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Abstract - This paper presents a novel power management 

techniques based on enhanced Q-learning algorithms. By exploiting the 
submodularity and monotonic structure in the cost function of a power 
management system, the enhanced Q-learning algorithm is capable of 
exploring ideal trade-offs in the power-performance design space and 
converging to a better power management policy. We further propose a 
linear adaption algorithm that adapts the Lagrangian multiplier λ to 
search for the power management policy that minimizes the power 
consumption while delivering the exact required performance. 
Experimental results show that, comparing to the existing expert-based 
power management, the proposed Q-learning based power 
management achieves up to 30% and 60% reduction in power saving 
for synthetic workload and real workload, respectively while in average 
maintain a performance within 7% variation of the given constraint.  

I. Introduction 
System level power management must consider the uncertainty 

and variability that comes from the environment, the application 
and the hardware. Statically optimized resource and power 
management are not likely to achieve the best performance when 
the input characteristics are changing. Good power management 
controllers should be able to observe, learn and adapt to different 
hardware systems and different working environments.  

Many existing works focus on the stochastic nature of the power 
management problem [1]~[4]. However, their techniques require 
offline system modeling and policy optimization and hence are not 
adaptive. Reference [5] proposes a user-based adaptive 
management technique that considers user annoyance as a 
performance constraint. However, this approach requires offline 
training, which is not suitable in a changing environment.  

An on-line learning algorithm in [6] dynamically selects the best 
DPM policies from a set of candidate policies called experts. Each 
expert has a weight factor, the value of which indicates the benefit 
gained if the correspondent expert was chosen during the last idle 
period. The one with the highest value will control the device for 
the next idle period. Reference [7] proposes a similar approach 
using a different learning algorithm. The expert-based machine 
learning algorithm is able to find an appropriate DPM policy in 
short time without any prior workload information. However, it 
cannot explore the power performance trade-offs effectively.  

In this paper, we propose a novel approach for system level 
power management using enhanced Q-learning.   The traditional Q-
learning algorithm provides a model-free solution for the Markov 
Decision Problem. It provides provable convergence to the optimal 
solution in a Markovian environment. Some research works have 
investigated the feasibility of applying the traditional reinforcement 
learning to solve the problem in a non-Markovian environment or a 
partially observable Markovian environment [10][11]. Their results 
show that Q-learning is capable to achieve the same performance as 
the other reference learning algorithms at the cost of slower 
convergence speed. This paper focuses on improving the 
convergence speed of the Q-learning for the DPM problem. 

Scheduling and management of queuing system has been studied 
in many domains including multiuser wireless communication. It is 
proven that given a system with a submodular and monotonic cost 
function, the actions in the optimal policy are nondecreasing to the 

number of waiting requests [12]. That is, higher processing speed 
should be used when there are more requests waiting in the system. 
A structured learning algorithm has been proposed to schedule the 
packets in a MIMO (multiple input multiple output) wireless 
communication system [8]. 

In this paper, we adopt the method in [8] and enhance the 
performance of traditional Q-learning by exploiting the 
submodularity and monotonic structure in the cost function of a 
power management system. The enhancement confines the Q-
learning algorithm to search only the policies whose action is none 
decreasing to the number of waiting requests, which improves the 
search speed. Based on the enhanced Q-learning algorithm, we 
further propose a linear adaption algorithm that adapts the 
Lagrangian multiplier λ to search for the power management policy 
that minimizes the power consumption while delivering the exact 
required performance. This property is important to autonomous 
power management because it ensures that the power management 
algorithm can adapt itself during the runtime to maintain a constant 
performance when the workload varies or to meet a changing QoS 
(quality of service) requirement.  

The main characteristics of the proposed learning algorithm are 
summarized as follows. 
1. The power manager does not require any prior knowledge of the 

workload neither does it depend on any pre-designed experts, or 
any DPM policies. 

2. The search space of the power management controller is 
restricted. Therefore it converges to a better policy in less time. 
Compared to the power management using traditional Q-learning, 
the proposed learning algorithm provides 40% and 90% 
reduction in power and latency respectively. 

