
Distributed and Configurable Architecture for
Neuromorphic Applications on Heterogeneous Cluster

Khadeer Ahmed, Qinru Qiu

Department of Electrical Engineering and Computer Sci-
ence, Syracuse University, NY 13244, USA

Email {khahmed, qiqiu} @syr.edu

Mangesh Tamhankar
Intel Corporation

Santa Clara, CA USA
Email mangesh.tamhankar@intel.com

Abstract—With the proliferation of application specific accel-

erators, the use of heterogeneous clusters is rapidly increasing.
Consisting of processors with different architectures, a heteroge-
neous cluster aims at providing different performance and cost
tradeoffs for different types of workloads. In order to achieve peak
performance, software running on heterogeneous cluster needs to
be designed carefully to provide enough flexibility to explore its
variety. We propose a design methodology to modularize complex
software applications with data dependencies. The software appli-
cation designed in this way have the flexibility to be reconfigured
for different hardware platforms to facilitate resource manage-
ment, and features high scalability and parallelism. Using a neu-
romorphic application as a case study, we present the concept of
modularization and discuss the management, scheduling and com-
munication of the modules. We also present experimental results
demonstrating the improvements and effects of system scaling on
throughput.

Keywords—Distributed computing; structure based scheduling;
heterogeneous computing; pipelining; latency hiding; modulariza-
tion

I. INTRODUCTION
Modern computing systems are increasingly becoming more

heterogeneous. This is due to a wide variety of computing archi-
tectures and accelerators such as multi-core CPU, GPU, FPGA,
etc. being used. Different architectures provide different perfor-
mance and cost tradeoffs, which greatly extends software design
space. If utilized properly, they can significantly optimize the
performance of software systems. The heterogeneity is most
beneficial to complex software systems, which involve large
quantities of data processing at multiple levels and different mo-
dalities. Some of such domains are scientific computing, big
data, machine learning, neuromorphic applications, financial
modeling etc. These applications consist of different types of
workload, which can benefit from the diversified architectures.

There are many challenges towards achieving full potential
of a heterogeneous computing cluster. Program designer needs
to pay attention to resource mapping, utilization, task schedul-
ing, etc. The same software working efficiently on one hetero-
geneous cluster may not have high hardware utilization on an-
other. This work investigates design methodology for develop-
ing software applications with high flexibility so that they can
be reconfigured to fit to different heterogeneous clusters. Our
goal is to improve the reusability and portability of distributed
software system, and our solution is through modularization and
standard inter-module communication architecture.

Today the industry is focusing towards brain inspired
computing due to its efficiency, scalability and its ability to
solve complex problems. Perception in biological system
involves different type of processing in different brain area. For
example, pattern matching happens in the basal ganglia where
brain processes large stimuli quickly in a parallel fashion. For
more sophisticated processing such as reasoning, relatively
slower sequential processes will occur in the sensory association
cortex. Like the brain, neuromorphic applications have different
computing requirements for different stages of processing.
Therefore, it will benefit from heterogeneous computing clus-
ters.

In this work, we use one such neuromorphic application, In-
telligent Text Recognition System (ITRS) [1], as a case study to
discuss the design methodology of our distributed software ar-
chitecture. We encourage modularized design and use of multi-
ple programming paradigms, such as multi-threaded program-
ming, CUDA etc., to achieve best possible optimization for each
module in the distributed software system. The design enables
flexible configurations to ensure best possible throughput at the
module level for the intended hardware platform. We propose
the use of message passing interface (MPI) [2] industry standard
for inter-module communication and novel structure based
scheduling for scalable implementation. The module functional-
ity is decoupled from its rank identifier; therefore, the system
functionality is solely dependent on the distributed architecture.
The main contributions of our work are as follows.

1. Uniform communication architecture with point-to-point
links is introduced as a foundation, which enables modulari-
zation of complex systems. The communication architecture
scales in a distributed way employing asynchronous commu-
nication with multiple modules.

2. Design methodology is presented to pipeline modules with
data dependency for out-of-order workload execution. Dis-
tributed pipeline control is used for asynchronous pro-
cessing.

