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Abstract  

Mobile computing has been weaved into everyday lives to a great 
extend. Their usage is clearly imprinted with user’s personal 
signature. The ability to learn such signature enables immense 
potential in workload prediction and resource management. In this 
work, we investigate the user behavior modeling and apply the model 
for energy management. Our goal is to maximize the quality of 
service (QoS) provided by the mobile device (i.e., smartphone), 
while keep the risk of battery depletion below a given threshold. A 
Markov Decision Process (MDP) is constructed from history user 
behavior. The optimal management policy is solved using linear 
programing. Simulations based on real user traces validate that, 
compared to existing battery energy management techniques, the 
stochastic control performs better in boosting the mobile devices’ 
QoS without significantly increasing the chance of battery depletion.  

Key words: mobile, battery, energy, Markov Decision Process 

1. Introduction  

Mobile computing has been weaved into everyday lives for 
communication, sensing, controlling and entertainment to a great 
extend. Many of the applications running on mobile devices can be 
configured into different levels of quality of service (QoS). For 
example, by increasing the synchronization frequency between the 
mobile device and the email server, an email application can receive 
incoming mails more promptly; by boosting the duty cycle of built-in 
sensors such as GPS, more accurate environment information can be 
gathered. The increase of QoS of an application running on mobile 
computing device always associates with extra energy dissipation [5]. 
While the progress of battery technology still cannot keep up with the 
increasing energy demand of the computing devices, traditional 
energy management of mobile device aims at minimizing energy 
dissipation. The common practice is to adopt a conservative QoS 
configuration to trade for longer battery life.  

The energy in a mobile computing device is not simply expenditure 
but rather a dynamic flow that has generation and consumption. For 
example, most users recharge their smartphones every night. Recent 
study shows that about 72% of smartphone users will recharge their 
phone before the battery is low. The advances in energy harvesting 
techniques also make it possible for future generation smartphones to 
scavenge ambient RF or solar energy from environment when they 
are available. Given that the energy is replenishable, it is not 
necessary to overemphasize on energy saving. A more challenging 
research topic is how to exploit the potential of future battery 
recharge to deliver higher QoS. User behavior and preference plays 
an important role in determining the availability of external energy 
resources [11]. It is clear that the amount of incoming energy is a 
stochastic process that is strongly influenced by user behavior.  

Smartphone usage and energy management have been considered in 
many previous researches. Authors of [7] conducted a thorough study 
on the diversity in smartphone usage and discovered immense 
diversity among users. These discoveries laid the basis of the user 
centric mobile device management. Authors of [4], [6], [8], [9] and 
[10] focus on context-aware mobile device power and performance 
management. Among these works, reference [4] is the most similar to 
ours as it assigns excessive energy to boost the performance. It  
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considers  the remaining battery energy at the time of battery charge 
as a random variable and predicts the lower bound of this value with 
required confidence. The predicted remaining energy is considered as 
an extra and will then be redistributed to applications to increase their 
QoS proportionally.  

Both [9] and [6] showed that predicting the battery level of mobile 
device is difficult. The former achieves only 40% average accuracy 
in battery level prediction during one-day period, while the later 
predicts the battery charging opportunity at merely 37% accuracy in 
average and 84% accuracy at best when the model parameters are 
optimized empirically. Clustering users according to their charging 
preference can reduce the average prediction error from 60% to about 
25% [9]. However, the peak error is still as high as 38% and it always 
coincides with the initiation of battery charge, which means poor 
prediction when the battery is low. The low accuracy can be 
explained by discoveries in [4] and [11], which shows that in terms 
of battery use and recharge behavior, significant variation exists not 
only across different users, but also within individual user across 
his/her own pattern.  

In this paper, we investigate more sophisticated models based on 
neural network for battery prediction. Our results confirmed that 
deterministic prediction of battery level usually has low accuracy and 
hence not suitable to guide energy management. We then apply 
stochastic control to solve the energy management problem. Markov 
Decision Process (MDP) based and Q-learning based management 
policies are evaluated and compared.  

