
Structural Design Optimization for Deep Convolutional Neural
Networks using Stochastic Computing

Zhe Li∗, Ao Ren∗, Ji Li†, Qinru Qiu∗, Bo Yuan‡, Jeffrey Draper§†, Yanzhi Wang∗
∗Syracuse University, Syracuse, USA ({zli89, aren, qiqiu, ywang393}@syr.edu)
†University of Southern California, Los Angeles, USA (jli724@usc.edu)
‡City University of New York, New York, USA (byuan@ccny.cuny.edu)
§Information Sciences Institute, Marina Del Rey, USA (draper@isi.edu)

Abstract—Deep Convolutional Neural Networks (DCNNs) have
been demonstrated as effective models for understanding image
content. The computation behind DCNNs highly relies on the
capability of hardware resources due to the deep structure.
DCNNs have been implemented on different large-scale com-
puting platforms. However, there is a trend that DCNNs have
been embedded into light-weight local systems, which requires
low power/energy consumptions and small hardware footprints.
Stochastic Computing (SC) radically simplifies the hardware
implementation of arithmetic units and has the potential to satisfy
the small low-power needs of DCNNs. Local connectivities and
down-sampling operations have made DCNNs more complex to
be implemented using SC. In this paper, eight feature extraction
designs for DCNNs using SC in two groups are explored and
optimized in detail from the perspective of calculation precision,
where we permute two SC implementations for inner-product
calculation, two down-sampling schemes, and two structures of
DCNN neurons. We evaluate the network in aspects of network
accuracy and hardware performance for each DCNN using one
feature extraction design out of eight. Through exploration and
optimization, the accuracies of SC-based DCNNs are guaranteed
compared with software implementations on CPU/GPU/binary-
based ASIC synthesis, while area, power, and energy are signif-
icantly reduced by up to 776×, 190×, and 32835×.

I. INTRODUCTION

Deep Convolutional Neural Networks (DCNNs) have been
demonstrated as effective models for understanding image
content [1], due to their special structural designs [2] of layer-
wise local connections implementing convolution, integrating
pattern matching techniques into neural networks, and learning
invariant elementary features of images. Researchers has made
significant achievements utilizing DCNNs in image classifica-
tion [3], video classification [1], and object detection [4].

The computation behind DCNNs highly relies on the ca-
pability of hardware resources due to the deep structure.
From high performance server clusters [5] to General-Purpose
Graphics Processing Units (GPGPUs) [6], parallel accelera-
tions of DCNNs are widely used in both the academic and
industrial world. Moreover, hardware oriented acceleration for
DCNNs has attracted enormous research interests on Field-
Programmable Gate Arrays (FPGAs) [7]. Nevertheless, there
is a trend that DCNNs have been embedded into light-
weight local systems, which requires low power/energy con-
sumptions and small hardware footprints [8], such as self-
driving systems [9], and wearable devices [10]. A promising
technique that guarantees smaller hardware footprints with
limited power/energy budget is urgently needed [11].

Stochastic Computing (SC), as a low-cost substitute to
binary-based computing [12], radically simplifies the hardware
implementation of arithmetic units and has the potential to
satisfy the small low-power needs of DCNNs. Many complex
arithmetic operations can be implemented with very simple
hardware logic in a stochastic computing framework, allevi-
ating the extensive computation complexity, and offering a
colossal design space for integration and optimization due
to its reduced area and error resiliency [13]. Predecessors in

[12,14,15] investigated SC’s applications on neural networks
and Deep Belief Networks (DBNs), which validated the possi-
bility to design DCNNs using stochastic components.

However, unlike DBNs, local connectivities and down-
sampling operations [2] have made DCNNs more complex
to be implemented using SC. Moreover, software experience
is not in accordance with hardware implementations for SC-
based DCNNs. The contributions of this paper are concluded
as follows, 1) We investigated previous hardware designs using
SC for DCNN and optimized essential components which have
never been studied in existing researches; 2) We explored
eight structural designs for blocks in DCNN using SC. We
proposed optimization jointly configuring hardware compo-
nents’ parameters guaranteeing a high calculation precision for
each design; 3) We incorporated each aforementioned block
design into a complete DCNN. Network accuracy performance
was evaluated showing a close performance to a software-
based DCNN. Hardware synthesis results demonstrated that
proposed hardware designs for DCNNs were able to achieve
a smaller hardware footprint and lower power/energy.