3. Novel structure based scheduling is introduced for achieving
maximum performance for asynchronous workload pro-
cessing with varying module latencies.

4. A methodology for flexible scaling of the modular software
system is proposed to achieve desired throughput by lever-
aging different hardware resources in a heterogeneous clus-
ter.

We perform several experiments to show the speed up
gained over the non-reconfigurable implementation and provide This work is partially supported by the National Science Foundation

under Grant CCF-1337300 and Intel Corporation under CG #20263363.

several test case results involving bottleneck identification and
removal using the scalable architecture, which would not have
been possible without modularization and reconfiguration. We
also demonstrate the flexibility of the proposed methodology in
running the application in resource constrained situations.

The rest of the paper is organized as the following. Section
II discusses previous works in distributed software design meth-
odology. In Section III we will discuss the background of neu-
romorphic algorithms used in ITRS and the existing ITRS archi-
tecture. In Section IV, V and VI we elaborate on the modulari-
zation methodology, which includes the communication archi-
tecture, the methodology for pipelined execution of distributed
applications, and the novel structure based scheduling. Finally,
in Section VI, the experimental results are discussed followed
by conclusions.

II. RELATED WORK
Distributed systems are widely used and have been exten-

sively studied. Different kinds of distributed pipeline based ar-
chitectures are proposed. A state based distributed pipeline
framework is presented in [3]. Here the compute nodes are sep-
arated from the pipeline control. Instead of message passing the
state objects are passed which encapsulate the data. The load
balancing is achieved through producer/consumer relationship
i.e. processing happens asynchronously. However, there is an
extra overhead in creating and decoding state objects at every
stage apart from data processing. A distributed pipeline pro-
cessing architecture composed of flow-models, called meta-
pipeline is proposed for general-purpose computation [4]. The
architecture is suitable for stream based processing. This re-
quires input and output streams along with the parameters for
every flow-model. These details and other properties are encap-
sulated in XML. This kind of modularization enables distributed
task based execution. Though this system is distributed it re-
quires centralized management to assign and load flow-models.

Fully utilizing the performance of heterogeneous resources
is a challenging task. Design methodology for executing appli-
cations on heterogeneous platforms, which are specified as syn-
chronous dataflow (SDF) graphs is proposed in [5]. The authors
try to maximize the end-to-end throughput of an application de-
veloped in OpenCL by modeling it using SDF graph. In contrast
to the aforementioned related works, the goal of our work is to
show how complex application with various processing require-
ments can be converted to scalable, distributed applications. We
present a scheme through which the data dependency is main-
tained by utilizing a pipeline, at the same time allowing out-of-
order execution of workloads for higher hardware utilization.
Also the concept of structure based scheduling is proposed with
distributed flow control on a heterogeneous cluster.

III. BACKGROUND OF INTELLIGENT TEXT RECOGNIZATION
The neuromorphic model adopted by the ITRS software is

mainly built based on the Brain-State-in-a-Box (BSB) attractor
model [6] [7] [8] and the Cogent Confabulation model [9]. The
BSB models provide matching patterns for each character im-
age. The cogent confabulation algorithms combine information
from the BSB model to form more complex objects such as
words or sentences. During this procedure, it suppresses the
inputs that do not have strong association with others and

enhances the remaining inputs. In other words, the confabulation
model eliminates those BSB results that do not form meaningful
words and sentences. Therefore, ITRS is capable of extracting
meaningful text from noisy and occluded document images. The
salient feature of ITRS is that it provides contextually correct
sentence reconstruction even if there are illegible characters or
words in the document image [1]. This is enabled by a trained
knowledge base, which captures the statistical information
among building components in English language, from letters
and words to phrases and part-of-speech tagging.

The information processing in ITRS has several stages,

which can be arranged as a pipeline shown in Fig. 1. After sim-
ple image processing which corrects image distortion, skew and
warping, the character images are segmented from document
image and forwarded to BSB, where fuzzy pattern matching is
performed. The pattern matching results will be processed by
word and sentence level confabulation [10] for inference based
information association and error correction. The pattern-match-
ing layer (BSB) is trained on clean font image. The word level
confabulation is trained by reading a dictionary and the sentence
level knowledge base is trained by reading multiple classic liter-
atures.

