
Towards Parallel Implementation of Associative
Inference for Cogent Confabulation

Zhe Li, Qinru Qiu
Dept. of Electrical Engineering & Computer Science

Syracuse University
Syracuse, NY 13224, USA
{zli89, qiqiu}@syr.edu

Mangesh Tamhankar
Intel Corporation

Santa Clara, CA USA
mangesh.tamhankar@intel.com

Abstract—The superb efficiency and noise resilience of human
cognizance comes from the extensive highly associative memory.
For example, it is easy for human to recognize occluded or incom-
plete text images based on its context. Associative inference in the
neocortex system is a concurrent process. Serial implementation
of this concurrent process not only hinders its performance,
but also limits the quality of recall. This paper investigates
parallel implementation of associative inference using cogent
confabulation model, which is a highly cross-dependent and
cyclic knowledge network that supports probabilistic inference.
By breaking the fixed processing order, which is typical in
sequential processing, and introducing randomness generated
from the race conditions in parallel processing, we do not only
reduce the runtime, but also improve the accuracy. Further im-
provement can be achieved by scheduling the lexicon processing
intermittently, which provides time for the changes to settle down.
Using sentence construction as a case study, we demonstrate that
the parallel implementation provides up to 93.4% reduction in
computation time and 5% improvement in recall accuracy.

Keywords—Cogent Confabulation; Sentence Completion; Par-
allel Programming; Multi-Threading

I. INTRODUCTION

Human perception and cognition involve two steps, sensing
and association. The association area is by far the most
developed part of the cerebral cortex. The associative inference
is related to brain activities in routine, repetitive situations
and well-precedent problems. It has been used to explain the
perception of sensory input [1] and language learning [2]. The
superb of human cognizance comes from its extensive highly
associative memory. For example, it is easy for human to
correct errors and recover the damages in document images
or speech; while this has always been a difficult task for
conventional OCR or speech recognition tools.

Many associative memory models have been proposed. They
include attractor network associative memories, bidirectional
associative memories, and sequence associative memories, etc.
In this work, we focus on the cogent confabulation model,
which is a belief network with recurrent connections. Cogent
confabulation arranges neurons into lexicons. The input of the
cogent confabulation is the initial status of the neurons, which
corresponding to noisy and ambiguous observations or lack of
information. The recall process is an iterative excitation and
inhibition among neurons. The feedback connections also loop

This work is partially supported by the National Science Foundation under
Grant CCF-1337300 and Intel Corporation under CG #20263363.

back the neural activities and gradually refine the memory
until at the end only the set of the most highly associated
neurons are active. This model has been applied in text image
recognition and sentence construction in previous works [3–8].

Associative inference in the neocortex system is a con-
current process, where neurons update their states simultane-
ously. During this procedure, there is no deterministic order
among neurons. In all previous works, cogent confabulation
is implemented as a sequential process, where neurons are
updated based on a prefixed order. The status of the neurons
in one lexicon depends on the output of neurons in some other
lexicons. Due to feedback connections, the data dependency
is cyclic. None of the fixed evaluation order can satisfy all
precedent constrains.

In this work we aim at parallelizing the algorithm on a
multicore processor. The parallel framework consists of a
thread pool, where each thread evaluates the status of specific
lexicons. In addition to reduced computation time, we found
that the parallel implementation also improves recall accuracy.
The racing among threads breaks the fixed processing order
in sequential processing and introduces randomness. The par-
allel architecture allows neurons to use the most up-to-date
information of their neighbors.

The number of lexicons to be processed in a confabulation
model is usually much greater than the number of active
threads that can be supported by a general purpose CPU.
Each thread needs to process multiple lexicons. We design
a lexicon scheduling algorithm to further add randomness in
the lexicon processing order and at the same time ensure a
balanced progress in status update among neurons. Based on
the algorithm, a thread switches from one lexicon to another
when the neuron activity of the former has reached to a state
that is informational.

The contributions of this paper can be summarized as
follows:

• A parallel implementation for cogent confabulation is
developed using multi-threading and blocking queue tech-
niques.