The research in this paper is enabled by the smartphone usage traces 
collected by the Livelab [3] project.  The traces record various 
information including battery change, charging time, application 
usage, IO statistics, Cell Tower ID, Wifi availability and etc. for 34 
users over 6~12 months. All of our analyses are carried out on this 
set of traces. 

2. Battery Level Prediction Using Neural Networks 

In this section, we study the potential of predictive energy 
management. The basic idea is to periodically predict the remaining 
energy level at the time of battery charge and distribute this extra 
energy to boost the QoS of applications. The key of predictive energy 
management is the accuracy of battery energy prediction.  

We refer to remaining energy level at the beginning of battery charge 
as our target variable, because it is what we need to predict. Three 
neural networks with different input vectors are trained and tested to 
predict the next target variable. The first model makes the prediction 
simply based on current time and battery level and is referred as 2-
input model. Compared to the first model, the second model has 24 
more input variables that represent the battery level changes of past 
24 hours. It is referred as 26-input model. Similarly, the last model, 
has 5 more input variables than the first model. These 5 variables 
give the battery level at the beginning of 5 recent battery charges, in 
other words it uses the 5 recent values of the target variable to predict 
the sixth one. The model is referred as 7-input model. All three 
models are trained using the first half of the collected data of 
different users and tested using the second half of the data. 

Figure 1 gives the prediction error for 34 users. The prediction is 
made every hour and the reported error is the average error of the 
testing set. As we can see, the 2-input and 26-input model have 
higher accuracy than the 7-input model. The prediction error of the 



former ranges from 15% to 22%, which is a little better than the 
results reported in [6] and [9]. However, there is no significant 
improvement. The 7-input model has the worst accuracy.  This 
indicates the lack of strong temporal correlation in the target variable. 
Figure 2 plots the battery level at the beginning of 100 consecutive 
battery charges. The sequence has large temporal variations and is 
hard to be predicted based on its previous values. We also found that 
the prediction error reduces as the prediction time gets closer to the 
next battery charge. Figure 3 gives the relation between prediction 
error of the 2-input model and the time to next battery charge. As we 
can see, when predicted 2 hours ahead of next battery charge, the 
average absolute error is 15% of overall battery capacity and the 
relative error is 50%. These numbers increase to 25% and 250% if 
the prediction is made 17 hours ago. Unfortunately, prediction at 
earlier time is more important  as it provides higher reward.  

 
Figure 1 Average prediction error. 

 
Figure 2 Battery level at the beginning of 100 battery charges 

 
Figure 3 Prediction error vs. time to next battery charge  

3. Stochastic Control for Smartphone Energy Management 

3.1 State space 

Using real user usage statistics, [7] confirmed that the usage behavior 
of different users could be described as the same mathematical model, 
though probably with different parameters. From [11], we can also 
see that though very different from user to user, the distribution of 
recharging level for each user has certain fixed patterns. These 
findings motivate us to explore stochastic control for the smartphone 
energy and QoS management. We consider smartphone battery 
change as a Markov Decision Process (MDP) [1][13] and consider 
QoS settings of the phone as control actions. The objective is to 
maximize the average QoS level while keeping the possibility of 
battery depletion under given threshold. Different users have 
different recharging behaviors. Some users (Type-A in [11]) charge 
the phone regularly regardless of the battery level. Some other users 
(Type-B in [11]) charge the phone only when the battery is low. Such 
psychological effect is hard to model. In our work, we target at those 
users whose activities are relatively independent to the battery level. 

The first step of model construction is to identify the state space of 
the MDP. The MDP tracks the change of battery; therefore the first 
feature that we included is the current battery level itself.  Secondly, 
we found that time is highly correlated to the phone usage and user 
charging behavior. For the same user, the battery charging usually 
happens around the same time and the phone usage during the day is 
also quite stable. For example, Figure 4 gives the histogram of the 
battery change for two different users during 2~3am(Figure 4(a)) and 
2-3pm (Figure 4(b)). The left most set of data in both figures gives 
the percentage of time that the smartphone is recharging. It is labeled 
as “rechg”. The next 11 sets of data give the percentage of time that 
the smartphone consumes 0~1%, 1~2%,…., 9~10%, and 10~100% of 
battery energy during the recorded time period. As we can see, both 
users have higher possibility to charge their phone during 2~3am 
than 2~3pm. The chance to have nonzero battery energy dissipation 
is higher during 2~3pm than 2~3am. We also see that User1 has more 
intensive smartphone usage than User2 and also charges more often 
as a consequence. 