3. The power management controller is able to adapt itself to the 
changing performance constraint during runtime. The 
experimental results show that it can converge to a policy that 
delivers just enough performance with minimum power 
consumption within 50 updates.  

4. Experimental results show that, comparing to the existing expert-
based power management, the proposed Q-learning based power 
management achieves up to 30% and 60% reduction in power 
saving for synthetic workload and real workload respectively.  

    The outline of the paper is as follows. Section II gives our 
problem formulation. Section III presents the enhanced Q-learning 
algorithm and the Lagrangian multiplier updating algorithm. The 
experimental results and analysis are presented in Section IV. We 
conclude the work in Section V. 

II. Problem Formulation 
The power management system is similar to many previous 

works in stochastic power management, which consists of a service 
requestor (࣭࣬), a service provider (࣭࣪), and a service queue (࣭࣫). 
The service requestor generates different types of requests to be 
processed by the service provider. These requests are first buffered 
in a FIFO queue (࣭࣫) before being processed. The state space of 
the environment is the composite space comprising of ࣭࣬ states, 
࣭࣫ states and ࣭࣪ states.  

The power manager (PM) observes the system through a noisy *This work is supported in part by NSF under grant CNS- 0845947 



channel therefore it only receives the partial observation. As 
reference [4] pointed out, such partial observation can be caused by 
delayed information or hidden states in ࣭࣪ , ࣭࣬  or ࣭࣫ . For 
example,  ࣭࣬ has many request generation modes which are not 
distinguishable to the power manager. We use a finite set B = {o1, 
o2, o3, …, on} to denote the set of observations. If the system is 
Markovian, then the observation is a hidden Markov process. 

The object of power management is to minimize the average 
power consumption with respect to a given performance constraint. 
The action space can be denoted as a finite set A = {a1, a2, a3, …, 
an}, with n representing the number of all power modes that the ࣭࣪ 
can switch to. The power manager chooses an action for ࣭࣪ every 
time the system leaves one state and enters another. A discrete-time 
slotted model is used throughout this work, which means all the 
decision making and system state updating occur on a cycle basis.  

III. Enhanced Q-Learning for Policy Learning 
We modified the traditional Q-learning from four perspectives to 

provide better solution for the DPM problem. 
A. Modified Cost Function with Latency Constraint 

Our goal is to optimize the power while maintaining a certain 
level of overall performance. To extend the Q-learning to address 
our problem, we define a Lagrangian cost 

,ݏሺܥ ܽ; ሻߣ ൌ ܿሺݏ, ܽሻ ൅ ,ݏሺ݀ߣ ܽሻ                 (1) 

where ܿሺݏ, ܽሻ is the power consumption when action ܽ is taken in 
state ݏ , and ݀ሺݏ, ܽሻ  is the delay caused by the action. We set 
different delay costs for actions ݃݁ݒ݅ݐܿܽ_݋ and ݃݌݈݁݁ݏ_݋ that are 
described as following: 

݀ሺݏ, ሻ݁ݒ݅ݐܿܽ_݋݃ ൌ ;ݍ     ݀ሺݏ, ሻ݌݈݁݁ݏ_݋݃ ൌ ݍ כ ሺ1 ൅ ௧ܶ௥௔௡ሻ 
Where q is the number of requests in queue and ௧ܶ௥௔௡  is the 

average power mode switching time. 
B. Learning in the Observation Domain 

During each cycle, the agent obtains an observation of current 
system state, which may not be the real system state due to the 
noisy channel between the agent and the environment. The learner 
keeps a set of Q-values for each observation-action pair, which is 
updated in the same way as traditional Q-learning algorithm. 
ܳሺ݋, ܽ; ሻߣ ൌ ൫1 െ ߳ሺ௢,௔ሻ൯ܳሺ݋, ܽ; ሻߣ ൅ 

߳ሺ௢,௔ሻሺܿሺ݋, ܽ; ሻߣ ൅ ݉݅݊௔ᇲ ܳሺ݋ᇱ, ܽᇱ;                    ሻሻ  (2)ߣ
Next time when the same observation is re-observed, the action 

with the smallest Q-value is chosen and a new Q-value is again 
calculated. In another word, each observation cycle, we update the 
Q value for the observation-action pair of the previous cycle. 
C. Structure in Cost Function to Reduce Search Space  