• We demonstrate that the parallel implementation not
only reduces runtime, but also improves recall accuracy
by breaking the fixed evaluation order and maintain a
balanced progress in status update among all neurons.

• A lexicon scheduling algorithm is presented that provides
further improvements.

The experimental results show that up to 93.4% reduction
in runtime and 5% increase in recall accuracy can be achieved
using the proposed parallel implementation and scheduling
algorithm.

The rest of the paper is organized as follows. In Section II
we introduce the basics of cogent confabulation model. Section
III describes parallelization scheme and its improvements.
Section IV implements confabulation for sentence completion
problem and compares performance and accuracy of different
implementations. Section V summarizes the work.

II. COGENT CONFABULATION

Inspired by human cognitive process, cogent confabulation
[9] mimics human information processing including Hebbian
learning, correlation of conceptual symbols and recall action
of brain. It represents the observation using a set of features.
These features construct the basic dimensions that describe
the world of applications. Different observed attributes of a
feature are referred as symbols, which are analogous to neurons
in a typical neural network. The names symbols and neurons
are used interchangeably in the rest of the paper. The set of
symbols used to describe the same feature forms a lexicon
and the symbols in a lexicon are exclusive to each other.
Symbols in different lexicons excite each other and symbols in
the same lexicon inhibit each other. The connections between
two lexicons are bidirectional, and data flow in the network is
cyclic.

During learning, matrices storing posterior probabilities be-
tween neurons of two features are captured. They are referred
as the knowledge links (KLs). The (i, j)th entry of a KL,
quantified as the conditional probability P (si|tj), represents
the Hebbian plasticity of the synapse between ith symbol
in source lexicon s and jth symbol in target lexicon t. The
knowledge links are constructed during learning by extracting
and associating features from the training set and the collection
of all knowledge links in the model forms a knowledge base
(KB).

The input of the recall function is a set of activated
symbols Al for each lexicon l. These symbols are referred
as candidates. They correspond to a noisy observation of the
target. In this observation, some features are observed with
great ambiguity, therefore multiple symbols are activated in
the corresponding lexicons, i.e. |Al| ≥ 1. In extreme cases,
no observation is obtained for certain features, therefore, all
symbols in those lexicons are activated as potential candidates.
The goal of the recall process is to resolve the ambiguity and
select the set of symbols that are most highly associated with
each other using the statistical information obtained during
the learning. At the end of the recall process, we obtain a
refined activation set A∗

l , and |A∗
l | = 1, ∀l. This is achieved a

sequence of iterative excitation and inhibition among neurons
as described in the following.

Each neuron in a target lexicon receives an excitation from
neurons of other lexicons through KLs, which is the weighted
sum of its incoming excitatory synapses. Let l denote a
lexicon, F denote the set of lexicons that have knowledge
links going into lexicon l, and Sl denote the set of symbols
that belong to lexicon l. The excitation el(t) of a symbol t in

lexicon l is calculated by summing up all incoming knowledge
links:

el(t) =
∑
k∈F

{
∑
s∈Sk

[I(s)wkl ln(
P (s|t)
p0

)] +B}, t ∈ Sl (1)

I(s) =
el(s)∑

j∈Sk
el(j)

, s ∈ Sk (2)

I(s) is the normalized excitation level across all actives in the
same lexicon. The parameter p0 is the smallest meaningful
value of P (si|tj). wkl is the weighting factor which is a
linear function of mutual information [10] of KL from lexicon
k to lexicon l [6]. The parameter B is a positive global
constant called the bandgap. The purpose of introducing B
in the function is to ensure that a symbol receiving N active
knowledge links will always have a higher excitation level
than a symbol receiving (N − 1) active knowledge links,
regardless of their strength. As we can see, the excitation level
of a symbol is actually its log-likelihood given the observed
attributes in other lexicons.

Among neurons in the same lexicon, those that are least
excited will be suppressed and the rest will fire and become
excitatory input of other neurons. Their firing strengths are
normalized and proportional to their excitation levels. As neu-
rons gradually being suppressed, eventually only the neuron
that has the highest excitation remains to fire in each lexicon
and the ambiguity is thus resolved.

