
Battery Aware Stochastic QoS Boosting in Mobile Computing Devices

Hao Shen, Qiuwen Chen and Qinru Qiu

 Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, New York, USA

{hshen01, qchen14, qiqiu}@syr.edu

Abstract

Mobile computing has been weaved into everyday lives to a great
extend. Their usage is clearly imprinted with user’s personal
signature. The ability to learn such signature enables immense
potential in workload prediction and resource management. In this
work, we investigate the user behavior modeling and apply the model
for energy management. Our goal is to maximize the quality of
service (QoS) provided by the mobile device (i.e., smartphone),
while keep the risk of battery depletion below a given threshold. A
Markov Decision Process (MDP) is constructed from history user
behavior. The optimal management policy is solved using linear
programing. Simulations based on real user traces validate that,
compared to existing battery energy management techniques, the
stochastic control performs better in boosting the mobile devices’
QoS without significantly increasing the chance of battery depletion.

Key words: mobile, battery, energy, Markov Decision Process

1. Introduction

Mobile computing has been weaved into everyday lives for
communication, sensing, controlling and entertainment to a great
extend. Many of the applications running on mobile devices can be
configured into different levels of quality of service (QoS). For
example, by increasing the synchronization frequency between the
mobile device and the email server, an email application can receive
incoming mails more promptly; by boosting the duty cycle of built-in
sensors such as GPS, more accurate environment information can be
gathered. The increase of QoS of an application running on mobile
computing device always associates with extra energy dissipation [5].
While the progress of battery technology still cannot keep up with the
increasing energy demand of the computing devices, traditional
energy management of mobile device aims at minimizing energy
dissipation. The common practice is to adopt a conservative QoS
configuration to trade for longer battery life.

The energy in a mobile computing device is not simply expenditure
but rather a dynamic flow that has generation and consumption. For
example, most users recharge their smartphones every night. Recent
study shows that about 72% of smartphone users will recharge their
phone before the battery is low. The advances in energy harvesting
techniques also make it possible for future generation smartphones to
scavenge ambient RF or solar energy from environment when they
are available. Given that the energy is replenishable, it is not
necessary to overemphasize on energy saving. A more challenging
research topic is how to exploit the potential of future battery
recharge to deliver higher QoS. User behavior and preference plays
an important role in determining the availability of external energy
resources [11]. It is clear that the amount of incoming energy is a
stochastic process that is strongly influenced by user behavior.

Smartphone usage and energy management have been considered in
many previous researches. Authors of [7] conducted a thorough study
on the diversity in smartphone usage and discovered immense
diversity among users. These discoveries laid the basis of the user
centric mobile device management. Authors of [4], [6], [8], [9] and
[10] focus on context-aware mobile device power and performance
management. Among these works, reference [4] is the most similar to
ours as it assigns excessive energy to boost the performance. It

*This work is supported in part by NSF under grant CNS-0845947
978-3-9815370-2-4/DATE14/©2014 EDAA

considers the remaining battery energy at the time of battery charge
as a random variable and predicts the lower bound of this value with
required confidence. The predicted remaining energy is considered as
an extra and will then be redistributed to applications to increase their
QoS proportionally.

Both [9] and [6] showed that predicting the battery level of mobile
device is difficult. The former achieves only 40% average accuracy
in battery level prediction during one-day period, while the later
predicts the battery charging opportunity at merely 37% accuracy in
average and 84% accuracy at best when the model parameters are
optimized empirically. Clustering users according to their charging
preference can reduce the average prediction error from 60% to about
25% [9]. However, the peak error is still as high as 38% and it always
coincides with the initiation of battery charge, which means poor
prediction when the battery is low. The low accuracy can be
explained by discoveries in [4] and [11], which shows that in terms
of battery use and recharge behavior, significant variation exists not
only across different users, but also within individual user across
his/her own pattern.

In this paper, we investigate more sophisticated models based on
neural network for battery prediction. Our results confirmed that
deterministic prediction of battery level usually has low accuracy and
hence not suitable to guide energy management. We then apply
stochastic control to solve the energy management problem. Markov
Decision Process (MDP) based and Q-learning based management
policies are evaluated and compared.

