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Abstract — The advanced sensing and imaging capability of 
today’s sensor networks enables real time monitoring in a large 
area. In order to provide continuous monitoring and prompt 
situational awareness, an abstract-level autonomous information 
processing framework is developed that is able to detect various 
categories of abnormal traffic events with unsupervised 
learning. The framework is based on cogent confabulation 
model, which performs statistical inference in a manner inspired 
by human neocortex system. It enables detection and recognition 
of abnormal target vehicles within the context of surrounding 
traffic activities and previous events using likelihood-ratio test. 
A neuromorphic architecture is proposed which accelerates the 
computation for real-time detection by leveraging memristor 
crossbar arrays.  
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I. INTRODUCTION 

Anomaly detection, which refers to the techniques of identifying 
patterns that do not conform to the regular observations in a given 
data set, is of the utmost importance. The problems of anomaly 
recognition and detection frequently arise from different domains, 
such as medical diagnosis and network intrusion detection. This 
paper introduces an abstract-level autonomous information 
framework that detects abnormal traffic behavior over a very large 
monitoring area using unsupervised machine learning. Taking 
advantage of the innovative sensing and imaging capability of 
today’s sensor networks, our framework may enable anomalous 
traffic situation detection for large-area traffic monitoring which is 
not achievable solely by the human. 

Many techniques have been studied for anomaly detection [1]~ 
[5], including SVM classifier, neural networks, nearest neighbor, 
Bayesian networks and trajectory clustering. But none of these 
systematically solve the problem of monitoring very large area, nor 
were they able to pin point the type of anomaly that was detected. 

In this paper, we present an autonomous anomaly recognition and 
detection (AnRAD) framework. The fundamental of the proposed 
framework is based on cogent confabulation [9], which is a 
computation model that mimics human information processing. It 
extracts conditional probability among symbolic representations of 
features in an unsupervised environment. In this work, the large area 
is firstly partitioned into smaller zones that can be independently 
processed with balanced effort. Then, a knowledge base (KB) is built 
for each zone by extracting vehicle behavioral features and their 
inter-relations from traffic records. When new traffic information is 
received, anomaly scores will be calculated by means of likelihood-
ratio test. The uniqueness of AnRAD can be summarized as the 
follows: 

1. The confabulation based model has very low complexity for both 
training and recall. Therefore, the system can be trained even in 
operating time, and this enables continuous improvements to the 
KB quality. 

2. By proper modeling, the system is capable of capturing the 
contextual information between vehicles and their neighbors. 
Thus, abnormal events caused by interaction between vehicles, 
such as tailgating, can be detected as well.  

3. The model is able to handle large volume of vehicles over a big 
area. The overall system has hierarchical architecture and the 
work load in each level of the hierarchy is inherently parallel.  

4. The likelihood calculation is analogous to the working 
mechanism of the synapse and neuron. It is transformed into 
matrix-vector operations and can be accelerated using analog 
domain operation with the help of memristor crossbar arrays. 

The rest of the paper is structured as the follows. Section II 
provides the background concepts of cogent confabulation. The 
designs of the system framework and algorithm model are elaborated 
in Section III. Preliminary results are presented in Section IV. 
Section V discusses potential optimization problems that can be 
solved using computer aided design (CAD) techniques and Section 
VI gives the conclusions. 

II. BACKGROUND 

Cogent confabulation [6] is a cognitive computing model that 
mimics the learning, the information storage and the recall process 
of human brain. It uses a set of features to construct the basic 
dimensions that describe the world of applications, e.g. vehicle 
speed or coordinates. Different observed attributes of a feature is 
referred as symbols. The set of symbols used to describe the same 
feature are candidates of this feature and they are mutually 
exclusive. Knowledge links (KL) are established among lexicons. 
They are directed edges from the source lexicons to target lexicons. 
Each knowledge link is associated with a matrix. The ijth entry of 
the matrix gives the log-conditional probability log	ൣ  ൯൧ݐหݏ൫
between the symbol ݏ  in the source lexicon and ݐ  in the target 
lexicon. The knowledge matrix is constructed during training by 
observing and extracting features from the inputs. 