The cognitive model of ITRS is illustrated by an example in

Fig. 2. Given a noisy document image, the BSB provides pat-
tern-matching candidates for each character image using best ef-
fort. Each question mark in the figure represents all 26 possible
alphabets. The word confabulation layer builds word candidates
while filtering out any meaningless words and the sentence con-
fabulation layer selects the words that form the most meaningful
sentence. It is easy to see that, for each sentence, one sentence
confabulation task and multiple word confabulation tasks must
be executed, along with even more number of BSB pattern
matching tasks. The computation tasks within the same layer are
independent to each other and hence can be implemented in par-
allel.

Based on the discussion above it is clear that there are differ-

Fig. 1. ITRS pipeline

Word
Confabulation

Sentence
Confabulation

Image
Processing BSB

Confabulation

Meaningful
Sentence

Document
Image

Fig. 2. ITRS cognitive model

BSB
Recognition

Word Level
Confabulation

Sentence Level
Confabulation

…but b?gi??in? to p?r?ei?e t??t
?he ?andcuffs ?ere n?? f?r…

but b?gi??in? to p?r?ei?e t??t ?he ?andcuffs ?ere n?? f?r

but besieging to proceite twit the handcuffs fere nut fur

believing perceive that she sere nun for

beginning parseile text were not fir

banishing test here nod far

…. …. …. ….

…but beginning to perceive that
the handcuffs were not for…

…but beginning to perceive that
the handcuffs were not for…

Association (word level)

Dictionary

Knowledge
Base (KB)

Association (sentence level)

ent distinct stages in the pipeline with different compute require-
ments. Though the original software architecture of ITRS pro-
posed in [1] is parallel, it is not properly modularized and does
not scale efficiently. The original ITRS has only two modules.
One of them handles BSB pattern matching, and the other han-
dles all the rest of computation tasks. The task division among
the two modules is shown by dotted line in Fig. 1. Since image
processing applies different algorithms for processing different
regions of the noisy image, it is a thread intensive task where
each thread performs small but distinct computation. Therefore,
each type of computation gets a thread pool for efficient asyn-
chronous computation. BSB is an attractor model of auto asso-
ciative memory, it is compute intensive and best suited for high
performance accelerators. Word and sentence confabulation
tasks perform sparse computation and have intensive random
memory access. Such variety in workload characteristic is com-
mon in full-scale neuromorphic applications. Therefore, we pro-
pose an efficient, scalable architecture for improving the
throughput by employing pipelining concepts and out of order
computing for such systems. These systems have inherent data
dependency, so we also propose a novel structure based sched-
uling methodology to efficiently utilize the compute resources
in a distributed manor with inherent load balancing capabilities.
Though we have selected ITRS as a case study for this work the
methodology can be extended to other complex software appli-
cations where computation can be performed in isolated stages
thus forming an asynchronous pipeline.

IV. MODULARIZATION OF SOFTWARE ARCHITECTURE

A. Balanced pipeline processing
Without loss of generality, we consider a target

heterogeneous cluster with Intel Xeon CPU nodes, Intel Xeon
Phi nodes and NVIDIA GPGPU nodes. For an efficient hetero-
geneous cluster implementation, we break the ITRS functional
pipeline into stages. Since each stage performs a very specific
task it is also referred to as a layer, for example image layer,
BSB layer etc.

In order to achieve high performance, all pipeline stages
should have the same throughput. However, the workloads of
different layers differ significantly. For example, each document
page is typically 2500x3300 pixel image. The number of char-
acters on a page is in the range of 103, the number of words on a
page is in the range of 102, and the number of sentences is even
less. The architecture should provide the flexibility so that a
stage with heavy load can grab more computing resources.

In the proposed architecture, a pipeline stage consists of mul-
tiple identical software processes called modules. Each module
works independently on a sequence of incoming jobs. Each job
is a small unit of workload in that particular layer, such as per-
forming pattern recognition on character images, constructing
one word, etc. Each software module which runs on a hardware
node employs multi-threading to achieve maximum efficiency.
The number of threads in a module and the number of modules
in a layer are configurable and they are determined to keep a
balanced pipeline. In order to allocate more resources to a par-
ticular layer, we simply need to instantiate more modules or
threads in a module of that layer. In a heterogeneous system,
their selection does not only depend on the workload but also
the hardware that the modules and threads are running on.