The research in this paper is enabled by the smartphone usage traces
collected by the Livelab [3] project. The traces record various
information including battery change, charging time, application
usage, IO statistics, Cell Tower ID, Wifi availability and etc. for 34
users over 6~12 months. All of our analyses are carried out on this
set of traces.

2. Battery Level Prediction Using Neural Networks

In this section, we study the potential of predictive energy
management. The basic idea is to periodically predict the remaining
energy level at the time of battery charge and distribute this extra
energy to boost the QoS of applications. The key of predictive energy
management is the accuracy of battery energy prediction.

We refer to remaining energy level at the beginning of battery charge
as our target variable, because it is what we need to predict. Three
neural networks with different input vectors are trained and tested to
predict the next target variable. The first model makes the prediction
simply based on current time and battery level and is referred as 2-
input model. Compared to the first model, the second model has 24
more input variables that represent the battery level changes of past
24 hours. It is referred as 26-input model. Similarly, the last model,
has 5 more input variables than the first model. These 5 variables
give the battery level at the beginning of 5 recent battery charges, in
other words it uses the 5 recent values of the target variable to predict
the sixth one. The model is referred as 7-input model. All three
models are trained using the first half of the collected data of
different users and tested using the second half of the data.

Figure 1 gives the prediction error for 34 users. The prediction is
made every hour and the reported error is the average error of the
testing set. As we can see, the 2-input and 26-input model have
higher accuracy than the 7-input model. The prediction error of the

former ranges from 15% to 22%, which is a little better than the
results reported in [6] and [9]. However, there is no significant
improvement. The 7-input model has the worst accuracy. This
indicates the lack of strong temporal correlation in the target variable.
Figure 2 plots the battery level at the beginning of 100 consecutive
battery charges. The sequence has large temporal variations and is
hard to be predicted based on its previous values. We also found that
the prediction error reduces as the prediction time gets closer to the
next battery charge. Figure 3 gives the relation between prediction
error of the 2-input model and the time to next battery charge. As we
can see, when predicted 2 hours ahead of next battery charge, the
average absolute error is 15% of overall battery capacity and the
relative error is 50%. These numbers increase to 25% and 250% if
the prediction is made 17 hours ago. Unfortunately, prediction at
earlier time is more important as it provides higher reward.

Figure 1 Average prediction error.

Figure 2 Battery level at the beginning of 100 battery charges

Figure 3 Prediction error vs. time to next battery charge

3. Stochastic Control for Smartphone Energy Management

3.1 State space

Using real user usage statistics, [7] confirmed that the usage behavior
of different users could be described as the same mathematical model,
though probably with different parameters. From [11], we can also
see that though very different from user to user, the distribution of
recharging level for each user has certain fixed patterns. These
findings motivate us to explore stochastic control for the smartphone
energy and QoS management. We consider smartphone battery
change as a Markov Decision Process (MDP) [1][13] and consider
QoS settings of the phone as control actions. The objective is to
maximize the average QoS level while keeping the possibility of
battery depletion under given threshold. Different users have
different recharging behaviors. Some users (Type-A in [11]) charge
the phone regularly regardless of the battery level. Some other users
(Type-B in [11]) charge the phone only when the battery is low. Such
psychological effect is hard to model. In our work, we target at those
users whose activities are relatively independent to the battery level.

The first step of model construction is to identify the state space of
the MDP. The MDP tracks the change of battery; therefore the first
feature that we included is the current battery level itself. Secondly,
we found that time is highly correlated to the phone usage and user
charging behavior. For the same user, the battery charging usually
happens around the same time and the phone usage during the day is
also quite stable. For example, Figure 4 gives the histogram of the
battery change for two different users during 2~3am(Figure 4(a)) and
2-3pm (Figure 4(b)). The left most set of data in both figures gives
the percentage of time that the smartphone is recharging. It is labeled
as “rechg”. The next 11 sets of data give the percentage of time that
the smartphone consumes 0~1%, 1~2%,…., 9~10%, and 10~100% of
battery energy during the recorded time period. As we can see, both
users have higher possibility to charge their phone during 2~3am
than 2~3pm. The chance to have nonzero battery energy dissipation
is higher during 2~3pm than 2~3am. We also see that User1 has more
intensive smartphone usage than User2 and also charges more often
as a consequence.

