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Abstract—With the proliferation of application specific accel-

erators, the use of heterogeneous clusters is rapidly increasing. 
Consisting of processors with different architectures, a heteroge-
neous cluster aims at providing different performance and cost 
tradeoffs for different types of workloads. In order to achieve peak 
performance, software running on heterogeneous cluster needs to 
be designed carefully to provide enough flexibility to explore its 
variety. We propose a design methodology to modularize complex 
software applications with data dependencies. The software appli-
cation designed in this way have the flexibility to be reconfigured 
for different hardware platforms to facilitate resource manage-
ment, and features high scalability and parallelism. Using a neu-
romorphic application as a case study, we present the concept of 
modularization and discuss the management, scheduling and com-
munication of the modules. We also present experimental results 
demonstrating the improvements and effects of system scaling on 
throughput. 

Keywords—Distributed computing; structure based scheduling; 
heterogeneous computing; pipelining; latency hiding; modulariza-
tion 

I. INTRODUCTION 
Modern computing systems are increasingly becoming more 

heterogeneous. This is due to a wide variety of computing archi-
tectures and accelerators such as multi-core CPU, GPU, FPGA, 
etc. being used. Different architectures provide different perfor-
mance and cost tradeoffs, which greatly extends software design 
space. If utilized properly, they can significantly optimize the 
performance of software systems. The heterogeneity is most 
beneficial to complex software systems, which involve large 
quantities of data processing at multiple levels and different mo-
dalities. Some of such domains are scientific computing, big 
data, machine learning, neuromorphic applications, financial 
modeling etc. These applications consist of different types of 
workload, which can benefit from the diversified architectures. 

There are many challenges towards achieving full potential 
of a heterogeneous computing cluster. Program designer needs 
to pay attention to resource mapping, utilization, task schedul-
ing, etc. The same software working efficiently on one hetero-
geneous cluster may not have high hardware utilization on an-
other. This work investigates design methodology for develop-
ing software applications with high flexibility so that they can 
be reconfigured to fit to different heterogeneous clusters. Our 
goal is to improve the reusability and portability of distributed 
software system, and our solution is through modularization and 
standard inter-module communication architecture.  

Today the industry is focusing towards brain inspired 
computing due to its efficiency, scalability and its ability to 
solve complex problems. Perception in biological system 
involves different type of processing in different brain area. For 
example, pattern matching happens in the basal ganglia where 
brain processes large stimuli quickly in a parallel fashion. For 
more sophisticated processing such as reasoning, relatively 
slower sequential processes will occur in the sensory association 
cortex. Like the brain, neuromorphic applications have different 
computing requirements for different stages of processing. 
Therefore, it will benefit from heterogeneous computing clus-
ters. 

In this work, we use one such neuromorphic application, In-
telligent Text Recognition System (ITRS) [1], as a case study to 
discuss the design methodology of our distributed software ar-
chitecture. We encourage modularized design and use of multi-
ple programming paradigms, such as multi-threaded program-
ming, CUDA etc., to achieve best possible optimization for each 
module in the distributed software system. The design enables 
flexible configurations to ensure best possible throughput at the 
module level for the intended hardware platform. We propose 
the use of message passing interface (MPI) [2] industry standard 
for inter-module communication and novel structure based 
scheduling for scalable implementation. The module functional-
ity is decoupled from its rank identifier; therefore, the system 
functionality is solely dependent on the distributed architecture. 
The main contributions of our work are as follows. 

1. Uniform communication architecture with point-to-point 
links is introduced as a foundation, which enables modulari-
zation of complex systems. The communication architecture 
scales in a distributed way employing asynchronous commu-
nication with multiple modules. 

2. Design methodology is presented to pipeline modules with 
data dependency for out-of-order workload execution.  Dis-
tributed pipeline control is used for asynchronous pro-
cessing. 

3. Novel structure based scheduling is introduced for achieving 
maximum performance for asynchronous workload pro-
cessing with varying module latencies. 