Algorithm 1: Baseline sequence confabulation recall algorithm
Data: The activation set Al (|Al| ≥ 1) of symbols in each lexicon l,

predefined maxAmbiguity, maxIteration
Result: The refined activation set A∗

l (|A∗
l | = 1)

N ← maxAmbiguity
Initialize the set of unknown lexicons Lu = {l : |Al| > 1}
while N > 1 do

converged← false
iterationCount← 0
while ¬converged do

for each lu ∈ Lu do
for each symbol s ∈ Alu do

calculate el(s)
end
sort(Alu) based on el(s),∀s ∈ Alu
set the first N symbols in Alu as active
for each symbol s ∈ Alu do

calculate I(s)
end

end
iterationCount← iterationCount+ 1
if active symbol set unchanged ∨
iterationCount ≥ maxIteration then

converged← true
end

end
for each lu ∈ Lu do

Alu ← the first N symbols in Alu
end
N ← N − 1

end
A∗

l ← Al, ∀l
output A∗

l , ∀l

Algorithm 1 shows the recall function as a sequential
process. The candidates excitation levels are calculated lexicon
by lexicon in series. Due to the recurrent connections between

Fig. 1. Intuitive parallel confabulation architecture

lexicons, the evaluation needs to iterate several times to ensure
that changes in the excitation level of lexicons propagate
through the network before we prune one symbol from every
lexicon. It is not optimal to prune all lexicons at the same
time, because the decision is made upon the excitation level
calculated using the old symbol status. After a symbol in
one lexicon is pruned, the excitation levels of symbols in
other lexicons are likely to change. Therefore, it is possible
that we are going to prune something that should be kept.
However, because it is expensive to evaluate the excitation
level sequentially, we cannot afford to update the excitation
level each time after pruning a symbol in one lexicon. And
due to the fixed processing order, some lexicons always
have the privilege of making decision on more update-to-date
information than the others.

III. PARALLEL IMPLEMENTATION OF ASSOCIATIVE
INFERENCE

To fully explore the computation power of multi-core multi-
thread processors, we investigate parallel implementation of
the recall function of cogent confabulation. Starting from a
naı̈ve implementation that simply duplicates multiple copies
of the recall function and run them in parallel, we improve
the architecture by adopting finer grained parallelism and
better-controlled scheduling algorithms. In Section IV, the
experimental results will show that these additions not only
reduce the runtime but also improve the recall accuracy.

A. Request Level Parallelization
The intuitive design of parallelization is to run multiple

copies of the recall functions in Algorithm 1 using multiple
threads. Each thread processes an independent confabulation
recall, and all threads share the same knowledge base. As
shown in Fig. 1, for each incoming confabulation request, the
workload scheduler will collect symbol candidates to assemble
the initial activation set as the input of the recall function. Once
the initial activation set is assembled, it will be placed in the
scheduling queue. And each confab thread will de-queue one
request and run Algorithm 1.

At the end of recall, the refined activation set will be sent
to the result queue. Please note that in this design, scheduling
queue and result queue are both thread safe blocking queues,
which enable an automatic load balancing among multiple
threads. This design can simultaneously process as many recall
functions as the number of confab threads. However, within a
confab thread, the processing is still sequentially. All the previ-
ously mentioned limitations of the sequential implementation,

Fig. 2. Parallel confabulation architecture on lexicon level

such as fixed processing order, the need of iterative evaluation,
and the possibility of pruning some symbol without sufficient
information, still exists in this nave implementation.

B. Lexicon Level Parallelization
To emulate the parallel structure in a biological neural

system, we investigate finer grained parallelism where lexicons
are processed in parallel. A set of lexicon threads are created.
Once a confabulation thread receives a request from the
scheduling queue, it divides the input to multiple lexicons. It
places those lexicons with ambiguous or unknown information
(i.e. the lexicons lu with more than one active candidates)
with their activation set (i.e. Alu)) into a lexicon queue. Each
lexicon thread will fetch its input from the lexicon queue,
iteratively performs excitation level calculation and pruning
the inactive symbols until there is only one active symbol.
The lexicon together with the refined activation set is put into
a report queue, which will be read by the confabulation thread.
After the confabulation thread collected the report for all the
lexicons belonging to the same recall request, it will forward
the result to the result queue.