II. OVERVIEW OF DEEP CONVOLUTIONAL NEURAL
NETWORK ARCHITECTURE

In spite of an input layer and an output layer, a general
DCNN architecture consists of a stack of convolutional layers,
pooling layers, and fully connected layers. In general, we can
conclude three kinds of basic function blocks in a DCNN infer-
ence process based on their corresponding operations as Fig.1
shows. Neurons in convolutional layers and fully connection
layers calculate the inner-product shown in Fig.1(a) of inputs
and weights corresponding to their incoming connections with
the previous layer. Please note convolution is essentially a
calculation of inner-product. And the products are sub-sampled
through a pooling neuron shown in Fig.1(b) either by an
average pooling or a max pooling. The inner-products or sub-
sampled outputs are transformed by an activation function
shown in Fig.1(c) to ensure the inputs of next layer are within
the valid range. Typical activation functions are Rectified
Linear Units (ReLU), hyperbolic tangent (tanh), and sigmoid.

Usually, a combination of convolutional neurons, pooling
neurons, and activation functions forms a feature extraction
block (FEB) to extract high-level abstraction from the input
images or previous low-level features. The overall network
accuracy (e.g., the overall classification rates) is one of the

w1

w2
w3

w4

wn

x1

x2

x3

x4

xn

...

Σ ϕ

5 Inner Product
Activation
 Function

Pooling
8

1 6
3
4

7
2

6
9

5
4

7
6

8
7

8
7

9
8

5
4

6
7

Average Pooling Max Pooling

 (a) (b) (c)
Fig. 1. Neurons in a DCNN. (a) Inner-Product, (b) pooling, and (c) activation

key optimization goals of the SC-based DCNN. On the other
hand, the SC-based function blocks and FEBs exhibit a certain
degree of imprecision due to the inherent stochastic nature.
The network accuracy and hardware precision are different
but correlated, i.e., the high precision in each function block
will likely lead to a high overall network accuracy. Hence,
the hardware precision should be optimized in the design of
SC-based function blocks and FEBs.

III. COMPONENT DESIGN USING STOCHASTIC
COMPUTING

In this paper, we adopt the bipolar encoding format of
stochastic computing, in which numbers in the range of [−1, 1]
are represented by bit-streams. To be more specific, a real
number x is processed by x = 2PX=1 − 1, where PX=1

indicates the probability of ones in bit-stream X . For instance,
0.4 can be represented by 1011011101.

A. Inner-Product Calculation Blocks
The inner-product calculation is composed of multiple

multiplications and one addition as it is shown in Fig 1(a).
Multiplications are conducted by XNOR gates [12] to generate
products of pairs of input and weight using bipolar encoding
format. In SC domain, the addition is accomplished by vari-
ous possible hardware implementations including Approximate
Parallel Counter (APC) [14] based and Multiplexer (MUX)
based adders. Details about APC-based inner-product calcu-
lation block can be found in [14]. As for MUX-based inner-
product calculation block, an n-to-1 MUX is used to sum up
all the products; the result of the MUX is the inner-product
of a pair of vectors with a scaling down factor of 1/n, since
every bit of the output is randomly selected from n input bits;
the probability of each input to be selected is 1/n. This is the
inherent down-scaling property of MUX. From the perspective
of stochastic computing, the output bit-stream represents a
number of 1

n

∑n−1
0 xiwi in Fig. 1(a) as an example.

B. Pooling Blocks
Average pooling was often used in earlier researches of

CNN [11] while max pooling has risen in favor due to its
better performance in practice. We investigate hardware im-
plementations for both pooling schemes. As Fig. 1(b) shows,
for instance, each 2 × 2 region of pixels in feature maps is
down-sampled to be one pixel. Average pooling calculates a
mean of a small matrix, thus similarly the inherent down-
scaling property of the MUX mentioned in Section III-A is
used to average stochastic numbers, i.e., a 4-to-1 MUX is
used to calculate the mean of four bit-streams. Max pooling,
on the other hand, tries to find the maximum value in a small
region. However, in the stochastic domain, the determination
of magnitude must be made after counting the whole bit
streams, which results in very long latency and a waste of
energy. In this paper, we adopt the hardware-oriented max
pooling design developed in [8], where the largest bit-stream
in the most recent segment is selected as the near-max output.

