time and deadline; otherwise, there is no 
way to respect the deadline of task τm. Therefore, the following 
inequality holds,   

   mm
n

m ad
S
w

−≤                (6) 

The slack of the task can be traded for energy savings.  The slack 
is defined as the maximum amount of time that a task can use for 
slowing the processor down without violating timing constraints.  
The more slack of the task, the greater potential for energy saving.  
When the remaining energy is small, the task slack should be exploited 

sufficiently to save as much energy as possible.  So we need to find 
the minimum frequency fn (1 ≤ n ≤ N) under the constraint of 
inequality (6). Then the starting running time of task τm at frequency fn 
can be determined  

1 max( , )m m m ns a a d sr= + −             (7) 
Specifically, if task τm is executed at full speed, the system should start 
running it at time 

2 maxmax( , )m m ms a a d sr= + −             (8) 
where srmax is calculated by the following equation 
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max
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If s1 is equal to s2, it means they are both equal to am.  So we have  
maxm m ma d sr a+ − ≤ ,               (10) 

and  
m m n ma d sr a+ − ≤                (11) 

That is  
maxn msr sr d≥ ≥                 (12) 

The constraint (12) means that the system running time at 
maximum power is larger than dm. In another words, the system still 
has enough available energy EC(am)+ ES(am, am +dm) between task 
arrival time and its deadline, so the task is executed in the maximum 
power Pmax.  

If s1 is not equal to s2, their inequality is interpreted as that the 
available energy EC(am)+ ES(am, am +dm) between time instance am and 
am +dm is not sufficient, so task τm is executed at a reduced clock speed 
fn for energy savings.   

4.3 Prevent from stealing excessive time from future tasks  
Meanwhile, the task can not be stretched greedily for energy saving; 

otherwise, the current task steals excessive time from the future task 
and so that the future task has no way to respect its deadline, although 
the available energy is sufficient.  Assume there are two tasks τ1 and 
τ2, shown in Figure 3, where task τ1 and task τ2 are represented by tripe 
(a1, d1, w1) = (0, 16, 4) and (a2, d2, w2) = (5, 12, 1.5) respectively.  If 
task τ1 is stretched excessively, then under no circumstance is the 
system able to finish task τ2 before its deadline. We will explain it in 
details in the following paragraphs.    

 
Figure 3:  Preventing from excessively stretching task 

 
Assuming at time instance 0, the predicted available energy EC(0)+ 

ES(0, 16) between time instance 0 and 16 is 32, and the system 
maximum power is 8.  In terms of equation (5), the system running 
time at maximum power is 32/8 = 4. If task τ1 is executed at the full 
speed, it should be run at time instance s2 = max(0, 16-4) = 12, as 
shown in Figure 3.  

On the other hand, we assume the minimum frequency for task τ1 
under the constraint of inequality (6) is fn = 0.25fmax, and the 
corresponding power consumption is Pn = 1. Hence, the system 
running time at frequency fn is 32/1=32.  If task τ1 is executed at 
frequency fn, the system starts running it at s1= max(0, 16 - 32) = 0.  
If the system executes task at frequency fn until task τ1 is finished at 



time instance 0+4/0.25=16, then the system has no way to finish task 
τ2 before its deadline. Even if the system runs task τ2 at the maximum 
power, task τ2 can not be finished until time instance 16+1.5=17.5, 
which is later than the deadline of task τ2 17.  However, if task τ1 is 
executed at frequency fn between s1 and s2, and it is executed at the 
maximum frequency after s2, then the system finishes task τ1 at time 
instance 12+(4-(12-0)*0.25)= 13, which is labeled by a short black 
arrow, shown in Figure 2. The energy consumption for task τ1 is 
12+8=19.  

Before the deadline of task τ2, the available energy for the system is 
(32-19)+ ES(16, 17.5), which is no less than 13.  If task τ2 is executed 
at the full speed, the system will consume energy 8*1.5=12, which is 
less than the available energy.  If task τ2 is executed at the maximum 
power at time instance 14.5, then the system finishes running it at time 
16, which is earlier than the deadline of task τ2.  Therefore, through 
carefully stretching tasks, we can guarantee the deadlines of both 
tasks. 