Before presenting the enhanced Q-learning algorithm, we need 
to introduce the definition of submodular function, which has been 
widely used in recent years in combinatorial optimization [13]. 
    Definition 1: A function ݂: ܣ ൈ ܺ ൈ ܲ ՜ ܴ  is submodular in (a, 
x) if for all ݌ א ܲ, ܽԢ ൒ ܽ, and ݔԢ ൒ ,ሺܽᇱ݂ ,ݔ ;ᇱݔ ሻ݌ െ ݂ሺܽ, ;ᇱݔ ሻ݌ ൑
݂ሺܽᇱ, ,ݔ ; ሻ݌ െ ݂ሺܽ, ;ݔ ሻ݌ .A policy ߨ  is nondecreasing in the ࣭࣫ 
state ݍݏ if the index of the action ܽ ൌ ,݌ݏሺሾߨ ,ݍݏ  ሿሻ taken in theݎݏ
state ሾ݌ݏ, ,ݍݏ  for each ࣭࣪ state ݍݏ ሿ is nondecreasing in ࣭࣫ stateݎݏ
 ,It is proven that if the cost function C(sq, sp, sr .ݎݏ and ࣭࣬ state ݌ݏ
a; λ) is submodular and convex of (sq, a), and if it is also an 
increasing function of ݍݏ, then optimal policy is a nondecreasing 
function of ݍݏ  [12]. The original proof is made for transmission 
scheduling in a wireless communication system. However, it can be 
extended to our DPM system because of the analogy between these 
two. This property indicates that with the increase of waiting 
requests in ࣭࣫, the optimal policy should process requests from ࣭࣫ 
at a higher speed, and hence a higher probability to keep ࣭࣪ active.  
  Theorem 1. The Q function ܳሺݍݏ, ,݌ݏ ,ݎݏ ܽ;  ሻ of a nondecreasingߣ

policy is submodular in the domain of (a, sq), that is:  
ܳሺܽᇱ, ;ᇱݍݏ ,݌ݏ ሻݎݏ െ  ܳሺܽ, ;ᇱݍݏ ,݌ݏ  ሻݎݏ

                               ൑ ܳሺܽᇱ, ;ݍݏ ,݌ݏ ሻݎݏ െ  ܳሺܽ, ;ݍݏ ,݌ݏ  ሻ  (3)ݎݏ
,ܽ׊ ܽԢ א A, ܽԢ ൒ ܽ ,ݍݏ׊ , Ԣݍݏ א ࣭࣫ Ԣݍݏ , ൒ ݍݏ ݌ݏ׊ , א ࣭࣪  and 
ݎݏ׊ א ࣭࣬. 

Theorem 1 gives an important property of a nondecreasing 
policy that can be used to enhance the performance of the 
traditional Q learning algorithm.  

Based on the above analysis, we confine our policy search to the 
nondecreasing policies whose Q values satisfy equation (3). By 
reducing the search space, we will find the better policy in less time.  

Also, by rewriting the Bellman equation we have the following 
equation for the general Q-learning: 

ॱ௦ᇱሾܿሺ݋, ܽ; ሻߣ  ൅  min௔ᇱ ܳሺ݋ᇱ, ܽᇱ; ሻߣ െ ܳሺ݋, ܽ; ሻሿߣ ൌ 0            (4) 
The goal of the enhanced Q-learning is to search for the policy 

that satisfies both (3) and (4). To achieve this goal we use Primal-
Dual method. First, based on fixed Lagrangian multiplier λ, we 
form the new Q-function parameterization to guarantee that Q 
factors are submodular. Let ߮௦௤,௔

௦௣,௦௥  for ݍݏ ൌ 0, … , ࣭࣫; ܽ ൌ
0, … , ;ܣ ݌ݏ א ࣭࣪  and ݎݏ א ࣭࣬  be the linear combination of 4 
related Q values as follows.  
(1) If ݍݏ ൌ 1, … , ࣭࣫; ܽ ൌ 1, … ,  then ,ܣ