C. Activation Function Blocks
We investigate two tanh activation designs in this paper.

The original design of Finite State Machine (FSM) based
stochastic hyperbolic tangent (Stanh) block was proposed by
the authors in [12]. A relationship between Stanh and tanh
was given as Stanh(K,x) ∼= tanh(K2 x) with input x. An
input distributed in [−K

2 ,
K
2] in tanh is mapped to [−1, 1]

in Stanh guaranteeing this mapped number to be represented

TABLE I
THE DESIGNS OF FEBS AND CORRESPONDING OPTIMIZATION FUNCTIONS

No. Design Optimization Function Parameters
1 MUXIP-AVG-STANH K = f(L,N) ≈ 2 log2(N)+ γ = 33.27

N log2(L)/γ log2(N)
2 MUXIP-STANH-AVG K = f(L,N) ≈ α log2N+ α = 1.3

N log5 L/β log2N β = 8.74
3 MUXIP-NMAX-STANH K = f(L,N) ≈ 2(log2N + log2 L) α = 37

−α/ log2N − β/ log5 L β = 16.5

4 MUXIP-STANH-NMAX K = f(L,N) ≈ −γ
√
N log2N/L α = 1, β = 5

+α log2N + L/β log2 L γ = 5.2
5 APCIP-AVG-BTANH

K = g(N) ≈ αN

α = 0.5
6 APCIP-BTANH-AVG

α = 27 APCIP-NMAX-BTANH
8 APCIP-BTANH-NMAX

by a bipolar stochastic bit-stream. On the other hand, binary
number based hyperbolic tangent (Btanh) block is proposed
in [14], which is implemented by a saturated up/down counter
to convert the binary outputs of the APC-based inner-product
calculation block to bit-stream in SC domain.

IV. STRUCTURAL DESIGNS FOR DCNN USING SC
A. Co-Optimization of Stanh

Claimed in [12], the FSM design achieved better precision
with increased state number K. However, based on the eval-
uation in [16], this conclusion cannot be applied to our work
for three reasons: (i) when the input of tanh is distributed
in [−1, 1] instead of [−K

2 ,
K
2], the precision is not linearly

proportional to K; (ii) the aforementioned conclusion resulted
from the assumption that x is precisely represented, which
means the bit-stream must be very long. But when the bit-
stream is not impractical long, the bit-stream length must be
taken into consideration to refine the equation; (iii) MUX-
based inner product blocks will scale down the real inner
product values, so a scaled-down input to Stanh must be
scaled back to [−1, 1] by selecting a proper state number
K. Hence, equation Stanh(K,x) ∼= tanh(K2 x) must be
optimized considering bit-stream length and scaling factor of
the inputs. We proposed an optimized function K = f(L,N)
where L is the length of bit-stream and N is the fan-in, and the
optimized parameters will be discussed later in this section.

B. Proposed Structural Designs of Feature Extraction Blocks
In software-level design, a FEB of DCNN is formed by

convolution neurons, pooling neurons and activation function
in order.This is reasonable, because intuitively the order of
pooling before activation can save 3/4 computation resources
to do the activation. However, in hardware design, due to
the cross-dependency of components and their effects on
calculation precision, another arrangement of neurons (pooling
after activation) in an FEB must be investigated [17]. In this
section, we investigate two different arrangements.

Eight designs of FEBs are analyzed and optimized listed
in Table I by permuting MUX-based inner-product calculation
block (in short, MUXIP), APC-based inner-product calculation
block (APCIP) Average pooling (AVG), Near-Max Pooling
(NMAX), FSM-based Stanh (STANH) and Binary-based Btanh
(BTANH). For each design, we extract empirical functions by
regression of exhaustive data samples, which is shown in Table
I. The enormous data samples are generated randomly and the
expected outputs are regarded as golden references for the
regression functions respectively. The functions are obtained
by minimizing the difference between golden reference and
the calculated value of a design with a specific K.