Figure 4 further confirms the rationale of using stochastic model for 
smartphone energy management. 

 
 

Figure 4 Battery change histogram 

In addition to time and battery level, we are also interested to find out 
if other features, such as battery change rate, current and previous 
location, phone sleep time, should be included in the state space.  We 
have found that they are all highly correlated to the time and battery 
level, thus do not provide much new information. 

Correlations between future phone usage and previous phone usage 
are also calculated. We use hourly battery change rate ∆ܤሺݐሻ and 
smartphone sleep time ௦ܶሺݐሻ to represent phone usage during time 
slot t. The duration of each time slot is set to 1 hour. Figure 5 gives 
the correlations between ∆ܤሺݐሻ  and ∆ܤሺݐ െ ݅ሻ , as well as the 
correlations between ∆ܤሺݐሻ and ௦ܶሺݐ െ ݅ሻ, 0  ݅  3. As we can 
see, the battery change rate and phone sleep time in even one hour 
ago has low correlation with current battery change rate. And the 
correlation keeps on reducing when the distance in time increases. 
This indicates that the previous phone usage does not provide much 
help in predicting the future battery change either. Including it in the 
state space will not improve the model accuracy but add model 
complexity.  

 

 

 

 

 

 

Figure 5 Temporal correlation of phone usage. 

We denote the state vector of the MDP as (t, B(t)), where t is the time 
at the beginning of current time slot and B(t) is the battery level at 
time t. A state i is a depletion state if B(t) = 0, which indicates the 
depletion of the battery. Associated to each state i, there is a set of K 
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actions ܽ
 ∈ = {ܽ	ሺ݅ሻܣ	

,	ܽ
ଵ,	ܽ

ଶ…,ܽ
ିଵ}. Each action corresponds to 

a QoS level of the phone and we assume that the average power 
consumption of the phone at the kth QoS level is known. The reward 
of state i, denoted as ݎሺ݅, ܽ

ሻ, is set proportional to the chosen QoS 
level ܽ

. 

3.2 MDP training and solving 

By observing the history of smartphone activities, we train the MDP 
model for each user. The training process is to determine the 
transition probability (,ሺܽ

ሻ) from state i, to state j under action 
ܽ
and the reward ݎሺ݅, ܽ

ሻ.  

 
Figure 6 MDP training process 

The detail of our MDP model training is shown in Figure 6. Each red 
circle in the figure represents a distinct state. The entire state space is 
divided into N groups. Each group corresponds to a specific time (i.e. 
t) in the state vector. With each group there are M states 
corresponding to M battery levels (i.e. B in the state vector). BM-1 is 
the battery depletion state which should be avoided. From a state in 
group Tn, the system will go to a state in group Tn+1. If n=N-1, then 
the system will go to a state in group T0.  The training sequence is 
collected from system without any QoS boost, in other words, only 
the action ܽ  is taken in the original training trace and the battery 
change ∆B under ܽ  is recorded. We assume 70% hourly battery 
increase rate during battery charging. Because we target only at users 
whose activities are independent to battery level, we assume the same 
usage activity happens regardless of the current status of battery. The 
recorded information ∆B reflects the workload activities, from which 
we can estimate the battery change for other QoS settings ܽ , ݇ ് 0. 
The amount of battery change decides which state the system will 
transit into. In this way, for every remaining battery state B belonging 
to the same group and every action a of this state, we can calculate 
the next battery state B’ and reward r. Then after training, the 
transition probability (,ሺܽ

ሻ ) can easily be calculated and the 
reward ݎሺ݅, ܽ

ሻ  is calculated as the average of the rewards received 
under this state action pair. 