        ߮௦௤,௔
௦௣,௦௥ ൌ ܳሺሾݍݏ െ 1, ,݌ݏ ,ሿݎݏ ܽሻ െ ܳሺሾݍݏ െ 1, ,݌ݏ ,ሿݎݏ ܽ െ 1ሻ         

െ൫ܳሺሾݍݏ, ,݌ݏ ,ሿݎݏ ܽሻ െ ܳሺሾݍݏ, ,݌ݏ ,ሿݎݏ ܽ െ 1ሻ൯. 
(2) If ݍݏ ൌ 0 or ܽ ൌ 0, then 

߮௦௤,௔
௦௣,௦௥ ൌ ܳሺሾݍݏ, ,݌ݏ ,ሿݎݏ ܽሻ. 

Meanwhile, we can define the two row vectors as follows: 
छ ൌ ሾܳሺሾݍݏ, ,݌ݏ ,ሿݎݏ ܽሻሿ;         શ ൌ ൣ߮௦௤,௔

௦௣,௦௥൧ 
The relation between छ  and શ  subject to the constraint on 

submodularity of ܳ factors can be written as below: 
શ ൌ छऎ ൒ ૙ 

where ऎ  is a ܣ ൈ ࣭࣫ ൈ ࣭࣪ ൈ ࣭࣬ dimensional block diagonal 
transformation matrix.  

Equation (4) holds for any ݋ א ܱ, ܽ א  and its next observation ܣ
state and action pair ݋ᇱ א ܱ, ܽԢ א  ,Applying the new row vector छ .ܣ
we rewrite this equation compactly as 

ॱሾ݃ሺछ; ݅, ݅Ԣሻሿ ൌ 0 
where ݅ ൌ ݍݏ ൅ ሺܽ െ 1ሻ · ࣭࣫ ൅ ሺ݌ݏ െ 1ሻ · ܣ · ࣭࣫ ൅ ሺݎݏ െ 1ሻ · ܣ ·
࣭࣫ · ࣭࣪  is the index of state-action pair ሺሾݍݏ, ,݌ݏ ,ሿݎݏ ܽሻ and ݅Ԣ is 
the index of next state-action pair ሺሾݍݏԢ, ,Ԣ݌ݏ ,Ԣሿݎݏ ܽԢሻ in vector छ. 
݃ሺछ; ݅, ݅Ԣሻ is a vector-valued function and the ݈th element of it can 
be described as 

݃௟ሺछ; ݅, ݇ሻ ൌ ቊ
0,                                                    ݂݅ ݈ ് ݅
ܿሺ݋, ܽ; ሻߣ ൅ min

௝אछೖ
छ௝ െ छ௜         ݂݅ ݈ ൌ ݅ 

where छ௜ᇱ is the set of all possible next state-action pairs ሺ݋ᇱ, ܽԢሻ.  
The Lagrangian of our optimization problem is described as 

ܮ ൌ ݂ሺछ; ݅, ݅ᇱሻ ൅  छऎ்ݒ  
where the gradient function of ݂ሺछ; ݅, ݅ᇱሻ is ݃ሺछ; ݅, ݅ᇱሻ and ݒ  is a 
ܣ ൈ ࣭࣫ ൈ ࣭࣪ ൈ ࣭࣬  dimensional row vector of Lagrange 
multipliers for primal-dual method. This problem can be solved by 
iteratively updating the following formulas [9]: 

छሺ௧ାଵሻ ൌ छሺ௧ሻ ൅ ߳ሺሾ௦௤,௦௣,௦௥ሿ,௔ሻሾ݃൫छሺ௧ሻ; ݅, ݅ᇱ൯ ൅  ሺ௧ሻऎሿ               (5)ݒ
ሺ௧ାଵሻݒ ൌ max ሾݒሺ௧ሻ െ ߳ሺሾ௦௤,௦௣,௦௥ሿ,௔ሻछሺ௧ሻऎ, 0ሿ                             (6) 

where  ߳ሺሾ௦௤,௦௣,௦௥ሿ,௔ሻ is the learning rate of our algorithm. 
D. Lagrangian Multiplier Adaption 

The power manager using the enhanced Q-learning algorithm 
can provide ideal tradeoff between power and performance. This is 
achieved by tuning the Lagrangian multiplier λ in C(s, a; λ). 
Increasing λ will monotonically increase the performance and 



decrease the power saving. However the exact relation between λ 
and system performance cannot be quantified in advance. For a 
given performance constraint, we propose an iterative algorithm 
that adapts the λ to the most suitable value.  