As shown in Table I, given the input size N (and bit-stream
length L for MUXIP based designs), an optimal number of

Fig. 2. Imprecision for Optimized FEBs with bit-stream length L =
256, 512, 1024

K is the nearest even number of the result calculated by
the corresponding function. Please note in No. 5, each set
of output of the average pooling block is a binary number
instead of stochastic a bit-stream, the formula proposed by
[14] to determine the optimal state number should be modified
because of the existence of the average pooling block. Thus the
parameter α is adjusted to 0.5. In No. 6 and 8, the BTANHs
are directly connected with APCIPs just as they are originally
designed, thus the formula proposed in [14] to determine the
optimal state number is not modified. However, since we do
not conduct the pre-scaling, the scaling factor s in [14] is 1, α
is adjusted to 2. In No. 7, since the NMAX pooling block for
binary numbers is accurate (implemented by accumulators),
APCIP is regarded to connect with BTANH directly, then the
same parameter of α = 2 is used.

C. Results for Feature Extraction Blocks
Fig. 2 shows the imprecisions of eight FEB designs. Each

evaluation is given 10, 000 sets of random inputs ranging from
−1 to 1 with different input sizes, i.e. 16, 32, 64, 128, 256 and
bit-stream lengths, i.e. 256, 512, 1024. The average absolute
error is used as the measure of imprecision, which is the mean
of the absolute difference between the expected results and the
observed results for the same test cases. We observed for each
design that (i) as a bit-stream gets longer, the absolute error
decreases for the same input size. Because a number can be
represented more precisely with longer bit-streams. But the
improvements are not significant from the observation of each
group of bars in Fig. 2. (ii) With the same length of bit-stream,
additional inputs result in increase of imprecision.

From MUXIP-AVG-STANH and MUXIP-STANH-AVG, it
is observed that hardware-oriented design, where pooling
blocks follows activation function, halves that absolute error at
its best effort. Generally, APC-based FEBs are more accurate
than MUX-based ones, for APCs precisely count and sum
1s in the input bit-streams. However, as a special case, from

MUXIP-STANH-AVG and APCIP-BTANH-AVG, we can ob-
serve that when the input size reaches 64 or more, the MUX-
based design is more accurate than the APC-based one. For
both MUX-based and APC-based designs, near-max pooling
designs gives competitive and better results than average
pooling designs. Because in our average pooling design, we
use multiplexers to randomly select bits from one of the inputs
as the average of all inputs while in near-max pooling, our
selection of the maximum bit-stream from inputs is based on
local statistics. This greedy selection mechanism guarantees
the precision of designs using max pooling.

V. NETWORK OPTIMIZATION FOR DCNN USING SC

We evaluate our designs using LeNet-5 [2] network with
784− 11520− 2880− 3200− 800− 500− 10 configuration,
which is designed to identify MNIST [18] handwritten digits.
Validation error is evaluated using partial data from training
set while test error is evaluated using different data from
training set. We use Synopsys Design Compiler to synthesize
the DCNNs with the 45nm Nangate Open Cell Library [19].
The design of stochastic number generators (SNGs) proposed
in [20] are adopted in this work to generate the stochastic
bit-streams. Please note that we use the same inner-product
blocks for the neurons in the fully-connected layer as those
in the feature extraction layers, and the structural design co-
optimization is applied for inner-product blocks and activation
functions in fully-connected layers.

In Table. II, we conclude the software-based DCNNs as
the reference on the left side and shows the performance
for corresponding proposed hardware-based DCNNs on the
right side. There are totally four reference software-based
models. AVG-TANH represents a software-based LeNet-5
model with FEBs in which average pooling is followed by an
activation function of hyperbolic tangent. Similarly, we named
other three models as TANH-AVG, MAX-TANH, TANH-
MAX. Correspondingly, each software reference model has
two hardware implementations listed on the right side. Each
DCNN with one hardware FEB design is evaluated with
different lengths of bit-streams, i.e. 256, 512, 1024. Both
network accuracies (validation error rate and test error rate)
and hardware performance are analyzed. The delay and energy
are measured for one run of DCNN inference.