4. A methodology for flexible scaling of the modular software 
system is proposed to achieve desired throughput by lever-
aging different hardware resources in a heterogeneous clus-
ter. 

We perform several experiments to show the speed up 
gained over the non-reconfigurable implementation and provide This work is partially supported by the National Science Foundation 
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several test case results involving bottleneck identification and 
removal using the scalable architecture, which would not have 
been possible without modularization and reconfiguration. We 
also demonstrate the flexibility of the proposed methodology in 
running the application in resource constrained situations. 

The rest of the paper is organized as the following. Section 
II discusses previous works in distributed software design meth-
odology. In Section III we will discuss the background of neu-
romorphic algorithms used in ITRS and the existing ITRS archi-
tecture. In Section IV, V and VI we elaborate on the modulari-
zation methodology, which includes the communication archi-
tecture, the methodology for pipelined execution of distributed 
applications, and the novel structure based scheduling. Finally, 
in Section VI, the experimental results are discussed followed 
by conclusions. 

II. RELATED WORK 
Distributed systems are widely used and have been exten-

sively studied. Different kinds of distributed pipeline based ar-
chitectures are proposed. A state based distributed pipeline 
framework is presented in [3]. Here the compute nodes are sep-
arated from the pipeline control. Instead of message passing the 
state objects are passed which encapsulate the data. The load 
balancing is achieved through producer/consumer relationship 
i.e. processing happens asynchronously. However, there is an 
extra overhead in creating and decoding state objects at every 
stage apart from data processing. A distributed pipeline pro-
cessing architecture composed of flow-models, called meta-
pipeline is proposed for general-purpose computation [4]. The 
architecture is suitable for stream based processing. This re-
quires input and output streams along with the parameters for 
every flow-model. These details and other properties are encap-
sulated in XML. This kind of modularization enables distributed 
task based execution. Though this system is distributed it re-
quires centralized management to assign and load flow-models. 

Fully utilizing the performance of heterogeneous resources 
is a challenging task. Design methodology for executing appli-
cations on heterogeneous platforms, which are specified as syn-
chronous dataflow (SDF) graphs is proposed in [5]. The authors 
try to maximize the end-to-end throughput of an application de-
veloped in OpenCL by modeling it using SDF graph. In contrast 
to the aforementioned related works, the goal of our work is to 
show how complex application with various processing require-
ments can be converted to scalable, distributed applications. We 
present a scheme through which the data dependency is main-
tained by utilizing a pipeline, at the same time allowing out-of-
order execution of workloads for higher hardware utilization. 
Also the concept of structure based scheduling is proposed with 
distributed flow control on a heterogeneous cluster. 

III. BACKGROUND OF INTELLIGENT TEXT RECOGNIZATION 
The neuromorphic model adopted by the ITRS software is 

mainly built based on the Brain-State-in-a-Box (BSB) attractor 
model [6] [7] [8] and the Cogent Confabulation model [9]. The 
BSB models provide matching patterns for each character im-
age. The cogent confabulation algorithms combine information 
from the BSB model to form more complex objects such as 
words or sentences. During this procedure, it suppresses the 
inputs that do not have strong association with others and 

enhances the remaining inputs. In other words, the confabulation 
model eliminates those BSB results that do not form meaningful 
words and sentences. Therefore, ITRS is capable of extracting 
meaningful text from noisy and occluded document images. The 
salient feature of ITRS is that it provides contextually correct 
sentence reconstruction even if there are illegible characters or 
words in the document image [1]. This is enabled by a trained 
knowledge base, which captures the statistical information 
among building components in English language, from letters 
and words to phrases and part-of-speech tagging. 