The new architecture is depicted in Fig. 2, except the round-
robin queues, which are not needed to achieve the lexicon
level parallelism. They will be discussed in the next section to
enable lexicon scheduling. In Fig. 2, scheduling queue, lexicon
queue, result queue and report queue are blocking queues. We
use blocking queues for them because they are accessed by
multiple threads and this makes sure that the requests and
reports are read and written thread safely. Furthermore, when
a thread is blocked, it will not consume CPU resource, hence
making the system more efficient. Lexicon threads reside in
fixed-size thread pool so that we can control the pooling effort.

Algorithm 2 shows the function of a lexicon thread. Because
all lexicons update their status simultaneously, it is easier
for a lexicon to obtain its neighbors most recent status and
the status change of one lexicon can propagate through the
network faster than the sequential implementation. In the par-
allel implementation each lexicon updates its excitation level
based on neighbor information and prune inactive symbols
asynchronously in a distributed manner.

C. Lexicon scheduling for intermittent pruning
The lexicon thread in Algorithm 2 picks a lexicon from

lexicon queue and keeps on processing it until there is only
one active symbol. Its effectiveness is based on an assumption
that all other lexicons are simultaneously being processed,
and the thread has the most up-to-date information on its
neighbor status. For many applications, the number of lexicons

Algorithm 2: Lexicon thread confabulation recall algorithm
Data: Primary lexicon scheduling queue LexiconQ
Result: Status report queue RepQ
while True do

lu ←dequeue(LexiconQ)
N ← |Alu |
while N > 1 do

for each symbol s ∈ Alu do
calculate el(s)

end
sort(Alu) based el(s), ∀s ∈ Alu
Alu ← the first N symbols in Alu
for each symbol s ∈ Alu do

calculate I(s)
end
N ← N − 1

end
A∗

lu
← Alu

ReqQ← enqueue(lu)
end

is greater than the number of active lexicon threads that can
run simultaneously on a processor. If the status of the lexicons
that are currently being computed depends on the status of
lexicons that have not been processed, then all the calculation
and pruning are based on stale information. Again, due to the
recurrent knowledge link connections, lexicons have mutual
dependencies, and we are not able to find an evaluation order
for the lexicons to satisfy all precedence constraints.

Instead of oversubscribing the hardware and using a very
large pool of lexicon threads to accommodate all lexicons, and
requesting OS to schedule those threads, we limit ourselves to
a small thread pool and create our own lexicon scheduling
algorithm to share each thread among multiple lexicons. The
main idea is to process a lexicon until it reaches a state
that its status is informational to its neighbors, then yield
the computation resource (i.e. the lexicon thread) to another
lexicon. Whether a lexicon status is informational is measured
by the normalized difference between the highest and second
highest excitation level of the lexicon, and we refer it as the
confidence level (cl). It is calculated as the following:

cl = min(1,
|el(0)− el(1)|

max(el(0), el(1))
) (3)

where el(0) and el(1) are the highest and second highest
excitation level in that lexicon.

As shown in Fig. 2, a local non-blocking queue is attached
to each lexicon thread to process lexicons in a round-robin
way. Lexicon thread keeps popping up one lexicon from its
local queue to run confabulation algorithm. If current lexicon’s
confidence level exceeds the average cl among all lexicons in
this recall, then the lexicon will yield the thread and be put
back into the local queue for future access, and a new lexicon
from the local queue will be fetched for processing. When all
lexicons in the local queue have been processed, the thread
will move a new lexicon from the lexicon queue to its local
queue and repeat the above procedures.

