
A Spike-Based Long Short-Term Memory on a
Neurosynaptic Processor

Amar Shrestha1, Khadeer Ahmed1, Yanzhi Wang1, David P. Widemann2, Adam T. Moody2, Brian C. Van Essen2, Qinru Qiu1
1Department of Electrical Engineering and Computer Science, Syracuse University, NY 13244, USA

2Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
1{ amshrest , khahmed, ywang393, qiqiu} @syr.edu 2{ widemann1, moody20, vanessen1} @llnl.gov

Abstract---Low-power brain-inspired hardware systems have
gained significant traction in recent years. They offer high energy
efficiency and massive parallelism due to the distributed and asyn-
chronous nature of neural computation through low-energy
spikes. One such platform is the IBM TrueNorth Neurosynaptic
System. Recently TrueNorth compatible representation learning
algorithms have emerged, achieving close to state-of-the-art per-
formance in various datasets. An exception is its application in
temporal sequence processing models such as recurrent neural
networks (RNNs), which is still at the proof of concept level. This
is partly due to the hardware constraints in connectivity and syn-
aptic weight resolution, and the inherent difficulty in capturing
temporal dynamics of an RNN using spiking neurons. This work
presents a design flow that overcomes the aforementioned diffi-
culties and maps a special case of recurrent networks called Long
Short-Term Memory (LSTM) onto a spike-based platform. The
framework is built on top of various approximation techniques,
weight and activation discretization, spiking neuron sub-circuits
that implements the complex gating mechanisms and a store-and-
release technique to enable neuron synchronization and faithful
storage. While many of the techniques can be applied to map
LSTM to any SNN simulator/emulator, here we demonstrate this
approach on the TrueNorth chip adhering to its constraints. Two
benchmark LSTM applications, parity check and Extended Reber
Grammar, are evaluated and their accuracy, energy and speed
tradeoffs are analyzed.

Keywords--Spiking Neural Networks, Recurrent Neural Net-
works, Long Short-Term Memory, Neuromorphic Hardware

I. INTRODUCTION

Inspired by neurons, building blocks of our brain, and their
connections, various versions of artificial neural networks have been
designed and achieved high performance in representation learning
tasks such as image classification and pattern recognition. However,
these feedforward neural networks are not capable of retaining
temporal dependencies in a sequence, and are not suitable to learn
temporal patterns from time-series where the information at the current
time step is dependent on past steps. While recurrent neural networks
(RNNs) address this issue with feedback connections, it is difficult to
learn long temporal dependencies using vanilla RNNs [1]. Long Short-
Term Memory (LSTM) improves RNN with a complex gated
mechanism, which allows it to forget, remember and output
information [2]. Its ability of learning long-term dependencies makes it
a prominent and successful model for time-series processing.

The advents of energy-efficient large-scale neuromorphic
hardware enabled low power implementation of large-scale neural
networks for real-time applications. One of the examples is IBM’s
Neurosynaptic Processor, “TrueNorth”. Operating in the spiking-
domain, TrueNorth has achieved close to state-of-the-art results in

various pattern recognition tasks [3] with very high energy efficiency.
Converting pre-trained network to a SNN has also produced good
results in pattern recognition [4] on platforms other than TrueNorth.
However, almost all of these applications aim at non-recurrent
networks, such as convolutional neural networks. Due to the hardware
constraints in connectivity and synaptic weight precision, and the
inherent difficulty in capturing temporal dynamics of an RNN using
spiking neurons, implementing recurrent neural networks (RNNs) for
temporal sequence processing in spike-domain is still at the proof of
concept level [5].

In this work, we present a design flow that overcomes the
aforementioned difficulties and maps LSTM, a special case of RNN,
onto a spike-based platform, and implement them using the TrueNorth
processor. We validate the implementation using two benchmark
LSTM models. The framework is built on top of various approximation
techniques, including weight and activation discretization, spiking
neuron sub-circuits that implements the complex gating mechanisms
and a store-and-release technique that enables neuron synchronization
and faithful storage.