 
The information processing in ITRS has several stages, 

which can be arranged as a pipeline shown in Fig. 1. After sim-
ple image processing which corrects image distortion, skew and 
warping, the character images are segmented from document 
image and forwarded to BSB, where fuzzy pattern matching is 
performed. The pattern matching results will be processed by 
word and sentence level confabulation [10] for inference based 
information association and error correction. The pattern-match-
ing layer (BSB) is trained on clean font image. The word level 
confabulation is trained by reading a dictionary and the sentence 
level knowledge base is trained by reading multiple classic liter-
atures. 

 
The cognitive model of ITRS is illustrated by an example in 

Fig. 2. Given a noisy document image, the BSB provides pat-
tern-matching candidates for each character image using best ef-
fort. Each question mark in the figure represents all 26 possible 
alphabets. The word confabulation layer builds word candidates 
while filtering out any meaningless words and the sentence con-
fabulation layer selects the words that form the most meaningful 
sentence. It is easy to see that, for each sentence, one sentence 
confabulation task and multiple word confabulation tasks must 
be executed, along with even more number of BSB pattern 
matching tasks. The computation tasks within the same layer are 
independent to each other and hence can be implemented in par-
allel.  

Based on the discussion above it is clear that there are differ-

 
Fig. 1. ITRS pipeline 
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ent distinct stages in the pipeline with different compute require-
ments. Though the original software architecture of ITRS pro-
posed in [1] is parallel, it is not properly modularized and does 
not scale efficiently. The original ITRS has only two modules. 
One of them handles BSB pattern matching, and the other han-
dles all the rest of computation tasks. The task division among 
the two modules is shown by dotted line in Fig. 1. Since image 
processing applies different algorithms for processing different 
regions of the noisy image, it is a thread intensive task where 
each thread performs small but distinct computation. Therefore, 
each type of computation gets a thread pool for efficient asyn-
chronous computation. BSB is an attractor model of auto asso-
ciative memory, it is compute intensive and best suited for high 
performance accelerators. Word and sentence confabulation 
tasks perform sparse computation and have intensive random 
memory access. Such variety in workload characteristic is com-
mon in full-scale neuromorphic applications. Therefore, we pro-
pose an efficient, scalable architecture for improving the 
throughput by employing pipelining concepts and out of order 
computing for such systems. These systems have inherent data 
dependency, so we also propose a novel structure based sched-
uling methodology to efficiently utilize the compute resources 
in a distributed manor with inherent load balancing capabilities. 
Though we have selected ITRS as a case study for this work the 
methodology can be extended to other complex software appli-
cations where computation can be performed in isolated stages 
thus forming an asynchronous pipeline. 

IV. MODULARIZATION OF SOFTWARE ARCHITECTURE 

A. Balanced pipeline processing 
Without loss of generality, we consider a target 

heterogeneous cluster with Intel Xeon CPU nodes, Intel Xeon 
Phi nodes and NVIDIA GPGPU nodes. For an efficient hetero-
geneous cluster implementation, we break the ITRS functional 
pipeline into stages. Since each stage performs a very specific 
task it is also referred to as a layer, for example image layer, 
BSB layer etc.  

In order to achieve high performance, all pipeline stages 
should have the same throughput. However, the workloads of 
different layers differ significantly. For example, each document 
page is typically 2500x3300 pixel image. The number of char-
acters on a page is in the range of 103, the number of words on a 
page is in the range of 102, and the number of sentences is even 
less. The architecture should provide the flexibility so that a 
stage with heavy load can grab more computing resources. 

In the proposed architecture, a pipeline stage consists of mul-
tiple identical software processes called modules. Each module 
works independently on a sequence of incoming jobs. Each job 
is a small unit of workload in that particular layer, such as per-
forming pattern recognition on character images, constructing 
one word, etc. Each software module which runs on a hardware 
node employs multi-threading to achieve maximum efficiency. 
The number of threads in a module and the number of modules 
in a layer are configurable and they are determined to keep a 
balanced pipeline. In order to allocate more resources to a par-
ticular layer, we simply need to instantiate more modules or 
threads in a module of that layer. In a heterogeneous system, 
their selection does not only depend on the workload but also 
the hardware that the modules and threads are running on. 