In order to reduce the deadline miss rate of the system, we adopt the 
following policy to slow down tasks. 
1. find the task with the earliest deadline among ready tasks. 
2. compute the earliest starting execution time s1 of the task if the 

system executes it at power pn(frequency fn) under the constraint of 
inequality (6)  

3. compute the earliest starting execution time s2 of the task if the 
system executes it at the maximum power 

4. compare s1 against s2;  
a) if s1 and s2 are equal to each other, we assume that there is 

sufficient available energy in the system, and the task is 
executed at the full speed;  

b) if s1 is not equal to s2, the available energy is considered to be 
nearly depleted; the task is executed at frequency fn between s1 
and s2; the task is executed at the full speed after s2 if the task 
has not been finished. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Energy aware DVFS algorithm 
The proposed energy aware DVFS algorithm is shown in Figure4.  

The proposed algorithm schedule tasks in a preemptive way. The task 
with earliest deadline has the highest priority. Once the scheduler 

selects the task with the earliest deadline, the calculations of s1 as well 
as s2 has to be performed; then the scheduler determines at which 
frequency/power to run the task depending upon comparison of s1 and 
s2. If s1 is not equal to s2, then the system deems that the available 
energy is quite small. Therefore, system slows down the task execution 
between s1 and s2 for energy saving. After time instance s2, if the task 
is not finished, it is executed at full speed to avoid its stealing 
excessive time from the future task. Otherwise, the system delays the 
future task too much, resulting in that the future task does not have 
enough time to finish before its deadline, although the system has 
sufficient energy, as illustrated in Figure 3. 

Meanwhile, parameters s1 and s2 actually decouple the energy 
constraint. As long as the task is executed no earlier than s1, the system 
is guaranteed to have enough available energy to keep on running until 
its deadline at a proper frequency.  Parameter s2 plays the same role 
as s1.  

Consider a special case: if the energy storage is infinite, what 
happens to the proposed energy-aware DVFS?  

Assume the scheduler selects a task with the earliest deadline, the 
next step is to calculate s1 and s2.  Before that, we need to know srn 
and srmax. Since the capacity of the energy storage is infinite, srn and 
srmax are both equal to infinite. In terms of equation (7) and equation 
(8), we have that s1 and s2 are both equal to the arrival time of the task.  
It means that as long as the task is ready, it is executed at the 
maximum power by the system.  In effect, in that case the proposed 
energy aware DVFS is equivalent to that the system schedules the task 
following earliest deadline first (EDF) policy. That is a justifiable 
behavior.  Because the available energy is infinite, the system no 
longer needs make any effort for energy saving.  

In summary, when the energy storage capacity is infinite, the 
proposed energy aware DVFS algorithm is reduced to EDF.  When 
the capacity is finite, the proposed algorithm changes its behavior 
based upon the available energy. If there is sufficient energy available 
for the system, our algorithm is tantamount to the algorithm proposed 
in [7, 10]. Otherwise, the task is stretched and the system slows down 
the task execution by dynamic voltage and frequency selection 
(DVFS). Though this way, the system trades the task slack for energy 
savings and reduces the deadline miss rate. 

5. Simulations and Discussions  
To evaluate the effectiveness of the proposed algorithm on energy 

saving and performance improvement, we develop a discrete-event 
simulation in C/C++.  In the simulator, we implement the proposed 
energy-aware DVFS algorithm. For the sake of comparison, we also 
implement the lazy scheduling algorithm (LSA) proposed in [7, 10]. 