To the best of our knowledge, there has been no publication on
implementing LSTM in spike domain. The following summarizes our
contributions:

1. We developed a modular approach to convert a standard LSTM to a
Spiked-based LSTM. The modular approach allowed for
incremental mapping onto the TrueNorth chip.

2. To have a faithful representation of inputs, outputs and internal
activation of an LSTM in spike-domain, encoding heuristics are
adopted, which maintain spike representation consistency
throughout the network.

3. Novel neuron circuit design is proposed to approximate the sigmoid
and hyperbolic tangent functions. The relationship between stored
membrane potential, the random firing threshold and the firing rate
is analyzed.

4. To synchronize the gated modules and achieve recurrent processing
in the Spike-based LSTM, we developed a store-and-release
mechanism using locally generated and globally consistent store and
release clock spikes.

II. BACKGROUND

A. LSTM

The main feature of a recurrent neural network is that it can learn
sequential information by considering the information from previous
time steps. The loop, as shown in Figure 1(a), allows information to be
passed from one step of the network to the next thus allowing the
information to persist.

The length of sequence or how far a vanilla RNN can remember is
hindered by vanishing or exploding gradients [1] since

backpropagation-through-time results in an unrolled network, which
can be very deep. To overcome this, LSTM utilizes a special structure
of gates to selectively allow information to persist in the cell state. Its
structure provides the ability to remove or add information to the cell
state, carefully regulated by gates. Gates are a way to optionally let
information through. They are composed out of a sigmoid and a
pointwise multiplication operation. The input gate, forget gate and the
output gate allowed for adding, removing and outputting information
to or from the cell state. This makes LSTM successful in tasks like lan-
guage modeling, machine translation, speech recognition, video to text
etc.

There are many variations of LSTM such as Gated Recurrent Units
(GRU) [6], Peephole LSTM [7], etc. In this work, we aim at a standard
LSTM model [2], which is shown in Figure 1(b). A single standard
LSTM has a forget, input and output gate which are sigmoid
activations, and hyperbolic tangent activations to squash incoming
inputs and outgoing output. Its output ht is generated based on the
equations shown in Figure 1(c), where ft, it and ot are the forget, input
and output gate vectors, ct and ht are cell state and output vectors, and
Wf, Wi, Wo and WC are trained weight matrices.

B. TrueNorth Architecture

The TrueNorth neurosynaptic processor is inspired by the parallel
architecture of biological neural systems. It is highly efficient, scalable
and flexible. The TrueNorth processor consists of 4096 cores [8] each
with 256 neurons and 256 axons connected via 256x256 directed
synaptic connections, thus providing 1 million programmable neurons
and 268 million configurable synapses. The weight of the

corresponding synapse in the crossbar is selected from 4 possible
integers determined by the axon type at each neuron.

TrueNorth uses an efficient event-driven architecture where,
address event representation (AER) is adopted for spike representation
and communication between neurons. These spike events are sparse in
time and active power is proportional to firing activity thus making it
highly efficient and low power. Normally, the system operates in 1 ms
timesteps called ticks within which membrane potential is processed
and spike events routed asynchronously inside the chip. A spike
generated by a neuron can target any single axon on the chip. Figure
2(a) shows a structural view of a TrueNorth core with axons as input

and neurons as outputs and synapses linking them. This representation
is similar to a traditional neural network. Figure 2(b) shows a functional
view of core as a crossbar where horizontal lines are axons, cross points
are individually programmable synapses, vertical lines are neuron
inputs, and triangles are neurons. Spikes flow from axons via active
synapses to neurons.

The synaptic connections and their weights between axons and
neurons are captured by a crossbar matrix at an abstract level along with
connections from neuron to a single axon across cores. This abstraction
is called a Corelet [9], which represents a network on the TrueNorth
cores by encapsulating all details except external inputs and outputs as
shown in Figure 2(c). The creating, composing and decomposing of
corelets is done in an object-oriented Corelet Language in the
programming paradigm for TrueNorth called Corelet Programming
Environment (CPE). Programming TrueNorth includes creating
corelets with specific neuron behaviors, synaptic connections, weights
and delays to achieve the desired functionalities. Multiple corelets can
be combined through their input and output connectors.