The modules use MPI for inter process communication. Typ-
ically, MPI based programs are developed to benefit from paral-
lel processing on distributed or shared memory computer clus-
ters. However, this is not the only programming model sup-
ported by MPI standard. Each stage of the proposed pipeline per-
forms very distinct task and can run on a variety of hardware 
platforms in a cluster. Hence we use MPI for packetized data 
communication, which will be discussed later. The data flows 
through the pipeline for stream processing. Each data message 
specifies a job to be processed in its destination layer. Whenever 
a thread in a module is free, it fetches an incoming job from a 
common receiving queue and starts working on it. Therefore, the 
workload inside a module is distributed among all thread in a 
balanced way. 

The new modularized pipeline is shown in Fig. 3. Hence 
forth in the paper, this will be referred to as ITRS pipeline. With 
the new pipeline architecture each stage is independently scala-
ble. Within a pipeline stage, all workloads are processed inde-
pendently and their completion is out-of-order. The result gather 
module is introduced as the fifth stage to assemble the output of 
sentence confabulation results to in-order output. 

 
The above modularization and parallelization method enable 

us to separate individual modules and run them on most appro-
priate hardware platform that fits their computation requirement. 
Hence it is capable of effectively utilizing resources in a hetero-
geneous cluster. The proposed software architecture provides 
many knobs to fine tune the performance. For example, users 
can adjust the hardware utilization and system performance by 
selecting the number of threads in each module, the number of 
modules in each layer, and specifying CPU thread affinity.  

B. Uniform inter-module communication  

 
The MPI communication sub-module (MCSM) which is a 

reusable library, is designed to interface in a thread safe way 
with all modules in the pipeline. It is a key enabler for reliable 
and scalable implementation. MCSM is always attached to a 
software module, which is also referred as its parent module. 
Each functional module can only have one MCSM.  

 
Fig. 3. Modular ITRS pipeline 
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Fig. 4. MPI communication sub-module architecture 
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MCSM contains only one thread and all messages are fun-
neled through this thread. It can send and receive data messages 
from multiple ranks simultaneously. Apart from data messages, 
it also supports sending and receiving status messages to and 
from multiple ranks to facilitate inter-module synchronization. 
All status messages are one byte integer messages and data 
messages are given size character messages. While non-
blocking MPI communication is used for data transmission and 
status receiving; blocking MPI communication is used for status 
transmit. In this way we can guarantee that the status is sent in 
order. 

The architecture of this sub-module is shown in Fig. 4. 
MCSM manages five thread safe blocking queues. As shown in 
the figure, they are for data send (Data Tx Q), data receive (Data 
Rx Q), status send (Status Tx Q) and status receive (Status Rx 
req Q and Status Rx Q). The parent module is the producer for 
Data Tx Q, Status Tx Q, and status Rx req Q. It is the consumer 
of Data Rx Q and Status Rx Q. MCSM doesn’t block on any of 
these queues to maintain reliable, always open communication. 
However, depending on the computing requirements of the 
threads in the parent module these queues can be used in a thread 
non-blocking or thread blocking manner based on the full and 
empty flags of the queues. As we mentioned before, each 
received data message specifies a job to be processed. If the 
parent module consists of multiple threads, all threads fetch jobs 
from Data Rx Q whenever they are free. 

MCSM maintains two types of data objects; Data Transmit-
ters and Data Receivers. It creates one data transmitter or data 
receiver object for each MPI rank it needs to communicate with. 
Each of these objects contains a state machine to manage the 
communication with that particular rank.  