5.1 Simulation setup 
Since the solar power not only exhibits the stochastic behavior, but 

also the periodic and deterministic aspect, we use the following 
random number generator [11] to model the solar energy source 
behavior,  

)
70

cos()
70

cos()(10)(
ππ

tttNtPS ⋅⋅⋅=         (13) 

where N(t) is subject to the normal distribution with mean 0 and 
variance 1. Its behavior is shown in Figure 5. In the realistic 
applications, we can not have the knowledge of the future harvested 
energy ES.  Therefore, in the simulation, we trace PS(t) profile to 
predict the harvested energy from a future period. 

We consider a DVFS-enabled processor with five speeds similar to 
Intel’s Xscale processor [16]: 150MHz, 400MHz, 600MHz, 800MHz 
and 1000MHz.  And power consumptions are 80mW, 400mW, 

1. Require: maintain a task queue Q containing all ready but 
not finished tasks τm. 

2. while (true) do  
3. min{ : }j m md d Qτ⇐ ∈   
4. calculate s1 and s2 for task τj 
5. if s1 = s2, then 
6. execute task τj at the maximum power/the maximum 

frequency 
7. end if 
8. if s1 < s2, then 
9. execute task τj at power Pn/frequency fn.  
10. if task τj has not been finished at time s2, then 
11. execute task at the maximum power afterwards,  
12. end if 
13. end if 
14. t ⇐ current time 
15. if t = ak, then 
16. task τk is put into the ready task queue Q 
17. end if 
18. if task τj is finished, then  
19. remove task τj from the ready task queue Q 
20. end if 
21. end while 



1000mW, 2000mW and 3200mW respectively. The overhead from 
voltage switching is assumed to be negligible.   
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Figure 5: Energy source behavior 

The number of periodic tasks in a task set is arbitrary, and the task 
period is chosen from a set {10, 20, 30, …, 100}, where each value has 
the same opportunity of being selected.  For the sake of simplicity, 
the relative deadline of the periodic task is set to its period. The worst 
case execution time of the task is obtained in the following way: 
assuming the average harvested power is SP , and the task period is p.  
The energy consumption e for the task under the worst case is 
generated in terms of the uniform distribution [0, pPS ⋅ ].  Then its 
worst case execution time is equal to e/Pmax.   

The utilization U of a processor is defined as  

∑=
m m

m
p
wU                  (14) 

where wm is the worst case execution time of task τm, and pm is the 
period of task τm. The utilization U cannot be larger than 1. Otherwise, 
the processor is not able to schedule tasks while respecting their 
deadlines. In order to get the specific utilization, we scale the worst 
case execution time of each task in a task set in the same ratio.  

In the beginning of the simulation, the energy storage is full. The 
simulation terminates after 10,000 time units and is repeated for 5,000 
task sets for a specific utilization.   

5.2 Improvement in remaining energy 
First we take interest in the remaining energy in the system. For the 

fair comparison of LSA and EA-DVFS, all simulations are performed 
under the same condition.  The utilization has significant impact on 
the stored energy.  In this subsection, we set U to 0.4 and 0.8 
respectively.  

As results from all simulation scenarios show similar trends of 
remaining energy if U is set to the same value, we only exhibit the 
results with 5 periodic tasks in a task set.   

When the storage capacity is varying, the absolute remaining 
energy varies accordingly. In order to eliminate the effect of the 
storage capacity, the remaining energy is normalized. In this set of 
simulations, the capacity is set to 200, 300, 500, 1000, 2000, 3000 and 
5000.  Then the weighted average of normalized remaining energy 
for each capacity is calculated to get the final remaining energy, each 
normalized remaining energy having the same weight.   