It is observed that the DCNNs using MUX-based inner-
product blocks (No. 1, 3, 5, 7) provide smaller footprints
while the DCNNs with APC-based inner-product blocks (No.
2, 4, 6, 8) achieve better network accuracies and lower pow-
ers. However, APC-based designs have longer path delays
than MUX-based designs with the same bit-stream length
correspondingly, which makes APC-based designs’ energy
consumptions are much higher. Average pooling based designs
(No. 1− 4) exploit smaller footprints than max pooling based
designs (No. 5− 8), for its simplicity in the hardware imple-
mentation (multiplexers only). For the same reason, average
pooling based designs show a lower power/energy than max
pooling based designs. The arrangements of pooling neurons
and activation functions reflects two different facts that for
some designs like No. 1 and No. 3, hardware-oriented modified
designs perform better network accuracy (smaller validation
and test error), whereas, for some designs like No. 5 and No.
7, SC implementations on software-based structure provide
better accuracy and hardware performance.

We also implemented the DCNNs on consumer-class
energy-efficient CPU (Intel R© Xeon R© E3-1230 v2), GPU

TABLE II
COMPARISON AMONG VARIOUS HARDWARE-BASED AND SOFTWARE-BASED DCNNS

No. Software Validation Test Area Power Delay Energy Harware Bit-stream Validation Test Area Power Delay Energy
Configuration Error (%) Error (%) (mm2) (W) (ns) (µJ) Configuration Length Error (%) Error (%) (mm2) (W) (ns) (µJ)