The optimal policy is found by solving the mathematical program as 
following [2]: 

                      max	 ∑ ∈ௌߨ ∑ ݂ሺ݅, ܽሻݎሺ݅, ܽሻ∈ሺሻ              (1) 

subject to 

ߨ	  ൌ ∑ ∈ௌߨ ∑ ,	ሺܽሻ ݆ ∈ ܵ			∈ሺሻ (2)      ∑ ݂ሺ݅, ܽሻ∈ሺሻ ൌ 1,	  (3) 

                  ݂ሺ݅, ܽሻ  0,   (4)                            ∑ ߨ ൏ ∈ௌವ,ܮ   (5) 

where ߨ  is the stationary distribution for state i. ݂ሺ݅, ܽሻ  is the 
probability that an action ܽ is taken if the state of the system is ݅ and 
it is the set of variables that we need to optimize. ݎሺ݅, ܽሻ is the reward 
received if action a is taken in state i. ሺܽሻ  is the transition 
probability from state i to state j, given that action a is taken at state i. 
S is the state space of the system. Equation (2) constraints the balance 
of the state probability and transition probability. Equation (3) 
specifies that probabilities of all actions taken in a state should add 

up to 1. The constraint (5) specifies that the overall probability of 
those depletion states should be less than L. L is a small number 
possibly given by the user based on their specific tolerance of battery 
depletion. Higher tolerance usually will lead to more performance 
boost opportunities. 

By introducing a set of new decision variables ݔ ݔ , ൌ
,݂ሺ݅ߨ ܽሻ, ݅ ∈ ܵ, ܽ ∈ ሺ݅ሻܣ , the above non-linear problem can be 
transformed into a linear one and solved.  

4.Implementation and Evaluation 

4.1. Implementation  

We use the real user traces from the Livelab project [3]. The traces 
record various information including battery change, charging time, 
application usage, IO statistics, Cell Tower ID, Wifi availability and 
etc. for 34 users over 6~12 months. All of our analyses are carried 
out on this set of traces. 

We use four-way cross-validation [14] in the experiments. Traces of 
every user are partitioned into 4 equal sized subsets, 3 of which form 
the training set and 1 of which will be the testing set. The final result 
is the average of all tests. A simulator is implemented using C++ to 
evaluate the policy. If the user tolerance of battery depletion (i.e. L in 
constraint (5)) is too low, no feasible solution can be found.  A best 
effort solution will be used instead.  

It is assumed that a phone has three QoS levels corresponding to 1x, 
1.5x and 2x of the default setting. The energy dissipation of the 
phone is assumed to be proportional to its QoS level and the original 
energy dissipation when no boost was performed. This assumption is 
used only to simplify the experiment setup. How to adjust the QoS of 
different applications and what is the relationship between the QoS 
and power consumption are nontrivial problems outside the scope of 
this paper [5].   

In addition to the MDP based approach, three reference approaches 
are also simulated. The first one is Q-learning based approach[12] 
which generally shares the same underlying model with MDP but is 
an online learning method. We refer to this method as ‘ML’ in our 
simulation. The second one is based on [4], which profiles the 
histogram distribution of the remaining energy at the time of battery 
recharge. The profiled information will be used to predict the lower 
bound of the remaining energy and the QoS of the phone will be 
raised proportionally based on the estimation. A confidence level is 
determined based on the profiled distribution that specifies the 
probability that the prediction is correct. We refer to this method as 
‘HIST’ in our simulation. The profiling is performed on the training 
set and the policy is tested on the testing set. The third reference 
policy is prediction-based approach, which predicts the remaining 
energy using the 2-input neural network as described in Section 2. 
Similar to HIST, the QoS will be raised based on the prediction. We 
refer to this method as ‘Nnet’.  