The cogent confabulation model has close resemblance to the 
neural system. The symbols are analogous to neurons and 
knowledge links between symbols are analogous to synapses 
connecting neurons. Whenever an attribute is observed, the 
corresponding symbol (i.e. neuron) is activated, and an excitation is 
transmitted to other symbols (i.e. neurons) through knowledge links 
(i.e. synapses). The conditional probability log	ൣ ൯൧ݐหݏ൫  is 
analogous to the strength of the synapse between ݏ  and ݐ , which 
(according to the Hebbian learning rule) increases when the two 
neurons are activated simultaneously. _______________________________________________________________________________________ 
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The excitation level of a symbol t in lexicon l is calculated by 
summing up all incoming knowledge links as Equation (1): 

          ݈݁ሺݐሻ ൌ 	∑ ሺ∑ ሻݏሺܫ ln ቀ
ሺ௦|௧ሻ

బ
ቁ  ሻ௦∈ௌೖ∈ிܤ ,                        (1) 

where Fl denotes the set of symbols that have connections to l, and 
Sk is a set that consists the collections of symbols in lexicon k; I(s) is 
the firing strength of source symbol s, and it is set to 1 if s is 
observed without ambiguity; p0 is the minimum probability that is 
considered informative. Parameter B is a constant called band gap, it 
is 0 if none of the active source symbol in Sk has knowledge link 
goes into t. The band gap ensures symbols with more active 
knowledge links (KLs with active source symbol) receive higher 
excitation over those with fewer active KLs. 

 As we can see the excitation level of a symbol is actually its log-
likelihood given the other observed attributes. In [7], the excitation 
levels are used to remove the ambiguity in observation via maximum 
likelihood inference. In this paper, the excitation level enables us to 
detect anomaly using the likelihood ratio test method. 

Comparing to other schemes, the training and recall process in 
confabulation model are simple and massively parallelizable. Also, 
since this model is highly configurable, the system can be easily 
modified to fit diversified applications, or be optimized for better 
performance. Finally, because the training and recall processes share 
the same knowledge data structures, the model offers unsupervised 
learning and online updating. 

Our previous work [10], which performs confabulation-based text 
recognition on high performance computing clusters (HPC), 
demonstrates the framework’s ability to handle incomplete data and 
to capture the causal relationship between observations. 

III. SYSTEM DESIGN AND MODEL CONSTRUCTION 

The input to the AnRAD for both training and recall are radar data 
formatted as series of vehicle records ordered by time (0.8 sec per 
time slot). Each record consists of a timestamp, vehicle type, the 
location and speed of the vehicle represented in the Earth-Centered, 
Earth-Fixed (ECEF) format.  

A. Model construction 

To detect an abnormal event, we consider the behavior of a 
vehicle within the context of its location and neighbors during 
current and previous observations. If we define all observations 
made at the same time slot as a frame, the current detection 
algorithm involves 3 consecutive frames. Four classes of objects are 
defined, target, neighbor, auxiliary center, and supporter. Each 
vehicle appearing in the detection zones in a frame t will be 
considered as a target. The nearest 10 vehicles of the target in the 
same frame are called neighbors. Based on current location and 
speed of target, we can roughly locate it in previous frames. The 
vehicle records of the target in frames t-1 and t-2 are referred as 
auxiliary centers. The nearest 10 neighbors of the auxiliary center in 
the corresponding frame are called supporters. Figure 1 shows an 
example of the 4 types of vehicle records. An input vector is 
generated based on the observations of each target within the context 
of neighbors, auxiliary centers and supporters. 

Overall 97 features are used to describe the status and context of a 
target vehicle.  
 Three features are used to describe the status of a target vehicle: 

target location (L), target speed (V), and target size (S).  
 Two features are associated with each auxiliary center: center 

displacement (ΔL-t) and center acceleration (ΔV-t), t = 1, 2.  
 Two features are associated with each neighbor or supporters: 

relative location (denoted as ΔLi for the ith neighbor and ΔLi
-t for 

the ith supporter in frame t) and speed (denoted as  Vi, for the ith 
neighbor and Vi

-t for the ith supporter in frame t)  
 Three lexicons are associated with each target and neighbor pair: 

pairwise location (Li
~), pairwise speed (Vi

~), and pairwise speed 
changes (ΔVi

~). 

The set of observed attributes of these features form the input 
vector, which is the basic operating unit for confabulation training 
and recall. We treat each vehicle in the detection zone as a target, 
and generate an input vector for each target. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Classification of vehicle records and features 

The features are called lexicons in the confabulation model. 
Figure 2 shows the overall confabulation model with lexicons.  Each 
arrowed connection represents a KL. Lexicons S, L, V and Li

~, 
1  ݅  10, are represented using dashed circles.  Each of them 
corresponds to a general category of an abnormal behavior of the 
target vehicle, such as abnormal location, speeding, inconsistency 
between vehicle size and its status, and abnormal interactions with 
neighbors. We refer these lexicons as key lexicons and others as 
regular lexicons. Only the excitation levels of the key lexicons need 
to be calculated. All other lexicons simply provide contexts for 
them. A key lexicon has incoming knowledge links from any other 
lexicons while a regular lexicon only has outgoing knowledge links. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Knowledge links between lexicons 