The data messages generated by the parent module also 
consist of destination rank information which are forwarded to 
MCSM through Data Tx Q. Each Data Transmitter object is 
interfaced with a local queue. These queues are stored in a map 
container with the destination rank of the associated object as 
the key. Whenever there is data available on the Data Tx Q it is 
copied on to appropriate local queue with the same key. Trans-
mitter pools are created by sharing the local queues among select 
data transmitter objects. The data messages in the local queue 
can be sent to any rank in that pool as long as it is free to receive. 
Therefore, these transmitter pools enable load balancing in a dis-
tributed way at module level among the ranks in the pool. The 
data receiver objects en-queue all received data messages to 
Data Rx Q. It is the responsibility of the consumer of this queue 
to de-queue data messages from them. 

MCSM also maintains one object for the status transmitter 
and receiver, and it is shared among all ranks. As we mentioned 
before, blocking MPI communication is performed for status in-
formation. The status communication is only used during initial-
ization and termination. 

The Status Tx Q receives status messages from the parent 
module along with the destination rank to MCSM. The Status 
Tx object sends one message at a time by initiating a blocking 
MPI send. To request the status message from a particular 
module, the parent module sends the rank of the target module 
to Status Rx Req Q. This initiates a non-blocking MPI receive. 
Another status request is not processed until current one is 

complete. The received status message is en-queued to Status 
Rx Q. We make the receive operation non-blocking and give 
power to the parent module to decide whether to block on an 
empty Status Rx Q or not. 

The MPI communication thread keeps on polling the TX Q 
and Status Req Q, hence it is always busy from creation to 
termination. The thread round robins on four functions: data 
receive, status receive, data transmit and status transmit. The 
detailed communication protocol is discussed next. 

C. Communication Protocol 
All communication is point-to-point and follow a flow con-

trol based communication protocol. The receiver has a capacity 
limit, which is the maximum length of Data Rx Q. If there is 
room for data in the queue then the receiver is inferred to be in 
ready state else it is inferred to be in busy state. In this protocol 
the transmitter sends a request message to the receiver. Based on 
the state of the receiver there can be two cases as shown in Fig. 
5. If the receiver is ready, then it sends a positive 
acknowledgement to the transmitter, otherwise it sends a 
negative acknowledgement . Once the receiver becomes ready, 
it will again send a positive acknowledgement message. The 
transmitter sends data only after receiving a positive 
acknowledgement. If a negative acknowledge is received, it will 
yield its turn to other transmitter objects, in this way load bal-
ance is achieved. These protocols are implemented as state 
machines on transmitter side and receiver side. The description 
of the state machines is given below.  

 
The Transmitter State Machine (TSM) has six states as 

shown in Fig. 6. The TSM starts in send request state 
(SEND_REQ) where, a request message is sent to the receiver 
and the state transitions to wait request acknowledgement 
(WAIT_REQ_ACK) state. TSM now waits for acknowledge-
ment message from the receiver. If it receives a positive 
acknowledgement, then it transitions to initiate send message 
(INIT_SEND_MSG) state else it transitions to initiate ready 
acknowledgement state (INIT_READY_ACK) where a non-
blocking MPI receive is called and the state transitions to wait 
ready acknowledgement (WAIT_READY_ACK). After receiv-
ing an acknowledgement, the TSM transitions to 
INIT_SEND_MSG where a non-blocking MPI send is called 
and the state transitions to wait send message 
(WAIT_SEND_MSG) where it waits till the MPI message is 
sent. Then it transitions to SEND_REQ and the process starts all 
over.  

The receiver state machine (RSM) also has 6 states as shown 
in Fig. 7. The RSM starts in initiate receive request state 
(INIT_REC_REQ) where, a MPI non-blocking receive is called 
and the state transitions to wait request (WAIT_REQ) state. 