III. PROPOSED IMPLEMENTATION

Event driven neuron operation and asynchronous inter-core
communication are representative features of many hardware
implementations of Spiking Neural Networks (SNNs) [8] [10] [11]
including the TrueNorth processor. It reduces the hardware active
power, however, also imposes a fundamental challenge to realize the
LSTM. As shown in Figure 1(a), the proper function of an LSTM relies
on the synchronization of neuron inputs. For example, the output vector
ot-1 in time step t-1 must concatenate with the input vector xt in time
step t to calculate the new output vector. On an event-driven hardware
platform, such as TrueNorth, special neural circuits must be designed
to enable such synchronization. Other challenges of implementing the
LSTM on a neurosynaptic processor in the spike-domain include a lack
of low precision algorithms which can achieve results typically
observed when using floating point precision based non-linear
activation functions such as sigmoid and tanh, and the difficulty in
representing numerical values in spike domain.

In this work, we address the aforementioned challenges and present
some key techniques that facilitate Spike-based LSTM and its mapping
onto the TrueNorth chip. We start with approximations made to the
LSTM and our constrain-then-train-then-approximate process, which
minimizes the approximation errors. In the next section, we discuss
how values are represented using spikes along with the external and
internal encoding schemes of the Spike-based LSTM. Then we
describe the constituent modules of LSTM on TrueNorth and how to
maintain the temporal relation of these modules’ activities. Finally, we
present the mapping algorithm.

A. “Constrain-Then-Train-Then-Approximate”

Several approximations on the LSTM are adopted during the
mapping to TrueNorth. We consider these approximations during
training to minimize potential errors. We call this process “constrain-
then-train-then-approximate.”

The synaptic weights in TrueNorth have limited precision and
coarse granularity. They are represented using 9-bit signed binary data,
and there can be at most 4 different weights for all synapses connecting
to the same axon. Although binary and ternary weights have been used
to produce close to state-of-the-art results for feed-forward network
architectures [12] [13], both our preliminary work and the existing
research [14] show that it is difficult to train LSTMs with binary and
ternary weights. Power2-ternarization, which rounds the integer part
and fractional part of the weight separately [14], gives good training
results. However, it only provides an efficient way to discretize the
weights. High precision data is still needed for the LSTM to work
properly. Instead of training the network using ternary weights, in this

 (a) (b)

௧݂ ൌ ሺߪ ܹ. ሾ݄௧ିଵ, ௧ሿݔ ܾሻ ݅௧ ൌ ሺߪ ܹ. ሾ݄௧ିଵ, ௧ሿݔ ܾሻ
௧ ൌ ሺߪ ܹ. ሾ݄௧ିଵ, ௧ሿݔ ܾሻ ܥ′௧ ൌ ሺ݄݊ܽݐ ܹ. ሾ݄௧ିଵ, ௧ሿݔ ܾሻ
௧ܥ ൌ ௧݂ ∗ ௧ିଵܥ ݅௧ ∗ ௧ ݄௧′ܥ ൌ ∗ tanh	ሺܥ௧ሻ

(c)
Figure 1(a)Unrolled RNN (b)Standard LSTM (c) LSTM equations

 (a) (b) (c)
Figure 2(a)Structural view (b)Functional view of a core (c) corelet

work, we approximate the weights of a regularly trained LSTM via
scaling and rounding.

Due to the hardware constraints, the non-linear activation functions
such as tanh and sigmoid gates are also approximated using piece-wise
linear functions. Their implementation details will be discussed in
Section 3.4.

To minimize the potential errors, we constrain the network during
the training to reflect those approximations. Firstly, the LSTMs are
trained using constrained weights (-1 to 1 or -2 to 2) such that these
weights can be scaled to a hardware supported range. Secondly, we
replace the gates (tanh and sigmoid) with their piece-wise linear
counterparts (hard tanh and hard sigmoid), which have steeper slopes
as shown in Figure 7(a) and (b) and in Eqn. (2) and (4). The weights of
the trained network are floating point values thus they are scaled and
rounded off to the required precision and range while converting to
spike domain. This is done by approximation.