Figure 4 further confirms the rationale of using stochastic model for
smartphone energy management.

Figure 4 Battery change histogram

In addition to time and battery level, we are also interested to find out
if other features, such as battery change rate, current and previous
location, phone sleep time, should be included in the state space. We
have found that they are all highly correlated to the time and battery
level, thus do not provide much new information.

Correlations between future phone usage and previous phone usage
are also calculated. We use hourly battery change rate ∆ܤሺݐሻ and
smartphone sleep time ௦ܶሺݐሻ to represent phone usage during time
slot t. The duration of each time slot is set to 1 hour. Figure 5 gives
the correlations between ∆ܤሺݐሻ and ∆ܤሺݐ െ ݅ሻ , as well as the
correlations between ∆ܤሺݐሻ and ௦ܶሺݐ െ ݅ሻ, 0 ݅ 3. As we can
see, the battery change rate and phone sleep time in even one hour
ago has low correlation with current battery change rate. And the
correlation keeps on reducing when the distance in time increases.
This indicates that the previous phone usage does not provide much
help in predicting the future battery change either. Including it in the
state space will not improve the model accuracy but add model
complexity.

Figure 5 Temporal correlation of phone usage.

We denote the state vector of the MDP as (t, B(t)), where t is the time
at the beginning of current time slot and B(t) is the battery level at
time t. A state i is a depletion state if B(t) = 0, which indicates the
depletion of the battery. Associated to each state i, there is a set of K

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33User ID

2‐input
26‐input
7‐input

A
b
so
lu
te

Er
ro
r
(%

B
at
e
ry
)

0

50

100

1 5 9
1
3
1
7
2
1
2
5
2
9
3
3
3
7
4
1
4
5
4
9
5
3
5
7
6
1
6
5
6
9
7
3
7
7
8
1
8
5
8
9
9
3
9
7

%
 B
at
te
ry

Battery Charges

0.00%

100.00%

200.00%

300.00%

0

10

20

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
e
la
ti
ve

 E
rr
o
r

Time to Next Charging (hour)

Absolute Error (% battery)

Relative Error

A
b
so
lu
te

Er
ro
r
(%

B
at
te
ry
)

0

10

20

30

40

50

60

70

re
ch
g

0
 ~
 1

1
 ~
 2

2
 ~
 3

3
 ~
 4

4
 ~
 5

5
 ~
 6

6
 ~
 7

7
 ~
 8

8
 ~
 9

9
 ~
 1
0

≥1
0

User1

User2

0

10

20

30

40

50

60

70

re
ch
g

0
 ~
 1

1
 ~
 2

2
 ~
 3

3
 ~
 4

4
 ~
 5

5
 ~
 6

6
 ~
 7

7
 ~
 8

8
 ~
 9

9
 ~
 1
0

≥1
0

User1

User2

‐0.9

‐0.6

‐0.3

0

0.3

0.6

0.9

1.2

i=0 i=1 i=2 i=3

COR(∆B(t-i), ∆B(t))

COR(Tsleep(t-i), ∆B(t))

(a) Usage during 2~3am (b) Usage during 2~3pm

actions ܽ
 ∈ = {ܽ	ሺ݅ሻܣ	

,	ܽ
ଵ,	ܽ

ଶ…,ܽ
ିଵ}. Each action corresponds to

a QoS level of the phone and we assume that the average power
consumption of the phone at the kth QoS level is known. The reward
of state i, denoted as ݎሺ݅, ܽ

ሻ, is set proportional to the chosen QoS
level ܽ

.

3.2 MDP training and solving

By observing the history of smartphone activities, we train the MDP
model for each user. The training process is to determine the
transition probability (,ሺܽ

ሻ) from state i, to state j under action
ܽ
and the reward ݎሺ݅, ܽ

ሻ.