Let ܦሺߨఒ
 ሻ denote the average latency of the optimal policy. Weכ

know that ܦሺߨఒ
ሻכ  is a decreasing function of λ. The following 

function is used to adaptively update λ per fixed time period. 
                              λ௧ାଵ ൌ λ௧ ൅ ݇ሺܦሺߨఒ

ሻכ െ  ሚሻ                          (7)ܥ
The function calculates the new ߣ௧ାଵ  as the summation of 

previous ߣ௧  and the updating value. In this equation, ݇  is the 
adapting coefficient which has the most important impact.  

 
 
 
 
 
 
 
 
 

Figure 1 Algorithm for Lagrangian Multiplier λ Adaption. 

Figure 1 gives the linear adaption algorithm. The value of λ 
converges when the relative difference between the average latency 
ఒߨሺܦ

 ሚ is less than 5%. Once the valueܥ ሻ and the latency constraintכ
of λ converges, we will continue using this policy until the ܦሺߨఒ

 ሻכ
deviates from ܥሚ by more than 10% which indicates that the service 
request pattern has been changed. After that the linear adaption 
algorithm will start the updating equation again. 

Although the adaptive algorithm is a general technique that can 
be used by any power manager which can explore the performance 
and power tradeoffs, its feasibility is enabled by properties that are 
pertinent to the enhanced Q-learning. Firstly, the enhanced Q-
learning is capable of providing ideal power-performance tradeoffs. 
Therefore for a given ܥሚ, we can find a λ that gives performance 
close to ܥሚ . Secondly, the enhanced Q-learning converges to the 
optimal policy very quickly.  

IV. Experimental Results and Analysis 
We evaluate the performance of the enhanced Q-learning 

algorithm using both synthetic workloads and real workloads. The 
results are compared against the traditional Q-learning algorithm 
and the expert-based machine learning algorithm [6]. In the rest of 
the paper, we refer to these three techniques as enhanced Q-
learning, traditional Q-learning and expert-based DPM. Three 
algorithms are adopted as experts in the expert-based DPM: fixed 
timeout policy, adaptive timeout policy, and exponential predictive 
policy. TABLE I shows the characteristics of mentioned policies.  
A. Experiment Using Synthetic Workload 

In this section, we implement our simulation based on 
synthesized workload. The requests are generated by an ࣭࣬ model 
that has three states, s1, s2, and s3 whose incoming request rates 
are 0.01, 0.10, and 0.25 respectively. At each cycle, a state has 0.01 
probabilities switching to any of the other two states. Note that the 
power manager does not know the ࣭࣬ model. Furthermore, since 
our system is partially observable, we assume that the power 
manager is not able to distinguish the two modes, s1 and s2, which 
generate requests at relatively low speeds. Hence, the power 
manager will receive two observations about ࣭࣬ , one is high 
workload mode and the other is low workload mode. 

The ࣭࣪ used in the simulation is a hard disk drive (HDD) which 
has two power modes, Active and Sleep. Its power consumption 
and switching time are shown in TABLE II. The unit for ௧ܶ௥௔௡ and 

௕ܶ௘ is cycle. The service rate of ࣭࣪ is 0.5/cycle. The ࣭࣫ can hold 
up to 5 waiting requests; therefore there are 7 different states of ࣭࣫ 
including empty queue state and overflow state. 