The modules use MPI for inter process communication. Typ-
ically, MPI based programs are developed to benefit from paral-
lel processing on distributed or shared memory computer clus-
ters. However, this is not the only programming model sup-
ported by MPI standard. Each stage of the proposed pipeline per-
forms very distinct task and can run on a variety of hardware
platforms in a cluster. Hence we use MPI for packetized data
communication, which will be discussed later. The data flows
through the pipeline for stream processing. Each data message
specifies a job to be processed in its destination layer. Whenever
a thread in a module is free, it fetches an incoming job from a
common receiving queue and starts working on it. Therefore, the
workload inside a module is distributed among all thread in a
balanced way.

The new modularized pipeline is shown in Fig. 3. Hence
forth in the paper, this will be referred to as ITRS pipeline. With
the new pipeline architecture each stage is independently scala-
ble. Within a pipeline stage, all workloads are processed inde-
pendently and their completion is out-of-order. The result gather
module is introduced as the fifth stage to assemble the output of
sentence confabulation results to in-order output.

The above modularization and parallelization method enable

us to separate individual modules and run them on most appro-
priate hardware platform that fits their computation requirement.
Hence it is capable of effectively utilizing resources in a hetero-
geneous cluster. The proposed software architecture provides
many knobs to fine tune the performance. For example, users
can adjust the hardware utilization and system performance by
selecting the number of threads in each module, the number of
modules in each layer, and specifying CPU thread affinity.

B. Uniform inter-module communication

The MPI communication sub-module (MCSM) which is a

reusable library, is designed to interface in a thread safe way
with all modules in the pipeline. It is a key enabler for reliable
and scalable implementation. MCSM is always attached to a
software module, which is also referred as its parent module.
Each functional module can only have one MCSM.

Fig. 3. Modular ITRS pipeline

MPI com

Image
Processing

MPI com

BSB
Xeon/MIC/GPU

MPI com

Word
Confabulation

MPI com

Sentence
Confabulation Result

Gather
MPI com

Stage 1
Image layer

Stage 2
BSB layer

Stage 3
Word layer

Stage 4
Sentence layer

Stage 5
Result layer

Multi-threaded module instances

Fig. 4. MPI communication sub-module architecture

Data Tx Q Data Rx Q

Status Tx Q

Status Rx req Q

Status Rx Q

Data Tx FSM
Rank Tx1

Data Tx FSM
Rank Tx2

:
:

Data Tx FSM
Rank Txn

Data Rx FSM
Rank Rx1

Data Rx FSM
Rank Rx2

:
:

Data Rx FSM
Rank Rxm

Status Tx Status Rx

MPI Com Thread
Data Transmitters Data Receivers

MCSM contains only one thread and all messages are fun-
neled through this thread. It can send and receive data messages
from multiple ranks simultaneously. Apart from data messages,
it also supports sending and receiving status messages to and
from multiple ranks to facilitate inter-module synchronization.
All status messages are one byte integer messages and data
messages are given size character messages. While non-
blocking MPI communication is used for data transmission and
status receiving; blocking MPI communication is used for status
transmit. In this way we can guarantee that the status is sent in
order.

The architecture of this sub-module is shown in Fig. 4.
MCSM manages five thread safe blocking queues. As shown in
the figure, they are for data send (Data Tx Q), data receive (Data
Rx Q), status send (Status Tx Q) and status receive (Status Rx
req Q and Status Rx Q). The parent module is the producer for
Data Tx Q, Status Tx Q, and status Rx req Q. It is the consumer
of Data Rx Q and Status Rx Q. MCSM doesn’t block on any of
these queues to maintain reliable, always open communication.
However, depending on the computing requirements of the
threads in the parent module these queues can be used in a thread
non-blocking or thread blocking manner based on the full and
empty flags of the queues. As we mentioned before, each
received data message specifies a job to be processed. If the
parent module consists of multiple threads, all threads fetch jobs
from Data Rx Q whenever they are free.