 
                  (a)                                              (b) 

Fig. 5. Flow Control Protocol. (a) Receiver is ready (b) receiver is busy 
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RSM now waits for a request from the transmitter. Upon receiv-
ing the request, it transitions to send acknowledgement 
(SEND_ACK) state. In SEND_ACK state the RSM checks if 
Data Rx Q is full and sends a positive acknowledgement if there 
is room for data then the state transitions to initiate message re-
ceive (INIT_MSG_REC) state. Otherwise, if the queue is full 
then a negative acknowledgement is sent and the RSM transi-
tions to check status (CHECK_STATUS) state. In this state the 
RSM monitors the Data Rx Q size, as soon as the parent module 
de-queues a data message the RSM sends a positive acknowl-
edgement and the state transitions to INIT_MSG_REC state. In 
INIT_MSG_REC state a non-blocking MPI receive is called and 
state transitions to wait message (WAIT_MSG) where RSM 
waits till message is received. After receiving the message, state 
transitions to INIT_REC_REQ and the process starts over.  

The TSM (RSM) will make one transition according to the 
diagram when the MCSM enters the data transmit (data receive) 
function in the round robin process. 

V. SCALABLE ITRS STRUCTURE 
Each layer in the ITRS has a set of independent modules with 

the attached MPI communication sub-module. The modules in 
adjacent layers have point-to-point communication links. A typ-
ical, scalable ITRS system configuration is shown in Fig. 8. 

In this structure the data flow is restricted through point-to-
point communication between modules, hence data flow is dis-
tributed and not routed through centralized communication 
hubs. Since the architecture is pipelined, the neighboring mod-
ules can be allocated to physically nearby compute nodes to re-
duce communication latency. The workloads across the system 
are processed in parallel and may complete out-of-order as all 
the modules in the system are running independently and asyn-
chronously. The data communication between modules is han-
dled by non-blocking MPI communication, which allows com-
munication and computation to happen in parallel. Therefore, 
the communication latency is hidden.  

We use a configuration file, ITRS_CONFIG.txt, to specify 
the system topology and tunable parameters, such as the number 
of modules and thread in each layer and the CPU affinity of 
modules. One of the image processing module in the system be-
haves like a controller which synchronizes the initialization and 
termination of all modules in the system. This topology enables 
scaling by adding more modules to each layer and thereby in-
creasing that layer’s throughput. Therefore, each module tries to 

scale at the multi-core level and the overall system architecture 
enables scaling at the cluster level. 

VI. STRUCTURE BASED SCHEDULING 
The proposed methodology for achieving scalable 

throughput is flexible due to out of order computation, but at the 
same time poses some challenges for scheduling the workloads. 
This is due to the dependency between layers and among the 
data. For example, a word cannot be processed by the word 
confabulation module until all the character candidates of that 
word are processed by the BSB layer and the results of these 
candidates must be sent to the same word confabulation module. 
Similar situation can be found in the sentence layer, the 
processing cannot starts until all word candidates are processed 
and their results are sent to the same sentence module. In other 
words, we need to make sure that the data belonging to the same 
workload hierarchy are able to reach the same processing mod-
ule. 

We solve this problem by designing the communication net-
work topology of the distributed system according to the struc-
ture of its workload. Using ITRS as an example, as seen in Fig. 
8 except the image processing module all the other modules 
have single output which converge to the inputs of downstream 
modules. The topology defines a set of upstream fan-ins for each 
module. As long as higher layer workloads are assigned to those 
fan-in modules, we can guarantee that the downstream workload 
generated by them will converge to the same module. For exam-
ple, we know that characters assigned to BSB module 1, 2, and 
3 will all go to the same sentence module by simply following 
the path in the network. In this way, we avoided attaching tags 

 
Fig. 6. Transmitter State Machine 
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Fig. 7. Receiver State Machine 
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Fig. 8. Typical, scalable ITRS system topology 
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to data message to specify its affinity or complicated routing al-
gorithm. 