B. Temporal Behavior of Neurons in LSTM

The complex gating mechanism of the LSTM requires
synchronization of inputs, gate outputs and the cell state feedback.
Synchronization is also necessary to maintain the temporal dynamics
of the recurrence of the LSTM output in the network. Representing this
level of synchronization using spiking neurons is inherently difficult
given their asynchronous nature. We overcome this limitation using a
store-and-release mechanism. It is built atop a class of special neural
circuits, in which neurons operate in two modes, store and release.
During the store mode, the neurons gate their outputs, receives input
spikes and at the same time accumulate their membrane potential.
During the release mode, the neurons issue output spikes at an average
rate proportional to its membrane potential either stochastically or in a
burst. Two internal clock signals controls when a neuron enters or exits
the store/release modes through the application of highly
negative/positive potential respectively. How to configure and connect
asynchronous neurons to form such synchronous neural circuits will be
discussed in Section 3.4.

Using the store-and-release mechanism, the LSTM works in two
phases, processing phase and I/O phase. The entire LSTM network is
divided into three partitions as shown in Figure 3. (a) and (b). They are
referred to as input, processing and output partitions and color coded
using blue, red and green respectively. Except the input partition, all
inputs of the processing and output partitions are buffered using store-
and-release neurons. The inputs to the processing partition stores
during the I/O phase and releases in the processing phase, while the
inputs to the output partition stores in the processing phase and releases
in the output phase. For the input partition, one of its inputs ht-1 is
released only in the I/O phase, and by careful control we can also make
sure that the external inputs, xt , are issued only during the I/O phase,
therefore, the input partition is active and releases output spikes only
during the I/O phase. During the implementation, the store-and-release
neurons will be merged into their subsequent function modules and be
implemented as store-and-release tanh or store-and-release sigmoid, as
we will present in Section 3.4. The only exception is the store-and-
release neurons before the dot product, which will stay stand-alone.

How these three partitions operate alternatively is shown in Figure
3. (c). The duration of each phase is referred as phase length (PL).
During the I/O phase, the input partition works on the matrix-vector
multiplications to generate the operands for the forget, input and output
gates. The results of the matrix-vector multiplications are buffered by
the store-and-release neurons at the input of the processing partition. In
the processing phase, these neurons release what they have stored and
the processing partition generates the cell state (Ct) and partial output
(ot), which are buffered by the store-and-release neurons at the input of
the output partition. During the next I/O phase, the Ct and ot will be
released and be used to calculate the ht, which will be forwarded to the
input partition to calculate the matrix-vector multiplications again.

These phases are maintained through local clock (globally consistent)
spikes which produce the store and release actions for all the store-and-
release capable modules.

C. Encoding and Spike Representation

In an LSTM, numerical values (inputs, outputs and activations)
have ranges in both negative and positive direction as the weights learnt
can be negative and also the tanh function outputs values in the range -
1 to 1. Since the spikes are binary (on-off), there is an inherent difficulty
in representing both positive and negative values with a single channel
of spikes. A simple solution is to constrain the values during training to
a positive range by replacing tanh with ReLU. ReLUs have produced
improvements for vanilla RNNs [15] due to its ability to stop vanishing.
However, vanishing gradients is no longer a problem in LSTM due to
its gating scheme. On the contrary, using unbounded activation
functions like ReLU in an LSTM can cause it to diverge thus resulting
in worse performance [16]. Therefore, we avoid replacing tanh with
ReLUs and instead represent positive and negative values using a
positive and negative channel of spikes respectively.

The inputs and outputs of an LSTM are rate-coded where the firing
rate is determined by the phase length (ܲܮ) and the max value (݉ݔ) to
be represented in that phase. If we scale up the trained weights with a
scaling factor ݂ݏ, the input and output should be scaled down by the
same factor. Therefore, the number of spikes (nS) needed to represent
value 1 can be calculated as:

݊ܵ ൌ ܮܲ ሺ݉ݔ ∗ ⁄ሻ݂ݏ .
To represent a numerical value Iv, the spike firing rate is set to

ሺݒܫ ∗ ݊ܵሻ ⁄ܮܲ , and n spikes in a phase represent the value:

݁ݑ݈ܸܴܽܲ ൌ
#௦௦

ௌ
 .