The revised parallel implementation processes each lexicon
in an intermittent manner; therefore, we refer it as lexicon
level parallel with intermittent-pruning. Intuitively if lexicons
are pruned too slowly, as they were in the sequential im-
plementation, then there are too many active symbols in the

Fig. 3. Sentence lexicon model example

network and they will introduce noise to the recall. On the
other hand, if lexicons are pruned too fast, as they were in
the simple lexicon level parallel implementation, then there
is not enough time for the status change to propagate through
the network. The intermittent-pruning finds a balance between
these two. It maintains a balanced progress among all lexicon
evaluations and by putting a lexicon back to the local queue
it gives some time for the lexicons new status to propagate
through the network before working on it again.

Interestingly, intermittent pruning also helps to improve the
performance, as we will show in the experimental results.
This is probably because it reduces the memory contention.
Since all running lexicon threads are using shared data, cache
coherence [11] needs to be maintained. It takes a lot of
time updating the L1/L2 Cache for each CPU core when
the excitation levels are read and written by different threads
running on different cores simultaneously. Intermittent pruning
reduces the frequency that a lexicon is updated, therefore, it
reduces the chance of memory access contentions.

IV. EXPERIMENTAL RESULTS

We take sentence reconstruction as an example to evaluate
the proposed parallel implementation of associative inference.
We implemented our proposed algorithm as a standalone
module in ITRS [4], [7], [8]. It receives ambiguous word
candidates from noisy scan input, then run confabulation recall
to resolve the ambiguity and select appropriate words to
reconstruct a sentence. In sentence confabulation model, we
assume that the maximum length of a sentence is 20 words and
sentences with more than 20 words will be truncated. As Fig. 3
shows, we have three layers of lexicons: words, adjacent word
pairs, and Part-of-speech(POS) tags [5], [12], [13]. Lexicon 0
to 19 correspond to single English word at location 0 to 19
in a sentence. Lexicons 20 to 38 correspond to 19 word pairs
combining word from lexicon 0 to 19 and its right adjacent
neighbor. Lexicon 39 to 58 correspond to the POS tag in
accordance with each word. Each lexicon stores a tremendous
number of symbols (words, word pairs or tags) that appears in
the corresponding location. We define intra-level KLs as KLs
from one lexicon to another in the same lexicon layer while
inter-level KLs are KLs from one lexicon to another lexicon in
a different lexicon layer. KLs are created between two inter-
level or intra-level lexicons that are less than N-neighborhood
(empirically N = 5) far away from each other and shared
among lexicon pairs that have the same relative position in a
sentence.

We took three pages of occluded scanned documents, which
are not included in the training corpus of sentence confabula-
tion model. The documents consist of 315 sentences, totally

Fig. 4. Compute time for RLP and LLP w/o intermittent pruning

2241 words scanned from a printed paper. About 10% of
the words are fully or partially occluded. The noise causes
great ambiguity in the input of sentence confabulation. In
average there are 5 candidate words at each word location of
a sentence, and we need to resolve the ambiguity to recover
the sentences.

We measure the compute time as the duration from the end
of system initialization to the time when the last sentence
has been confabulated. The recall accuracy is measured by
sentence accuracy, which specifies the percentage of sentences
that are reconstructed exactly same as the original sentence.
The tests are implemented on a Linux-2.6.32 based machine
with two 4-core CPUs (Intel R© Xeon R© W5580@3.20GHz with
48GB RAM). The machine has totally 8 cores and 16 logical
processors (16 simultaneous threads).

The first group of tests compares the request level par-
allelism (RLP) to lexicon level parallelism (LLP). No in-
termittent pruning is enabled. For the parallel design, we
set lexicon thread pool size to 5 and vary the number of
confabulation threads from 1 to 16. When there is only 1
confabulation thread, the RLP implementation reduces to serial
implementation. Fig. 4 and Fig. 5 show the compute time and
recall accuracy of these two implementations. We can observe
that as the number of confab thread increases, the compute
time of RLP decrease linearly, and the sentence accuracy of
RLP is consistently 69.21% for all five configurations. This
is because each confab thread in RLP processes independent
recall requests serially. Increasing the number of threads will
not affect how the recall function is evaluated. Meanwhile,
the compute time of LLP is relatively independent of the
number of confabulation threads, because its computation
resources are the lexicon threads, whose size is constant in
this experiment. Furthermore, because LLP no longer has the
overhead of convergence check and it prunes inactive symbols
asynchronously, running with 5 lexicon threads in LLP is faster
than running with 8 confab threads in RLP. It is interesting
to see that using LLP the recall accuracies are also improved
visibly. Because parallel confabulation introduces randomness
of computation and overcomes the error due to the fixed
execution order.