Figure 6 MDP training process

The detail of our MDP model training is shown in Figure 6. Each red
circle in the figure represents a distinct state. The entire state space is
divided into N groups. Each group corresponds to a specific time (i.e.
t) in the state vector. With each group there are M states
corresponding to M battery levels (i.e. B in the state vector). BM-1 is
the battery depletion state which should be avoided. From a state in
group Tn, the system will go to a state in group Tn+1. If n=N-1, then
the system will go to a state in group T0. The training sequence is
collected from system without any QoS boost, in other words, only
the action ܽ is taken in the original training trace and the battery
change ∆B under ܽ is recorded. We assume 70% hourly battery
increase rate during battery charging. Because we target only at users
whose activities are independent to battery level, we assume the same
usage activity happens regardless of the current status of battery. The
recorded information ∆B reflects the workload activities, from which
we can estimate the battery change for other QoS settings ܽ , ݇ ് 0.
The amount of battery change decides which state the system will
transit into. In this way, for every remaining battery state B belonging
to the same group and every action a of this state, we can calculate
the next battery state B’ and reward r. Then after training, the
transition probability (,ሺܽ

ሻ) can easily be calculated and the
reward ݎሺ݅, ܽ

ሻ is calculated as the average of the rewards received
under this state action pair.

The optimal policy is found by solving the mathematical program as
following [2]:

 max	 ∑ ∈ௌߨ ∑ ݂ሺ݅, ܽሻݎሺ݅, ܽሻ∈ሺሻ (1)

subject to

ߨ	 ൌ ∑ ∈ௌߨ ∑ ,	ሺܽሻ ݆ ∈ ܵ			∈ሺሻ (2) ∑ ݂ሺ݅, ܽሻ∈ሺሻ ൌ 1,	 (3)

 ݂ሺ݅, ܽሻ 0, (4) ∑ ߨ ൏ ∈ௌವ,ܮ (5)

where ߨ is the stationary distribution for state i. ݂ሺ݅, ܽሻ is the
probability that an action ܽ is taken if the state of the system is ݅ and
it is the set of variables that we need to optimize. ݎሺ݅, ܽሻ is the reward
received if action a is taken in state i. ሺܽሻ is the transition
probability from state i to state j, given that action a is taken at state i.
S is the state space of the system. Equation (2) constraints the balance
of the state probability and transition probability. Equation (3)
specifies that probabilities of all actions taken in a state should add

up to 1. The constraint (5) specifies that the overall probability of
those depletion states should be less than L. L is a small number
possibly given by the user based on their specific tolerance of battery
depletion. Higher tolerance usually will lead to more performance
boost opportunities.

By introducing a set of new decision variables ݔ ݔ , ൌ
,݂ሺ݅ߨ ܽሻ, ݅ ∈ ܵ, ܽ ∈ ሺ݅ሻܣ , the above non-linear problem can be
transformed into a linear one and solved.

4.Implementation and Evaluation

4.1. Implementation

We use the real user traces from the Livelab project [3]. The traces
record various information including battery change, charging time,
application usage, IO statistics, Cell Tower ID, Wifi availability and
etc. for 34 users over 6~12 months. All of our analyses are carried
out on this set of traces.

We use four-way cross-validation [14] in the experiments. Traces of
every user are partitioned into 4 equal sized subsets, 3 of which form
the training set and 1 of which will be the testing set. The final result
is the average of all tests. A simulator is implemented using C++ to
evaluate the policy. If the user tolerance of battery depletion (i.e. L in
constraint (5)) is too low, no feasible solution can be found. A best
effort solution will be used instead.

It is assumed that a phone has three QoS levels corresponding to 1x,
1.5x and 2x of the default setting. The energy dissipation of the
phone is assumed to be proportional to its QoS level and the original
energy dissipation when no boost was performed. This assumption is
used only to simplify the experiment setup. How to adjust the QoS of
different applications and what is the relationship between the QoS
and power consumption are nontrivial problems outside the scope of
this paper [5].