TABLE I. Characteristics of compared policies. 
Policy Characteristics 

Fixed Timeout Timeout = 3 ൈ ௕ܶ௘ 
Adaptive Timeout Initial timeout = 3 ൈ ௕ܶ௘, Adjustment = +/-1 cycle

Exponential Predictive [6] ௧ାଵܫ ൌ ߙ · ݅௧ ൅ ሺ1 െ ሻߙ · ߙ , ௧ܫ ൌ 0.5 
Expert-based Learning Uses the above three policies as experts. 

We develop a cycle-based simulator that reports the average 
power consumption and latency. We run the simulation for 50,000 
cycles. All of the results reported in this paper are the averages over 
20 different simulations with different random seeds. 

TABLE II Characteristics of Service Provider. 
Device ௔ܲ௖௧௜௩௘  ௦ܲ௟௘௘௣ ௧ܲ௥௔௡ ௧ܶ௥௔௡ ௕ܶ௘ 

HDD 1.6 0.4 2.4 2.5 4.2 

.   The Lagrangian multiplier λ controls the power-latency tradeoff 
in our enhanced Q-learning algorithm. We vary the value of λ from 
0.01 to 50 in order to generate a power-performance tradeoff curve 
in design space. We fix learning rate to Ԗ ൌ 0.25 

For the expert-based DPM [6], the agent learns how to choose 
the most proper expert based on the workload. We evaluate three 
different versions of expert-based DPM by setting the timeout of 
the fixed timeout expert to Tbe, 3Tbe, and 5Tbe,. The other experts 
remain to be the same.  The expert-based DPM also has a 
parameter ߙ א ሺ0,1ሻ  that can be used to control the tradeoff 
between the power and performance.  

Figure 2 gives the power-latency tradeoff curves for the 
enhanced Q-learning, the traditional Q-learning, and the expert-
based DPM. It shows that the enhanced Q-learning algorithm finds 
better policy with more evenly distributed power-latency tradeoff 
points and wider tradeoff range. It consumes lower power while 
maintaining the same average latency as the expert-based DPM.  

 
Figure 2. Power/Latency tradeoff curves for synthetic workload. 

The next experiment is to evaluate the performance of the linear 
adaptation algorithm to find the most suitable Lagrangian 
multiplier λ with respect to the given latency constraint ܥሚ . We 
choose ݇ ൌ ሺ0.05/10݃݋݈ ൈ ሚሻܥ  as the adapting coefficient in 
Equation (7).  

We do λ adaption every 200 cycles and begin to calculate 
average power-latency values 50 cycles after the new updated λ is 
applied to our Q-learning algorithm. The 50 cycles here is 
considered to be adaption period for the new ߣ௧ାଵ. 

TABLE III Results for λ Adaption in Synthetic Workload. 
Constraints 0.973 0.123 0.079 0.049 0.026 0.022 

Actual 1.028 0.136 0.071 0.046 0.026 0.023 

Difference 5.6% 10.7% 9.1% 5.5% 0.7% 4.7% 

Updates   48 7  11   13    1   22 

TABLE III shows some of the results of λ adaption method. The 
first row gives the constraints represented by the average number of 

Calculate ܦሺߨఒ
 ;ሻכ

If flag = Ԣ݊݁݃ݎ݁ݒ݊݋ܿ ݐ݋Ԣ     /* still searching for a suitable λ */        
          If หܦሺߨఒ

ሻכ െ ሚหܥ ൐ 5% ·  ሚܥ
         Updating_λ: λ௧ାଵ ൌ λ௧ ൅ ݇൫ܦሺߨఒ

ሻכ െ  ;ሚ൯ܥ
           Else 
 Set flag = Ԣܿ݁݃ݎ݁ݒ݊݋ᇱ; 
Else if flag = Ԣܿ݁݃ݎ݁ݒ݊݋Ԣ     /*already find out the suitable λ */ 
          If หܦሺߨఒ

ሻכ െ ሚหܥ ൐ 10% ·  /*௧ not suitable any moreߣ*/   ሚܥ
               Set flag = Ԣ݊݁݃ݎ݁ݒ݊݋ܿ ݐ݋ᇱ;  
               λ௧ାଵ ൌ λ௧ ൅ ݇൫ܦሺߨఒ

ሻכ െ  ;ሚ൯ܥ
End 
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requests in SQ. The second row gives the average latency that is 
measured in the system after the linear adaptation converges. The 
third row shows the relative difference between these two. 
According to our experiment, for about 90% of times the linear 
adaptation algorithm can converge to a policy whose performance 
is within 7% of the given constraint in less than 50 updates. 
B. Experiment Using Real Workload 

Experiments in this section are performed using real workloads. 
Using Windows Performance Monitor, we collected hard disk 
read/write request sequences from two desktop workstations.  