In the second group of tests, we compare lexicon level
parallel implementation without intermittent pruning (LLP w/o
Itm) with parallel implementation with intermittent pruning
(LLP w. Itm). Again we set lexicon thread pool size to
5 for both of them. Fig. 6 shows that the compute time
of both implementations are independent to the number of
confabulation threads. However, LLP with intermittent pruning

Fig. 5. Sentency accuracy for RLP and LLP w/o intermittent pruning

Fig. 6. Compute time for LLP w/o and w/ intermittent pruning

is 7.2% faster than LLP without intermittent pruning. As
we explained before, we attribute this phenomenon to less
memory contention. Pausing will spread the processing of
a lexicon over longer period of time, and hence reduce the
chance of memory contention due to simultaneous read and
write by different threads, and alleviate the cache coherence
overhead.

As for the accuracies, with intermittent-pruning, sentence
accuracy improved by about 1%. In the second group com-
pared to the other group. As Fig. 7 shows, the sentence
accuracy ranges from 72.38% to 73.02%, which is higher than
the other groups accuracies ranging from 71.11% to 71.75%.
This is because with intermittent pruning, more lexicons can
be loaded to lexicon threads; therefore, it maintains a more
balanced progress of status update among different lexicons.
Furthermore, a lexicon is pruned through multiple pruning runs
instead of one processing. This gives some time for changes
to propagate through the network.

In the third group of tests, we compare performance and
accuracy of different configurations of LLP with intermittent
pruning. The sizes of lexicon pool are set to 5, 10, and
20. We can see that in Fig. 8, given the same number of
confab thread, increasing number of lexicon threads improves
performance. Moreover, more lexicon threads not only speed
up computation, but also increase the accuracies as shown

Fig. 7. Sentency accuracy for LLP w/o and w/ intermittent pruning

Fig. 8. Compute time for LLP w/ intermittent pruning for different lexicon
thread pool sizes

Fig. 9. Sentence accuracy for LLP w/ intermittent pruning with different
lexicon thread pool sizes

in Fig. 9. In general, higher parallelism introduces more
randomness in processing order and more vividly resemble
a real biological neural network. However, the improvement
is not significant when we increase lexicon pool size from
10 to 20. This is probably because in average each lexicon
is connecting to 10 neighbors (N = 5). We also found that
increasing the number confabulation thread does not have
noticeable impact on recall accuracy. It does not help to
reduce computing time either when the lexicon pool is small.
However, when the lexicon pool size increases to 20 threads,
increasing the number of confabulation thread can give up to
60% reduction in computing time. This is because we need
more confabulation threads to generate inputs and analyze
outputs for the large number lexicon threads.

In the last group of tests, to investigate the impact of over-
subscription, we run LLP with intermittent pruning on another
Linux-2.6.32 based machine with two 8-core CPUs (Intel R©

Xeon R© E5-2690@2.90GHz with 192GB RAM). The machine
has totally 16 cores and 32 logical processors (32 simultaneous
threads). We compare LLP-Itm running on the 16-core CPU
with that running on the 8-core CPU. We set lexicon thread
pool size as 20 so that we will oversubscribe the 8-core CPU.
As shown in Fig. 10, it is not surprising to see that 16-core
CPU is faster than 8-core CPU. What is interesting is that
the system on 16-core CPU benefits more from increasing
the number of confab threads. When the confabulation thread
increases from 1 to 2, it brings approximately 30% compute
time reduction in both systems. When we increase the number
of confabulation thread to 8, it leads to 60% improvement
in the 8-core system but more than 100% improvement in
the 16-core system. It receives more than 100% reduction
in compute time. This is because not all 20 lexicon threads
are active in the 8-core system, and its throughput saturates.
However, the accuracy of both systems are very close. This
is because oversubscription randomly schedules the lexicon
thread to be processed, the randomness of the execution order
remains.