In addition to the MDP based approach, three reference approaches
are also simulated. The first one is Q-learning based approach[12]
which generally shares the same underlying model with MDP but is
an online learning method. We refer to this method as ‘ML’ in our
simulation. The second one is based on [4], which profiles the
histogram distribution of the remaining energy at the time of battery
recharge. The profiled information will be used to predict the lower
bound of the remaining energy and the QoS of the phone will be
raised proportionally based on the estimation. A confidence level is
determined based on the profiled distribution that specifies the
probability that the prediction is correct. We refer to this method as
‘HIST’ in our simulation. The profiling is performed on the training
set and the policy is tested on the testing set. The third reference
policy is prediction-based approach, which predicts the remaining
energy using the 2-input neural network as described in Section 2.
Similar to HIST, the QoS will be raised based on the prediction. We
refer to this method as ‘Nnet’.

4.2. Evaluation Result

Different level of user tolerance of battery depletion leads to different
potential of QoS boost. For the MDP method, varying L in Equation
(5) gives the indication of different tolerance of the battery depletion.
For example, L=0.01 means that the user can tolerate 1% chance of
battery depletion during the entire smartphone usage in exchange for
performance boost. For HIST, the confidence level is set to be
1 െ For ML method, the battery depletion tolerance is .݁ܿ݊ܽݎ݈݁ݐ
tracked using a feedback control method by dynamically changing
the penalty of the battery depletion state. All the results following are
based on four-way cross validation.

For all the 34 users, we vary the depletion tolerance from 10% to 0.1%
and recorded the amount of QoS boosts and actual battery depletion
rate. The results are shown in Figure 7.

Figure 7 (a)~(c) compares the actual battery depletion rate (Y-axis)
with the depletion tolerance (X-axis) for all 34 users under different
management algorithms. The performance of Nnet is not shown here,
because there is no way to integrate the user depletion tolerance with
the prediction based management. The black line in the figure
represents the ideal cases where the actual depletion exactly meets
the constraint. The points above the line correspond to systems that
are under-constrained and have depletion violation while the ones
below the line are systems over-constrained. Note that both X and Y
axes are logarithmic, therefore the difference between the actual and
the constraint is magnified when depletion tolerance is low. As
shown in the figure, in most cases all 3 algorithms tend to over-
constrain than under-constrain points. When depletion tolerance is
high (i.e. loose constraint), HIST is more conservative than ML and
MDP and all cases using HIST are over-constrained. The correlation
between actual depletion and depletion tolerance is calculated and
given in the figure. The higher correlation means more précised
management. As we can see, the system using MDP management
achieves the highest correlation (i.e, 0.78).

 (a) HIST (correlation: 0.7) (b) ML (correlation: 0.71)

 (c) MDP (correlation: 0.78)

Figure 7 actual depletion rate vs. depletion tolerance

 (a) (b)

Figure 8 QoS Boosts vs. (a) depletion tolerance (b) actual
depletion rate

Figure 8 (a) shows the percentage QoS boost under different
depletion tolerance compared to nominal case without any QoS boost.
The results reported here is the average of all 34 users. As we can see,
MDP gives the most QoS increase and the HIST gives the least. The
low violation and low performance boost shows that the HIST is
much more conservative than MDP and ML especially when the
depletion tolerance is loose. Figure 8 (b) shows the relation between
the QoS boosts and the actual battery depletion rate collected from
simulations. In the figure, the curves at the upper left are better than
the curves in the lower right. Again, the results reported here is the
average of all 34 users. Note that this figure shows the tradeoff
between QoS boost and the actual battery depletion rate. Those data
points with similar X values might not correspond to the same
depletion tolerance constraint. For Nnet, the tradeoff curve is
obtained by varying the amount of energy that is distributed for QoS

boosting as different portions of the predicted target variables. As we
can see, the MDP method gives the highest QoS improvement than
others with the same battery depletion, while the Nnet gives the
lowest QoS improvement. It shows that the stochastic control method
outperforms others as it achieves better QoS and energy reliability
tradeoffs by better tracking different user’s battery usage and
recharge patterns.