The choice of ݉ݔ	and phase length determines the precision of
values that can be represented by spikes, as each spike represents 1/݊ܵ
in terms of numerical value.

All internal variables are rate-coded, except Ct. We found that the
cell state Ct needs to be represented with higher precision, because any
error on this variable will be accumulated due to the feedback path. The
stochastic rate coding provides convenience in implementing
multiplication as it requires only an AND function, however, it
introduces not only rounding error but also random error due to
stochastic sampling. Previous work shows that the spike burst code,
where the numerical value is represented by the number of spikes that
burst in a window, has much higher correlation with the numerical

z

(a) (b)

(c)

Figure 3. (a) LSTM color coded based on operation phase
(b) LSTM equations color coded to represent operations in spe-

cific phases (c) 3 phases and partial pipelining

value to be represented [17]. Therefore, we encode Ct using spike burst
code and use spike-burst neurons for the sum function.

D. Spike-based LSTM Constituent Modules

Figure 1(a) shows a general LSTM unit consisting of the sigmoid
gates, hyperbolic tangent, dot products and sum. To implement a Spike-
based LSTM (S-LSTM), we approximate these modules using spiking
neurons. On TrueNorth, these modules are in the form of corelets,
which will be further connected to form the full S-LSTM. The corelets
will be mapped across cores based on the consideration of the fan-in
and fan-out constraints of the hardware.

1) Store-and-Release neurons
Store and release mechanism is implemented using a neuron with

a high negative threshold where it saturates. The store and release
clocks are two inputs associated with large negative and positive
weights respectively. A spike on the store clock pushes the membrane
potential to the negative threshold and turns on the store mode, during
which the neuron accumulates the input spikes and raises its membrane
potential. The negative initial state guarantees that the raised membrane
potential is still below the firing threshold, therefore, no output spikes
are generated. A spike on the release clock pushes the membrane
potential to 0 or higher if input spikes are received during the store
model, and the neuron starts generating output spikes.

A problem with the above scheme is that the neuron cannot collect
negative spikes at the beginning of the store mode as its membrane
potential cannot go below the negative threshold. So, upon entering the
store mode, we send a spike on the release clock, to pre-charge the
membrane potential to an intermediate level between the negative
threshold and 0 to allow collecting negative spikes. We refer to this
spike signal as pre-charge clock. Figure 4 shows an example where the
neuron enters the store mode through a negative potential of -250 and
enters release mode through two positive potentials of +100
administered by the store (red), pre-charge (yellow) and release (blue)
clock spikes respectively. Figure 5 shows all the clock signals in the S-
LSTM.

At the beginning of the release phase, the neuron membrane
potential (AMP) equals to the total number of net input spikes that it
collected during the store mode. The ܴܸ݈ܲܽ݁ݑ stored in the neuron can
be calculated as ܴܸ݈ܲܽ݁ݑ ൌ ܲܯܣ ݊ܵ⁄ . To generate the output spikes,
a random number is drawn in the range [0, RThR], where RThR is the
firing threshold. If this number is less than the AMP, then an output
spike is generated. During a phase PL, the expected number of spikes
generated in this way is ܲܮ ൈ ܲܯܣ ܴ݄ܴܶ⁄ . When we set RThR to PL,
the number of the output spikes equals to the total number of net input
spikes, and the neuron relays input to the output without any
transformation. In the actual implementation, almost all store-and-
release neurons are merged to its subsequent sigmoid and tanh gate.
ܴ݄ܴܶ should be selected differently due to the squash and linear
transformation of these functions. More details will be given in section
III.D.3).