MCSM maintains two types of data objects; Data Transmit-
ters and Data Receivers. It creates one data transmitter or data
receiver object for each MPI rank it needs to communicate with.
Each of these objects contains a state machine to manage the
communication with that particular rank.

The data messages generated by the parent module also
consist of destination rank information which are forwarded to
MCSM through Data Tx Q. Each Data Transmitter object is
interfaced with a local queue. These queues are stored in a map
container with the destination rank of the associated object as
the key. Whenever there is data available on the Data Tx Q it is
copied on to appropriate local queue with the same key. Trans-
mitter pools are created by sharing the local queues among select
data transmitter objects. The data messages in the local queue
can be sent to any rank in that pool as long as it is free to receive.
Therefore, these transmitter pools enable load balancing in a dis-
tributed way at module level among the ranks in the pool. The
data receiver objects en-queue all received data messages to
Data Rx Q. It is the responsibility of the consumer of this queue
to de-queue data messages from them.

MCSM also maintains one object for the status transmitter
and receiver, and it is shared among all ranks. As we mentioned
before, blocking MPI communication is performed for status in-
formation. The status communication is only used during initial-
ization and termination.

The Status Tx Q receives status messages from the parent
module along with the destination rank to MCSM. The Status
Tx object sends one message at a time by initiating a blocking
MPI send. To request the status message from a particular
module, the parent module sends the rank of the target module
to Status Rx Req Q. This initiates a non-blocking MPI receive.
Another status request is not processed until current one is

complete. The received status message is en-queued to Status
Rx Q. We make the receive operation non-blocking and give
power to the parent module to decide whether to block on an
empty Status Rx Q or not.

The MPI communication thread keeps on polling the TX Q
and Status Req Q, hence it is always busy from creation to
termination. The thread round robins on four functions: data
receive, status receive, data transmit and status transmit. The
detailed communication protocol is discussed next.

C. Communication Protocol
All communication is point-to-point and follow a flow con-

trol based communication protocol. The receiver has a capacity
limit, which is the maximum length of Data Rx Q. If there is
room for data in the queue then the receiver is inferred to be in
ready state else it is inferred to be in busy state. In this protocol
the transmitter sends a request message to the receiver. Based on
the state of the receiver there can be two cases as shown in Fig.
5. If the receiver is ready, then it sends a positive
acknowledgement to the transmitter, otherwise it sends a
negative acknowledgement . Once the receiver becomes ready,
it will again send a positive acknowledgement message. The
transmitter sends data only after receiving a positive
acknowledgement. If a negative acknowledge is received, it will
yield its turn to other transmitter objects, in this way load bal-
ance is achieved. These protocols are implemented as state
machines on transmitter side and receiver side. The description
of the state machines is given below.

The Transmitter State Machine (TSM) has six states as

shown in Fig. 6. The TSM starts in send request state
(SEND_REQ) where, a request message is sent to the receiver
and the state transitions to wait request acknowledgement
(WAIT_REQ_ACK) state. TSM now waits for acknowledge-
ment message from the receiver. If it receives a positive
acknowledgement, then it transitions to initiate send message
(INIT_SEND_MSG) state else it transitions to initiate ready
acknowledgement state (INIT_READY_ACK) where a non-
blocking MPI receive is called and the state transitions to wait
ready acknowledgement (WAIT_READY_ACK). After receiv-
ing an acknowledgement, the TSM transitions to
INIT_SEND_MSG where a non-blocking MPI send is called
and the state transitions to wait send message
(WAIT_SEND_MSG) where it waits till the MPI message is
sent. Then it transitions to SEND_REQ and the process starts all
over.

The receiver state machine (RSM) also has 6 states as shown
in Fig. 7. The RSM starts in initiate receive request state
(INIT_REC_REQ) where, a MPI non-blocking receive is called
and the state transitions to wait request (WAIT_REQ) state.