Fig. 10. Compute time for LLP w/ intermittent pruning on 8-core CPU
machine and 16-core CPU machine with 20 lexicon threads

V. CONCLUSION

We proposed a parallel sentence confabulation framework
inspired by concurrent association phase of human cognitive
processing. The proposed framework exploits multi-threading
to build a parallel structure to process lexicons in sentences.
We optimized the proposed framework by using intermittent
pruning, to overcome the compute speed overhead due to cache
coherence and this also improves the accuracy performance of
the framework. Compared to request level parallelization, the
proposed finer grained parallelization reduces the recall time
by up to 93.4%, and increase the sentence accuracy by 5%.

REFERENCES

[1] D. Bennett and C. Hill, Sensory integration and the unity of conscious-
ness. MIT Press, 2014.

[2] G. Kachergis, C. Yu, and R. M. Shiffrin, “An associative model of
adaptive inference for learning word–referent mappings,” Psychonomic
bulletin & review, vol. 19, no. 2, pp. 317–324, 2012.

[3] Q. Qiu, Q. Wu, D. J. Burns, M. J. Moore, R. E. Pino, M. Bishop,
and R. W. Linderman, “Confabulation based sentence completion for
machine reading,” in Computational Intelligence, Cognitive Algorithms,
Mind, and Brain (CCMB), 2011 IEEE Symposium on. IEEE, 2011, pp.
1–8.

[4] Q. Qiu, Q. Wu, M. Bishop, R. E. Pino, and R. W. Linderman, “A
parallel neuromorphic text recognition system and its implementation
on a heterogeneous high-performance computing cluster,” Computers,
IEEE Transactions on, vol. 62, no. 5, pp. 886–899, 2013.

[5] F. Yang, Q. Qiu, M. Bishop, and Q. Wu, “Tag-assisted sentence confab-
ulation for intelligent text recognition,” in Computational Intelligence
for Security and Defence Applications (CISDA), 2012 IEEE Symposium
on. IEEE, 2012, pp. 1–7.

[6] Z. Li and Q. Qiu, “Completion and parsing chinese sentences using
cogent confabulation,” in Computational Intelligence, Cognitive Algo-
rithms, Mind, and Brain (CCMB), 2014 IEEE Symposium on. IEEE,
2014, pp. 31–38.

[7] Q. Qiu, Z. Li, K. Ahmed, H. H. Li, and M. Hu, “Neuromorphic
acceleration for context aware text image recognition,” in 2014 IEEE
Workshop on Signal Processing Systems (SiPS). IEEE, 2014, pp. 1–6.

[8] Q. Qiu, Z. Li, K. Ahmed, W. Liu, S. F. Habib, H. H. Li, and M. Hu,
“A neuromorphic architecture for context aware text image recognition,”
Journal of Signal Processing Systems, pp. 1–15, 2015.

[9] R. Hecht-Nielsen, Confabulation theory: the mechanism of thought.
Springer Heidelberg, 2007.

[10] R. Battiti, “Using mutual information for selecting features in supervised
neural net learning,” Neural Networks, IEEE Transactions on, vol. 5,
no. 4, pp. 537–550, 1994.

[11] P. Stenstrom, “A survey of cache coherence schemes for multiproces-
sors,” Computer, vol. 23, no. 6, pp. 12–24, 1990.

[12] K. Toutanova and C. D. Manning, “Enriching the knowledge sources
used in a maximum entropy part-of-speech tagger,” in Proceedings of
the 2000 Joint SIGDAT conference on Empirical methods in natural lan-
guage processing and very large corpora: held in conjunction with the
38th Annual Meeting of the Association for Computational Linguistics-
Volume 13. Association for Computational Linguistics, 2000, pp. 63–70.

[13] K. Toutanova, D. Klein, C. Manning, W. Morgan, A. Rafferty, M. Galley,
and J. Bauer, “Stanford log-linear part-of-speech tagger,” 2000.