When U is set to 0.4, the remaining energy curves in the LSA-based 
system and the EA-DVFS-based system are both plotted in Figure 6. 
As shown in Figure 6, the EA-DVFS-based system stores significantly 
more energy than the LSA-based system on average. That is because 
EA-DVFS algorithm slows down the task execution for energy savings; 

however, LSA-based system always executes the task at the full speed 
and it consume more energy to finish an identical task.   
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Figure 6: Remaining energy with low utilization 

 
When U is set to 0.8, we get another plot shown in Figure 7.  By 

observing the stored energy,  we find that EA-DVFS-based system 
only has slightly more stored energy than the LSA-based system. The 
reason is twofold: On one hand, when the utilization is high, the 
processor rarely has chance to slow down the task execution for energy 
saving; most of time both algorithms execute the task at the full speed. 
On the other hand, the system also reduces the chance to be 
completely idle for energy harvesting from the environmental energy 
source, which results in that the consumed energy can not be 
supplemented in time.  
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Figure 7: Remaining energy with high utilization 

5.3 Reduction in deadline miss rate 
As observed in Figure 6, the EA-DVFS based system has 

significantly more stored energy that LSA based system when 
utilization is low.  The more stored energy means that more tasks are 
able to be finished before their deadlines.  Hence, the EA-DVFS 
system significantly reduces the deadline miss rate due to energy 
shortage, compared to LSA-based system, as shown in Figure 8, where 
U is set to 0.4.   

Through observing the results shown in Figure 8, we know that 
when both systems have the same storage capacity, EA-DVFS 
algorithm reduces the deadline miss rate over 50% on average, 
compared to LSA algorithm. 

If we increase U to 0.8 and run the simulation again, we find 
EA-DVFS algorithms performs as well as LSA algorithm does, shown 
in Figure 9. That is because the EA-DVFS based system seldom has 
chance to slow down the execution for energy savings when utilization 
is high, and most of tasks are just executed at the full speed, as LSA 
algorithm does.  
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Figure 8: Deadline miss rate with low workload (U=0.4) 
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Figure 9: Deadline miss rate with high workload (U=0.8) 

5.4 Decrease in storage capacity 
We also run another set of simulations to get the minimum storage 

capacity which is the threshold capacity to maintain zero deadline miss 
rate.  Symbols Cmin,EA-DVFS and Cmin-LSA are used to represent the 
minimum storage from EA-DVFS algorithm and LSA algorithm 
respectively. The utilization U is swept from 0.2 to 0.8 with a step 0.2.  
The simulations results are shown in table 1.   

Table 1: The ratio of the minimum storage capacities 

U 0.2 0.4 0.6 0.8 

Cmin-LSA/Cmin,EA-DVFS 2.5 1.33 1.05 1.01 

When utilization is as low as 0.2, Cmin-LSA is 2.5 times as large as 
Cmin,EA-DVFS to maintain the zero deadline miss rate.  However, the 
difference reduces with the utilization increasing. When utilization is 
0.8, Cmin-LSA is only 1% larger than Cmin,EA-DVFS.  The reason is just as 
before: when the utilization is low, the EA-DVFS-based system is able 
to reduce the task execution for energy savings. The saved energy is 
used for running future tasks, so the system just needs a smaller 
capacity to keep the zero deadline miss rate, compared to the LAS 
based system. While the workload increases, both algorithms execute 
the task in the similar way, accordingly they nearly have the same 
requirement on the energy storage to keep zero deadline miss rate. 

6. Conclusions   
We have proposed an energy aware dynamic voltage and frequency 

selection algorithm in this paper. The proposed algorithm runs tasks at 
the full speed if the stored energy is sufficient; otherwise, the system 
slows down the task execution for energy savings. The efficiency of 

EA-DVFS algorithm to save energy depends on the processor 
utilization. When the utilization is low, the processor has great 
potential to save energy by slowing down the task execution.  
Accordingly, when utilization is 0.4, the proposed EA-DVFS 
algorithm reduces deadline miss rate by at least 50%, compared to 
LSA algorithm.  Similarly, the proposed EA-DVFS algorithm also 
decrease the minimum storage size by at least 25% to keep the zero 
deadline miss rate with low workload. 

However, when utilization is high, the processor seldom has chance 
to trade the task slack for energy saving, the proposed EA-DVFS 
algorithm just performs as well as LSA algorithm does.  

Finally we points out that the proposed EA-DVFS algorithm is very 
effective in reducing deadline miss rate and storage size for a real-time 
system with energy-harvesting ability when the workload is not high.  
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