B. Model training and anomaly detection 

The input data are collected from a large monitoring area with 
hundreds or thousands of vehicles appearing at the same time. The 
complexity of finding the nearest neighbors is a quadratic function 
of the number of the vehicles in the detection zone. The traffic 
situation varies significantly at different locations within this large 
area. Thus increases the complexity of the model and reduces its 
accuracy. Therefore, before training and recall, we first divide the 
large area into multiple smaller detection zones. Each detection zone 
can be processed independently to allow parallel processing. The 
criterion of partitioning is to create detection zones with near equal 



average vehicle density and uniform traffic environment. An 
example result of zone partition is shown in Figure 3. The grids with 
yellow borders are detection zones to be processed individually. 

The confabulation module primarily conducts two procedures: 
training and anomaly detection. Both procedures are based on the 
same data structure. For both procedures, the aforementioned 
features are collected from each vehicle in the given detection zone 
and assembled into an input vector. Each observed attribute is 
mapped into a globally unique reference number called a symbol. 
For a given lexicon, all attributes observed during the training 
process form its candidate set. 

For each knowledge link, the training process counts the co-
occurrence of the source and target symbols and the log-conditional-
probability is calculated at the end. All conditional probability will 
be arranged in matrix format and stored in the knowledge base. 

 
Figure 3 Partition of surveillance area 

The detection procedure calculates the excitation levels el(t) for 
all candidates of the key lexicons using Equation (1), which is the 
likelihood of the corresponding observations given the context of 
target and neighbor status. The likelihood-ratio test is then 
performed to calculate the anomaly score of each key lexicon using 
Equation (2).  

,ሺ݈ݏܽ                                ሻݐ ൌ
ሺ௧್ೞሻିሺ௧ሻ

ሺ௧್ೞሻ
                                (2) 

where t is the observed attribute and tbest is the candidate with the 
highest excitations. A very high anomaly score for symbol t 
indicates that the likelihood of observing t is much lower than the 
likelihood of other typical observations in current traffic context. 
Therefore, t will be marked as an anomaly. 

Since abnormal events usually last for multiple frames, a vehicle 
is reported as abnormal only when the anomaly score of one of its 
lexicons exceed a threshold in 3 continuous frames. This constraint 
is specified by Equation (3) 

                        minୀ,ଵ,ଶሼ ,ሺ݈ିݏܽ ሻሽݐ                                   (3)ߠ

C. Proposed neuromorphic architecture 

As the demands on high performance computation continuously 
increase, traditional Von Neumann computer architecture becomes 
less efficient. In recent years, neuromorphic hardware systems that 
potentially provide the capabilities of biological perception and 
information processing within a compact and energy-efficient 
platform have gained a great deal of attention [8][9].  

Our latest research shows that memristive devices have great 
potential in the matrix computations with high parallelism [10][11]: 
Firstly, as a two-terminal device, a memristor is very small and can 
be easily programmed to different resistance states by biasing the 
voltages at its two ends; Secondly, the crossbar array built on 
memristors can efficiently perform matrix-vector multiplication 

approximation by transforming one group of electrical excitations to 
another one. Let’s use an N×N crossbar array as the example to 
demonstrate its matrix computation functionality. We apply a set of 
input voltages VI on the word-lines (WL) and collect the current 
through each bit-line (BL) by measuring the voltage across resistor 
Rs with conductance of gs. Assume the memristor sitting on the 
connection between WLi and BLj has a conductance of gi,j. Then the 
output voltages can be represented by ۽܄ ൌ ۱ ൈ  indicating that ,۷܄
a trained crossbar array can be used to construct the connection 
matrix C, and transfer the input vector VI to the output vector VO. 
Here, C is determined by the conductance of memristors such as: 

       	۱ ൌ ۲ ൈ ۵ ൌ ݀݅ܽ݃ሺ݀ଵ,⋯ , ݀ேሻ ൈ ൦

݃ଵ,ଵ
݃ଶ,ଵ

⋯
݃ଵ,ே
݃ଶ,ே

⋮ ⋱ ⋮
݃ே,ଵ ⋯ ݃ே,ே

൪      

where, ݀ ൌ 1/ሺ݃௦  ∑ ݃,
ே
ୀଵ ሻ.  

 

 
 
 
 
 
 
 
 
 

 

Figure 4 An overview of NCA architecture 

As we can see from Equation (1), the knowledge links of the 
confabulation model is matrix of conditional probabilities and the 
calculation of excitation level is dominated by matrix and vector 
operations. We propose a crossbar-based neuromorphic computing 
accelerator (NCA) for matrix computations, which can be regarded 
as a processing element (PE) in Network-on-Chip (NoC) systems.  