As an example, let us consider a topology with the MPI ranks 
as shown in Fig. 9 (a). We can divide the BSB modules into two 
sets, modules 1, 2, and 3 converging to sentence module 8, and 
module 4 converges to sentence module 9. We call this as level-
1 grouping of BSB. We can further divide the first set of BSB 
modules into two sets, {BSB1, BSB2} and {BSB3} based on 
their connectivity to the word confab module. We call this level-
2 grouping. Based on these groupings four possible paths can be 
identified for scheduling workloads to BSB modules as shown 
in Fig. 9 (b). All characters belonging to same sentence can be 
assigned paths {A-1-1, A-1-2, A-2-1} or {B-1-1}, which belong 
to level-1 grouping. All characters belonging to same words can 
be assigned paths from level-2 grouping, {A-1-1, A-1-2} or {A-
2-1} for one sentence or {B-1-1} for another sentence. 

If a module is congested, because of flow control, all its up-
stream modules will get congested. For example, if word confab 
module 5 is congested, then all BSBs whose level 2 grouping is 
associated to this module will eventually congest. Therefore, the 
image processing module will assign the workload to BSBs be-
longing to other level 2 grouping. Please note that all modules 
support out-of-order execution. Even if one of the module is 
congested, the other modules in the same layer keeps sending 
new completed results to the downstream module. For example, 
even if word module 5 is congested, word module 6 will still 
keep the sentence confab module 8 busy. In this way we achieve 
workload balance at module level. All modules construct a job 
by obtaining its elements from one or many data messages re-
ceived asynchronously from upstream modules. Partially con-
structed jobs do not block computation resources. Therefore, 
deadlocks due to data dependency cannot occur in this architec-
ture. 

VII. EXPERIMENTS 
Our experimental setup involves 3 Xeon multi socket nodes, 

NVIDIA GPU (C2075) and one Xeon Phi card (5110P). The 
node and accelerator details are given in TABLE I and TABLE 
II respectively. The ITRS topology is layer based which mimic 
the stages of a pipeline. For an efficient pipeline, it is necessary 
for all stages to have equal throughput or downstream stage has 
higher throughput so that there are no bottlenecks. In the ITRS 
system the BSB layer is the most computation intensive and will 
cause the primary bottleneck. Therefore, we test only meaning-
ful configurations, which allocate resource in a way that elimi-
nates bottlenecks. The select configurations are shown in 
TABLE III. In this table the different nodes and accelerators as-
signed for every layer in each configuration is shown. 

We run several experiments with specified configurations to 
demonstrate the effectiveness of scaling and pipelining. Fig. 10 
shows the comparison of throughput (measured by runtime per 
document image) of every configuration listed in TABLE III. 
Each configuration is run on 1, 4 and 16 document images. We 
can see that due to pipelining the throughput increases as the 
amount of independent workload increases. In configuration C2 
accelerator A2 is used as an independent node hence it is capable 
of running independent binaries. Since one instance of BSB used 
partial resources on A2 we assigned two instances of BSB to run 
on A2. In general, it is apparent that as the amount of resources 

increases, the overall run time reduces. 

To demonstrate the effect of distributed load balancing we 
turned off rank pooling for configuration C4 and the runtime in-
creased to 67.7s for processing one image. This is because, 
among the two BSB nodes one is a Xeon node which has much 
lower computing power compared to GPU. Since load balancing 
is turned off the workloads were uniformly scheduled among 
them hence resulting in increased processing time. The flow 
control protocol is critical for asynchronous distributed architec-
tures. We found that the experiments employing no flow control 
resulted in poor reliability as the downstream modules were 
prone to buffer overflow errors. Due to structure based schedul-
ing no extra effort was required to maintain accuracy of results 
with changing topology across various configurations. 

 

 

 

 

VIII. CONCLUSION 
Through this work we have shown that data dependent 

applications with variety of different workload processing 
requirements can be implemented as pipelined and distributed 
systems on a heterogeneous cluster. We also proposed a 
structure based scheduling scheme to enable seamless scaling 
and provide module level load balancing in a non-centralized 
way. Hence achieving maximum resource utilization and 
providing best throughput for available hardware resources. 
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