Instead of using the number of requests, we use the aggregated 
transaction size of the requests to represent the state ࣭࣬ and ࣭࣫. 
The current state of ࣭࣬ is represented by the total transaction size 
of all of the incoming requests in this cycle while the current state 
of ࣭࣫ is represented by total transaction size of all of the waiting 
requests in the queue. We further discretize the state space of ࣭࣬ 
and ࣭࣫ . Both ࣭࣬  and  ࣭࣫  are divided into 7 different states: 
0(empty state), 1(0~1MB), 2(1~2MB), 3(2~3MB), 4(3~4MB), 
5(4~5MB), 6(> 5MB, overflow state).The ࣭࣪  used in the 
simulation is TOSHIBA MK6006AH hard disk drive (HDD) [14]. 
Its power consumption and switching time are reported in TABLE 
IV. The service rate for both read and write of ࣭࣪ is 16.6MB/sec.  

TABLE IV Characteristics of Service Provider. 

௔ܲ௖௧௜௩௘ሺܹሻ ௦ܲ௟௘௘௣ሺܹሻ ௧ܲ௥௔௡ሺܹሻ ௧ܶ௥௔௡ሺܿ݁ݏሻ ௕ܶ௘ሺܿ݁ݏሻ 

1.1 0.12 1.2 3.0 6.6 

The first trace was collected at night when only two applications 
were running and it took more than 200 minutes. We label this trace 
as “ݓ݋݈_݁ܿܽݎݐ”. The other one was collected at noon with a set of 
applications running simultaneously and high disk I/O activities. 
We label this trace as “݁ܿܽݎݐ_݄݄݅݃”. 

 

 
Figure 3. Performance of different algorithms under low workload. 

Figure 3 shows the power-latency tradeoff curves for ݓ݋݈_݁ܿܽݎݐ. 
As shown in the figures, for different expert-based algorithms, ࣭࣪ 
keeps active most of the time in order to achieve high performance. 
The proposed enhanced Q-learning finds better policy that achieves 
lower power consumption with the cost of slightly higher latency. 
The enhanced Q-learning is able to explore the power-latency 
tradeoff more effectively.   

 
Figure 4. Performance of different algorithms under high workload.   

  Figure 4 gives the experimental results for ݁ܿܽݎݐ_݄݄݅݃ . The 
proposed Q-learning algorithm can reach up to 27% power saving 
compared to expert-based algorithm.  

The real workload is different from the synthetic workload 
because its incoming rate is time varying.  Therefore, the value of λ 

has to be adjusted from time to time during the runtime in order to 
satisfy the same performance constraint. For both traces, the 
latency/performance variation during the entire simulation can be 
controlled within 10% of the given constraint.  

At the end, we varied the performance constraint and tested the 
linear adaption algorithm. TABLE V gives us the results in the 
main range of latency constraints. The average latency is the value 
for the entire simulation time. The average difference between 
latency constraint and actual latency is 6.88%. 

TABLE V Results for λ Adaption in Real Workload. 
Constraints 0.365  0.244 0.150 0.111 0.097 0.086 

Actual 0.321 0.241 0.147 0.111 0.096 0.088 

Difference 11.9% 1.5% 1.4% 0.7% 1.0% 2.9% 

V. Summary and Conclusions 
    In this paper, we present a novel model-free on-line algorithm 

for dynamic power management with performance constraint. By 
restricting the search space of power manager, the proposed 
algorithm converges to a better policy quickly. Furthermore, our 
power manager is able to adapt itself to the changing performance 
constraint during runtime. 
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