 (a) (b)

Fig. 5. Flow Control Protocol. (a) Receiver is ready (b) receiver is busy

Rx ready
Rx busy

Rx ready

Tx Rx Tx Rx

RSM now waits for a request from the transmitter. Upon receiv-
ing the request, it transitions to send acknowledgement
(SEND_ACK) state. In SEND_ACK state the RSM checks if
Data Rx Q is full and sends a positive acknowledgement if there
is room for data then the state transitions to initiate message re-
ceive (INIT_MSG_REC) state. Otherwise, if the queue is full
then a negative acknowledgement is sent and the RSM transi-
tions to check status (CHECK_STATUS) state. In this state the
RSM monitors the Data Rx Q size, as soon as the parent module
de-queues a data message the RSM sends a positive acknowl-
edgement and the state transitions to INIT_MSG_REC state. In
INIT_MSG_REC state a non-blocking MPI receive is called and
state transitions to wait message (WAIT_MSG) where RSM
waits till message is received. After receiving the message, state
transitions to INIT_REC_REQ and the process starts over.

The TSM (RSM) will make one transition according to the
diagram when the MCSM enters the data transmit (data receive)
function in the round robin process.

V. SCALABLE ITRS STRUCTURE
Each layer in the ITRS has a set of independent modules with

the attached MPI communication sub-module. The modules in
adjacent layers have point-to-point communication links. A typ-
ical, scalable ITRS system configuration is shown in Fig. 8.

In this structure the data flow is restricted through point-to-
point communication between modules, hence data flow is dis-
tributed and not routed through centralized communication
hubs. Since the architecture is pipelined, the neighboring mod-
ules can be allocated to physically nearby compute nodes to re-
duce communication latency. The workloads across the system
are processed in parallel and may complete out-of-order as all
the modules in the system are running independently and asyn-
chronously. The data communication between modules is han-
dled by non-blocking MPI communication, which allows com-
munication and computation to happen in parallel. Therefore,
the communication latency is hidden.

We use a configuration file, ITRS_CONFIG.txt, to specify
the system topology and tunable parameters, such as the number
of modules and thread in each layer and the CPU affinity of
modules. One of the image processing module in the system be-
haves like a controller which synchronizes the initialization and
termination of all modules in the system. This topology enables
scaling by adding more modules to each layer and thereby in-
creasing that layer’s throughput. Therefore, each module tries to

scale at the multi-core level and the overall system architecture
enables scaling at the cluster level.

VI. STRUCTURE BASED SCHEDULING
The proposed methodology for achieving scalable

throughput is flexible due to out of order computation, but at the
same time poses some challenges for scheduling the workloads.
This is due to the dependency between layers and among the
data. For example, a word cannot be processed by the word
confabulation module until all the character candidates of that
word are processed by the BSB layer and the results of these
candidates must be sent to the same word confabulation module.
Similar situation can be found in the sentence layer, the
processing cannot starts until all word candidates are processed
and their results are sent to the same sentence module. In other
words, we need to make sure that the data belonging to the same
workload hierarchy are able to reach the same processing mod-
ule.

We solve this problem by designing the communication net-
work topology of the distributed system according to the struc-
ture of its workload. Using ITRS as an example, as seen in Fig.
8 except the image processing module all the other modules
have single output which converge to the inputs of downstream
modules. The topology defines a set of upstream fan-ins for each
module. As long as higher layer workloads are assigned to those
fan-in modules, we can guarantee that the downstream workload
generated by them will converge to the same module. For exam-
ple, we know that characters assigned to BSB module 1, 2, and
3 will all go to the same sentence module by simply following
the path in the network. In this way, we avoided attaching tags

Fig. 6. Transmitter State Machine

SEND_REQ

WAIT_REQ
_ACK

INIT_READY
_ACK

WAIT_READY
_ACK

INIT_SEND
_MSG

WAIT_SEND
_MSG

Received
+ve Ack Received

-ve Ack

Received
+ve Ack

start

Fig. 7. Receiver State Machine

INIT_REC
_REQ

WAIT_REQ

SEND_ACK

CHECK_STATUS

INIT_MSG
_REC

WAIT_MSG

Send
+ve Ack

Send
+ve Ack

Send
-ve Ack

start

Fig. 8. Typical, scalable ITRS system topology

Image
Processing

BSB BSB BSB BSB BSB BSB BSB

Image
Processing

Image
Processing

Word
Confab

Word
Confab

Word
Confab

Word
Confab

Sentence
Confab

Sentence
Confab

Result
Gather

(Controller)Character
images

Word
candidates

Sentences

ITRS_CONFIG.txt

IMG_PROC_
CONFIG.txt

Character
candidates

 (a) (b)