4.2. Evaluation Result 

Different level of user tolerance of battery depletion leads to different 
potential of QoS boost. For the MDP method, varying L in Equation 
(5) gives the indication of different tolerance of the battery depletion. 
For example, L=0.01 means that the user can tolerate 1% chance of 
battery depletion during the entire smartphone usage in exchange for 
performance boost.  For HIST, the confidence level is set to be 
1 െ  For ML method, the battery depletion tolerance is .݁ܿ݊ܽݎ݈݁ݐ
tracked using a feedback control method by dynamically changing 
the penalty of the battery depletion state. All the results following are 
based on four-way cross validation. 

For all the 34 users, we vary the depletion tolerance from 10% to 0.1% 
and recorded the amount of QoS boosts and actual battery depletion 
rate. The results are shown in Figure 7. 



Figure 7 (a)~(c) compares the actual battery depletion rate (Y-axis) 
with the depletion tolerance (X-axis) for all 34 users under different 
management algorithms. The performance of Nnet is not shown here, 
because there is no way to integrate the user depletion tolerance with 
the prediction based management. The black line in the figure 
represents the ideal cases where the actual depletion exactly meets 
the constraint. The points above the line correspond to systems that 
are under-constrained and have depletion violation while the ones 
below the line are systems over-constrained. Note that both X and Y 
axes are logarithmic, therefore the difference between the actual and 
the constraint is magnified when depletion tolerance is low. As 
shown in the figure, in most cases all 3 algorithms tend to over-
constrain than under-constrain points. When depletion tolerance is 
high (i.e. loose constraint), HIST is more conservative than ML and 
MDP and all cases using HIST are over-constrained. The correlation 
between actual depletion and depletion tolerance is calculated and 
given in the figure. The higher correlation means more précised 
management. As we can see, the system using MDP management 
achieves the highest correlation ( i.e, 0.78). 

 
      (a) HIST (correlation: 0.7)                (b) ML (correlation: 0.71) 

 
                                (c)  MDP (correlation: 0.78) 

Figure 7  actual depletion rate vs. depletion tolerance 

 
                  (a)                                            (b) 

Figure 8 QoS Boosts vs. (a) depletion tolerance (b) actual 
depletion rate 

Figure 8 (a) shows the percentage QoS boost under different 
depletion tolerance compared to nominal case without any QoS boost. 
The results reported here is the average of all 34 users. As we can see, 
MDP gives the most QoS increase and the HIST gives the least. The 
low violation and low performance boost shows that the HIST is 
much more conservative than MDP and ML especially when the 
depletion tolerance is loose. Figure 8 (b) shows the relation between 
the QoS boosts and the actual battery depletion rate collected from 
simulations. In the figure, the curves at the upper left are better than 
the curves in the lower right. Again, the results reported here is the 
average of all 34 users. Note that this figure shows the tradeoff 
between QoS boost and the actual battery depletion rate. Those data 
points with similar X values might not correspond to the same 
depletion tolerance constraint. For Nnet, the tradeoff curve is 
obtained by varying the amount of energy that is distributed for QoS 

boosting as different portions of the predicted target variables. As we 
can see, the MDP method gives the highest QoS improvement than 
others with the same battery depletion, while the Nnet gives the 
lowest QoS improvement. It shows that the stochastic control method 
outperforms others as it achieves better QoS and energy reliability 
tradeoffs by better tracking different user’s battery usage and 
recharge patterns. 

One of the concerns for the stochastic approaches is that they still 
have a few violations (under-constraints) when depletion tolerance is 
not very tight while the HIST has not violation at all as shown in 
Figure 7. The foremost reason is that setting confidence level of 
HIST to ሺ1 െ  ሻ is very conservative and will prevent QoS݁ܿ݊ܽݎ݈݁ݐ
boost. On the other hand, the phone usage and battery charging 
pattern for some users are not always consistent during all the time 
and it is hard to capture their behavior using simple MDP models as 
we did.  

5. Conclusions  

In this paper, we aim at increasing the QoS of mobile devices 
considering the fact that many users recharge the battery before 
depletion. Neural network model that predicts the remaining energy 
at next battery charge is first investigated. The results show that 
accurate prediction is difficult. Then we present a stochastic 
framework for QoS boosting under the user specified battery 
depletion tolerance. The model is trained using real user traces and 
the framework is simulated and compared with existing approaches. 
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