One of the concerns for the stochastic approaches is that they still
have a few violations (under-constraints) when depletion tolerance is
not very tight while the HIST has not violation at all as shown in
Figure 7. The foremost reason is that setting confidence level of
HIST to ሺ1 െ ሻ is very conservative and will prevent QoS݁ܿ݊ܽݎ݈݁ݐ
boost. On the other hand, the phone usage and battery charging
pattern for some users are not always consistent during all the time
and it is hard to capture their behavior using simple MDP models as
we did.

5. Conclusions

In this paper, we aim at increasing the QoS of mobile devices
considering the fact that many users recharge the battery before
depletion. Neural network model that predicts the remaining energy
at next battery charge is first investigated. The results show that
accurate prediction is difficult. Then we present a stochastic
framework for QoS boosting under the user specified battery
depletion tolerance. The model is trained using real user traces and
the framework is simulated and compared with existing approaches.

6.References
[1] Y. Tan and Q. Qiu, “A Framework of Stochastic Power Management

Using Hidden Markov Model,” DATE’08, pp.92-97, 2008

[2] D. Bello and G. Riano, “Linear Programming solvers for Markov
Decision Processes,” SIEDS’2006, pp.90-95, Apr 2006

[3] C. Shepard, A. Rahmati, C. Tossell, L. Zhong and P. Kortum, “Livelab:
Measuring Wireless Networks and Smartphone User in the Field,” ACM
SIGMETRICS Perfrom. Eval. Rev., vol.38, no.3. Dec 2010

[4] N. Banerjee, A. Rahmati, M. D. Corner, S. Rollins and L. Zhong, “Users
and Batteries: Interactions and Adaptive Energy Management in Mobile
Systems,” UbiComp’07, pp.217-234, 2007

[5] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications,” SOSP’99, pp.48-63, 1999

[6] N. Ravi, J. Scott, L. Han and L. Iftode, “Context-aware Battery
Management for Mobile Phones,” PerCom 2008, pp.224-233, Mar 2008

[7] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan and
D. Estrin, “Diversity in Smartphone Usage,” MobiSys’10, pp.179-194,
2010

[8] Y. S. Lee and S. B. Cho, “An Efficient Energy Management System for
Android Phone Using Bayesian Networks,” ICDCSW’2012, pp.102-107,
Jun2012

[9] E. A. Oliver and S. Keshav, “An Empirical Approach to Smartphone
Energy Level Prediction,” UbiComp’11, pp.345-354, 2011

[10] T. Yan, D. Chu, D. Ganesan, A. Kansal and J. Liu, “Fast App Launching
for Mobile Devices Using Predictive User Context,” MobiSys’12,
pp.113-126, 2012

[11] A. Rahmati, A. Qian and L. Zhong, “Understanding Human-Battery
Interaction on Mobile Phones,” MobileHCI’07, pp.265-272, 2007

[12] H. Shen, Y. Tan, J. Lu, Q. Wu and Q. Qiu, “Achieving Autonomous
Power Management Using Reinforcement Learning,” TODAES, vol.18,
issue.2, 2013

[13] Wiki “Markov Decision Process ” :
http://en.wikipedia.org/wiki/Markov_decision_process

[14] Jiawei Han and Micheline Kamber, “Data Mining Concepts and
Techniques,” Second Edition, Morgan Kaufmann Publishers, March
2006

‐4

‐3

‐2

‐1

‐3 ‐2 ‐1

LO
G
(d
e
p
le
tio

n
 rate

)

‐4

‐3

‐2

‐1

‐3 ‐2 ‐1

LO
G
(d
e
p
le
tio

n
 rate

)

‐4

‐3

‐2

‐1

‐3 ‐2 ‐1

LO
G
(d
e
p
le
tio

n
 rate

)

0%

20%

40%

60%

80%

‐3 ‐2 ‐1

HIST

ML

MDP

Q
o
S
B
o
o
st(%

)

LOG(depletion tolerance)

0%

20%

40%

60%

0% 5%

HIST
ML
MDP
Nnet

depletion rate

Q
o
S
B
o
o
st
 (
%
)