Fig. 9. Structure based scheduling (a) Example topology (b) Sentence paths
for image rank 0

Image
Processing

BSB BSB BSB BSB

Word
Confab

Word
Confab

Word
Confab

Sentence
Confab

Sentence
Confab

rank 0

Result
Gather

rank 2rank 1 rank 3 rank 4

rank 5 rank 6 rank 7

rank 8 rank 9

rank 10

Paths BSB
Ranks

Word
Ranks

Sentence
Ranks

A-1-1 1 5 8

A-1-2 2 5 8

A-2-1 3 6 8

B-1-1 4 7 9

to data message to specify its affinity or complicated routing al-
gorithm.

As an example, let us consider a topology with the MPI ranks
as shown in Fig. 9 (a). We can divide the BSB modules into two
sets, modules 1, 2, and 3 converging to sentence module 8, and
module 4 converges to sentence module 9. We call this as level-
1 grouping of BSB. We can further divide the first set of BSB
modules into two sets, {BSB1, BSB2} and {BSB3} based on
their connectivity to the word confab module. We call this level-
2 grouping. Based on these groupings four possible paths can be
identified for scheduling workloads to BSB modules as shown
in Fig. 9 (b). All characters belonging to same sentence can be
assigned paths {A-1-1, A-1-2, A-2-1} or {B-1-1}, which belong
to level-1 grouping. All characters belonging to same words can
be assigned paths from level-2 grouping, {A-1-1, A-1-2} or {A-
2-1} for one sentence or {B-1-1} for another sentence.

If a module is congested, because of flow control, all its up-
stream modules will get congested. For example, if word confab
module 5 is congested, then all BSBs whose level 2 grouping is
associated to this module will eventually congest. Therefore, the
image processing module will assign the workload to BSBs be-
longing to other level 2 grouping. Please note that all modules
support out-of-order execution. Even if one of the module is
congested, the other modules in the same layer keeps sending
new completed results to the downstream module. For example,
even if word module 5 is congested, word module 6 will still
keep the sentence confab module 8 busy. In this way we achieve
workload balance at module level. All modules construct a job
by obtaining its elements from one or many data messages re-
ceived asynchronously from upstream modules. Partially con-
structed jobs do not block computation resources. Therefore,
deadlocks due to data dependency cannot occur in this architec-
ture.

VII. EXPERIMENTS
Our experimental setup involves 3 Xeon multi socket nodes,

NVIDIA GPU (C2075) and one Xeon Phi card (5110P). The
node and accelerator details are given in TABLE I and TABLE
II respectively. The ITRS topology is layer based which mimic
the stages of a pipeline. For an efficient pipeline, it is necessary
for all stages to have equal throughput or downstream stage has
higher throughput so that there are no bottlenecks. In the ITRS
system the BSB layer is the most computation intensive and will
cause the primary bottleneck. Therefore, we test only meaning-
ful configurations, which allocate resource in a way that elimi-
nates bottlenecks. The select configurations are shown in
TABLE III. In this table the different nodes and accelerators as-
signed for every layer in each configuration is shown.

We run several experiments with specified configurations to
demonstrate the effectiveness of scaling and pipelining. Fig. 10
shows the comparison of throughput (measured by runtime per
document image) of every configuration listed in TABLE III.
Each configuration is run on 1, 4 and 16 document images. We
can see that due to pipelining the throughput increases as the
amount of independent workload increases. In configuration C2
accelerator A2 is used as an independent node hence it is capable
of running independent binaries. Since one instance of BSB used
partial resources on A2 we assigned two instances of BSB to run
on A2. In general, it is apparent that as the amount of resources

increases, the overall run time reduces.