1

AVG-TANH 1.41 1.34

CPU MUXIP-
AVG-
STANH

256 10.54 11.55
6.62 3.3

332.8 1.1
160 41.4 876062 36268.97 512 9.80 9.96 665.6 2.2

GPU 1024 8.69 8.64 1331.2 4.4

2
148 54 39910 2155.14 APCIP-

AVG-
BTANH

256 1.72 1.69
13.98 3.1

1280.0 4.0
Binary-ASIC 512 1.61 1.54 2560.0 7.9

769.30 587.5 4.2 2.44 1024 1.48 1.50 5120.0 15.8

3

TANH-AVG 1.01 1.02

CPU MUXIP-
STANH-
AVG

256 7.91 8.01
11.42 8.1

332.8 2.7
160 41.4 1069806 44289.99 512 6.86 7.38 665.6 5.4

GPU 1024 6.11 6.59 1331.2 10.8

4
148 54 40969 2212.32 APCIP-

BTANH-
AVG

256 2.16 1.95
28.67 6.2

1280.0 7.9
Binary-ASIC 512 1.64 1.75 2560.0 15.8

4334.64 603.1 4.2 2.03 1024 1.67 1.60 5120.0 31.5

5

MAX-TANH 0.93 0.96

CPU MUXIP-
NMAX-
STANH

256 7.92 8.12
10.12 6.4

332.8 2.1
160 41.4 865169 35818.04 512 4.78 4.88 665.6 4.3

GPU 1024 3.18 2.96 1331.2 8.5

6
148 54 30178 1629.59 APCIP-

NMAX-
BTANH

256 1.11 1.08
28.29 5.6

1280.0 7.2
Binary-ASIC 512 1.15 1.04 2560.0 14.3

770.81 444.2 5.6 3.48 1024 1.02 0.96 5120.0 28.6

7

TANH-MAX 0.94 0.96

CPU MUXIP-
STANH-
NMAX

256 11.19 11.11
17.51 13.4

332.8 4.4
160 41.4 1059372 43858.03 512 7.84 8.18 665.6 8.9

GPU 1024 3.99 4.08 1331.2 17.8

8
148 54 40119 2166.46 APCIP-

BTANH-
NMAX

256 1.11 1.21
34.94 6.8

1280.0 8.7
Binary-ASIC 512 1.05 1.12 2560.0 17.5

1067.88 590.6 5.46 3.9 1024 1.02 1.06 5120.0 35.0

(Nvidia R© GeForce GTX 750 Ti), and synthesized binary com-
puting based application-specific integrated circuits (ASICs)
(in short, Binary-ASIC). The proposed SC-based hardware
designs of DCNN are much more area efficient, with im-
provements up to 24.17×, 22.36×, and 776.61× compared
to CPU, GPU, and synthesized Binary-ASICs respectively.
Besides, compared with CPU and GPU, proposed designs
of SC-based DCNN outperform in the aspects of energy
efficiency and power efficiency. They achieve up to 13.41×
power and 32, 835.32× energy improvements over CPU im-
plementations as well as up to 17.49× power and 1, 951.11×
energy improvements over GPU implementations. Regarding
the synthesized Binary-ASICs, the proposed designs provide
as high as 190.27× power efficiency improvements and up
to 2.21× energy efficiency improvement. Please note in each
Binary-ASIC synthesis, we implemented an ideal full-parallel
pipelined structure where SC-based components are replaced
with binary-based components and we used 8-bit fix-point
numbers for the implementation. Thus the Binary-ASICs con-
ducted the inference of a DCNN much faster, which made
the energy efficiency improvement by SC-based designs not
significant. But in reality, the power (400 ∼ 600W) and
area (700 ∼ 4000mm2) of the Binary-ASIC syntheses are
not acceptable. With the sequential logic to reduce the area
and power, the delay and energy consumption of the Binary-
ASICs will be considerably increased, so that the SC-based
DCNNs have the potential to achieve more substantial energy
improvements. The proposed SC-based DCNNs can achieve
as low as 1.02% validation error rate (No. 8) and 0.96% test
error rate (No. 6) which are extremely close to corresponding
software-based model results. In those cases, the power, area,
and energy of proposed SC-based designs are very small
compared to CPU and GPU implementations. Meanwhile,
those SC-based designs are more power/area efficient than
synthesized Binary-ASICs.

REFERENCES

[1] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, pp. 1725–1732.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[5] B. Catanzaro, “Deep learning with cots hpc systems,” 2013.
[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675–678.

[7] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space
exploration of fpga-based deep convolutional neural networks,” in 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2016, pp. 575–580.

[8] A. Ren, J. Li, Z. Li, C. Ding, X. Qian, Q. Qiu, B. Yuan, and
Y. Wang, “Sc-dcnn: highly-scalable deep convolutional neural network
using stochastic computing,” arXiv preprint arXiv:1611.05939.

[9] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue et al., “An em-
pirical evaluation of deep learning on highway driving,” arXiv preprint
arXiv:1504.01716, 2015.

[10] N. Y. Hammerla, S. Halloran, and T. Ploetz, “Deep, convolutional, and
recurrent models for human activity recognition using wearables,” arXiv
preprint arXiv:1604.08880, 2016.

[11] J. Li, A. Ren, Z. Li, C. Ding, B. Yuan, Q. Qiu, and Y. Wang, “Towards
acceleration of deep convolutional neural networks using stochastic
computing,” in The 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2017.

[12] B. D. Brown and H. C. Card, “Stochastic neural computation. i.
computational elements,” IEEE Transactions on computers, vol. 50,
no. 9, pp. 891–905, 2001.

[13] J. Li and J. Draper, “Accelerating soft-error-rate (ser) estimation in the
presence of single event transients,” in Proceedings of the 53rd Annual
Design Automation Conference. ACM, 2016, p. 55.

[14] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in Proceedings of the 53rd Annual Design Automation Conference.
ACM, 2016, p. 124.

[15] Y. Ji, F. Ran, C. Ma, and D. J. Lilja, “A hardware implementation of
a radial basis function neural network using stochastic logic,” in Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition. EDA Consortium, 2015, pp. 880–883.

[16] A. Ren, Z. Li, Y. Wang, Q. Qiu, and B. Yuan, “Designing reconfigurable
large-scale deep learning systems using stochastic computing,” in 2016
IEEE International Conference on Rebooting Computing. IEEE, 2016.

[17] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “Dscnn: Hardware-
oriented optimization for stochastic computing based deep convolutional
neural networks,” in Computer Design (ICCD), 2016 IEEE 34th Inter-
national Conference on. IEEE, 2016.

[18] Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten
digit database,” AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, 2010.

[19] Nangate 45nm Open Library, Nangate Inc., 2009. [Online]. Available:
http://www.nangate.com/

[20] K. Kim, J. Lee, and K. Choi, “An energy-efficient random number
generator for stochastic circuits,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2016, pp. 256–261.