Figure 4 shows an overview of the NCA architecture. Crossbar 
arrays conduct matrix-vector multiplications in normal (or recall) 
operation. Because the device resistance is always larger than zero, 
two crossbar arrays M+ and M– are required to program the 
positive and negative elements of a matrix, respectively; Summing 
amplifiers conduct vector computations at the outputs of the 
crossbars, such as scaling and summation. The voltage signal 
generated by the summing amplifiers V(t + 1) is either sent out of the 
computing module, or fed back to the inputs of crossbar arrays if 
more iterations are needed.  

I/O interface of the crossbar-based NCA includes input/output 
buffers and configuration queue, which carries the information 
required for crossbar array programming etc. Since the default 
operating data type for the NCA is analog, the input/output buffers 
are able to retain analog data, e.g., by using the variable resistive 
states of the memristor devices. The data communication among the 
different NCAs will be managed by a novel analog network-on-chip 
(NoC) while the analog-digital converters only exist at the interface 
between the NCA array and the conventional pipeline. 

IV. EXPERIMENTAL RESULTS 

Experiments are conducted to evaluate the performance of the 
AnRAD. The monitoring data are collected over a 10-by-10 (mile2) 
area. We focus on one partitioned zone of 500*500 (m2) with 
moderate traffic density. The training set contains 240 minutes of 
normal traffic data. The testing set is based on 10 minutes of traffic 
data that is not included in the training set with one manually 



inserted abnormal behavior from each category. These abnormal 
events include: deviating from the road, speeding, 18-wheeler in 
abnormal speed, tailgating, abnormal starting or stopping activities). 
Figure 5 shows the anomaly score calculated for each vehicle at 
different time in these tests. In these figures, the red bars represent 
the anomaly scores of those vehicles with abnormal behavior, while 
the blue bars are the anomaly scores of normal vehicles. As we can 
see that the red bars are significantly higher than the blue bars. This 
can be easily exploited by a decision threshold. Furthermore, the 
anomaly scores reveal obvious temporal continuity for most 
categories of abnormal events, except that of abnormal start/stop of 
vehicles, which give spikes only in the moment of moving status 
changes. By these means, the abnormal events can be differentiated 
from the normal ones.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 The detection of different anomaly events 

V. DESIGN OPTIMIZATION AND PERFORMANCE 
ENHANCEMENT 

The project involves many design optimization and performance 
enhancement problems that can be solved using traditional CAD 
algorithms. The detection zone partition problem is a typical 
balanced graph partition problem. The entire road network can be 
divided into trellis based on the minimum resolution of the partition. 
Each segment of the road inside a single grid will be considered as a 
vertex whose weight is defined by the vehicle density in that 
segment. The adjacent vertices on the same road are connected by 
edges. The goal of partition is to generate detection zones with 
relatively independent zones with approximately equal vehicle 
density and minimum crossing zone traffic. This is equivalent to 
finding sub-graphs that have balanced weight and minimum 
interconnections.  

How to map and schedule the training and detection procedures 
on a high performance computer (HPC) is essentially a real-time 
scheduling problem. The objective is to use minimum computing 
resources to cover maximum surveillance area while satisfying the 
throughput requirement of the input data stream. As we mentioned 
before, when the size of the detection zone increases, its processing 
complexity also increases. However, at the same time, the number of 
zone reduces. From performance perspective, there is a tradeoff 
between the size of the zone and the number of zones. Proper 

performance model should be established to determine the best size 
for the zone partition.  

  With the help of NCA, the matrix vector operation can be 
accelerated via analog domain operations. How to map the 
computation to the NCA is also a CAD problem. The knowledge 
links of the detection problem are sparse matrices. Mapping each KL 
into one NCA does not have high utilization. The more efficient way 
is to partition the sparse matrices into sub-matrices with higher 
density. However, as the size of each NCA reduces, their peripheral 
overhead increases. There is a fundamental tradeoff between the 
NCA utilization and its overhead. Furthermore, the connections 
among multiple NCAs need to be carefully routed through the NoCs 
in order to fully realize the speed up provided by the hardware. 

VI.  CONCLUSIONS 

In this paper, we presented the modeling and implementation of 
an anomaly detection system for traffic monitoring. The detection is 
realized using likelihood-ratio test and the statistical knowledge of 
the traffic collected from unsupervised learning. Given the 
analogous between the proposed model and human neocortex 
system, a neuromorphic architecture is proposed that accelerates the 
computation through analog domain operations. 
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