To demonstrate the effect of distributed load balancing we
turned off rank pooling for configuration C4 and the runtime in-
creased to 67.7s for processing one image. This is because,
among the two BSB nodes one is a Xeon node which has much
lower computing power compared to GPU. Since load balancing
is turned off the workloads were uniformly scheduled among
them hence resulting in increased processing time. The flow
control protocol is critical for asynchronous distributed architec-
tures. We found that the experiments employing no flow control
resulted in poor reliability as the downstream modules were
prone to buffer overflow errors. Due to structure based schedul-
ing no extra effort was required to maintain accuracy of results
with changing topology across various configurations.

VIII. CONCLUSION
Through this work we have shown that data dependent

applications with variety of different workload processing
requirements can be implemented as pipelined and distributed
systems on a heterogeneous cluster. We also proposed a
structure based scheduling scheme to enable seamless scaling
and provide module level load balancing in a non-centralized
way. Hence achieving maximum resource utilization and
providing best throughput for available hardware resources.

REFERENCES
[1] Q. Qiu, Q. Wu, M. Bishop, R. E. Pino and R. W. Linderman, "A Parallel

Neuromorphic Text Recognition System and Its Implementation on a

TABLE I. NODE DETAILS
CPU
Node

Logical
Cores

Frequency
(GHz)

Total Cache
(MB) RAM (GB)

N1 16 3.2 16 47
N2 12 2.1 15 32
N3 32 2.9 40 189

 TABLE II. ACCLERATOR DETAILS
Accelerator

Node Card Frequency
(GHz) RAM (GB)

A1 C2075 1.15 6
A2 5110P 1 8

TABLE III. CONFIGURATIONS

Cnfg. No. Image BSB Word Sentence Result
C1 N2 A2 N2 N2 N2
C2 N2 A2, A2 N2 N2 N2
C3 N1 A1 N1 N1 N1
C4 N1 N3, A1 N1 N1 N1

Fig. 10. Runtime values for different configurations

19
.7

0

13
.9

9 21
.9

9

22
.9

7

18
.2

2

12
.7

3 19
.5

6

17
.9

7

17
.9

3

12
.4

4 19
.0

7

16
.8

3

0

5

10

15

20

25

C1 C2 C3 C4Ru
nt

im
e

pe
r i

m
ag

e
in

 se
c

Configurations

Impact of scaling and pipelining

1 Image

4 Images

16 Images

Heterogeneous High-Performance Computing Cluster," IEEE
Transactions on Computers, vol. 62, no. 5, pp. 886-899, May 2013.

[2] http://www.mpich.org/.

[3] G. Z. Sun and G. Chen, "Distributed Pipeline Programming Framework
for State-Based Pattern," in 2009 Eighth International Conference on
Grid and Cooperative Computing, 2009.

[4] S. Yamagiwa, L. Sousa and T. Brandao, "Meta-Pipeline: A New
Execution Mechanism for Distributed Pipeline Processing," in Parallel
and Distributed Computing, 2007. ISPDC '07. Sixth International
Symposium on, 2007.

[5] L. Schor, A. Tretter, T. Scherer and L. Thiele, "Exploiting the parallelism
of heterogeneous systems using dataflow graphs on top of OpenCL," in
The 11th IEEE Symposium on Embedded Systems for Real-time
Multimedia, 2013.

[6] J. Park and Y. Park, "An optimization approach to design of generalized
BSB neural associative memories," Neural computation, vol. 12, no. 6,
pp. 1449-1462, 2000.

[7] Y. Park, "Optimal and robust design of brain-state-in-a-box neural
associative memories," Neural Networks, vol. 23, no. 2, pp. 210-218,
2010.

[8] A. Schultz, "Collective recall via the Brain-State-in-a-Box network,"
Neural Networks, IEEE Transactions on, vol. 4, no. 4, pp. 580-587,
1993.

[9] R. Hecht-Nielsen, Confabulation theory: the mechanism of thought,
Springer Heidelberg, 2007.

[10] Q. Qiu, Q. Wu, D. J. Burns, M. J. Moore, R. E. Pino, M. Bishop and R.
W. Linderman, "Confabulation based sentence completion for machine
reading," in Computational Intelligence, Cognitive Algorithms, Mind,
and Brain (CCMB), 2011 IEEE Symposium on, 2011.