2) Input Collection Module (IC Module)
From the LSTM equations, we see that the weight matrices ܹ for

each gate are multiplied by the input vector ݔ and the previous time-
step’s LSTM output vector ݄௧ିଵ respectively along with the biases. To
implement this matrix-vector multiplication, we develop this
parameterized module. As shown in Figure 6(d), each input and output
is represented using two channels to accommodate both positive and
negative values. We use 4 axons with assigned weights 1,2,4 and 8 to
approximately represent weights from -15 to +15. The two-channel
weight mapping with 4 axons is capable of approximating 5-bit
precision weights instead of 4-bit precision [18]. The absolute weight
is assigned to the positive or negative output channel based on the
resultant sign of the product of input and axon weight. For example, if
the input is negative and the weight is positive, the resultant product is

negative. Thus, the absolute weight is assigned to the negative output
channel.

The above design results in positive and negative outputs in their
respective channels. We use ReLU neurons for the output, which
produces bursts of spikes equal to the accumulated membrane potential
when threshold is 1. The two-channels (i.e. positive and negative) are
used in every input of the sigmoid and tanh gates in the processing
partition, which will then merge them to achieve the net results.

This module is also parameterized to accommodate
matrices/vectors [Wi, Wh, X, Y] of various sizes and the mapping scales
across multiple cores depending on the sizes of those matrices/vectors.

3) Gate Modules
Piece-wise linear functions are computationally efficient [19] due

to minimal cut points and linear interpolation between those cut points.
These cut points and linearity are more conducive than a smooth non-
linearity to rate coding where the spiking rate determines the computed
values. Spiking rates of these gate modules have definite max and min
(0 and 1) and within this range the rate is linearly proportional to the
number of input spikes or the accumulated membrane potential of a
neuron. A steeper slope of the activation function reduces the linear
range hence, limits the propagation of rounding errors.

LSTM uses sigmoid gates to allow the flow of input, cell state and
output, and uses tanh to squeeze the inputs and outputs to a range.
Given the constrain-then-train approach, we develop modules which
produce a hard sigmoid and a hard tanh behavior with store and release
capability, and use them during both training and recall. In IC module,
the matrix-vector multiplication produces two separate channels
(positive and negative). These spikes are collected in their respective
gate modules to produce the net accumulated membrane potential
 .during the store mode (ܲܯܣ)

During the release mode, spikes generated by the gate modules are
rate-coded and the firing rates are linearly dependent on the ratio of
total ܲܯܣ and ܴ݄ܴܶ.

For the sigmoid,

We approximate this as a piece-wise linear function with a steeper
slope than used in [12] and TensorFlow [20] for a hard sigmoid.

ሻݔሺߪ ൌ
1

1 ݁ି௫
 (1)

ሻݔሺߪ ൌ maxሺ0,minሺ1, ݔ ∗ 1 0.5ሻሻ (2)

Figure 5. Store and release clock spikes for all gates

Figure 4. Store-and-release mechanism

,࣌ ,ࢌ࣌ ,ࢎࢇ࢚ ࣌ PrCh/Release

,࣌ ,ࢌ࣌ ,ࢎࢇ࢚ ࣌ Store

sum,	ࢎࢇ࢚ PrCh/Release
sum, ࢎࢇ࢚ Store

PL 2PL 3PL 4PL 5PL 6PL
Ticks

Here, ݔ	is the RPValue (ൌ .accumulated from the input (ܵ݊/ܲܯܣ
 ሻ has a range [0, 1], which is represented by the firing rate of itsݔሺߪ
output spike. To represent (ݔ ∗ 1 0.5ሻ, an offset of nS/2 is added to
the AMP, so that the RPValue becomes ሺܲܯܣ 0.5݊ܵሻ ݊ܵ⁄ . To
ensure that the resultant firing rate saturates to 0 and 1 at ݔ ൌ െ0.5 and
ݔ ൌ 0.5 respectively, and be linearly proportional to the RPValue for
െ0.5 ൏ ݔ ൏ 0.5, we set ܴ݄ܴܶ ൌ ݊ܵ.

Similarly, for the hyperbolic tangent,

We approximate this as a piece-wise linear function with a steep
slope. We choose slope=2 such that ݔ saturates beyond	|0.5|.

Again, ݔ 	is the ܴܸ݈ܲܽ݁ݑ (ൌ ܵ݊/ܲܯܣ) and ݄݊ܽݐሺݔሻ is the
resultant firing rate with range ሾെ1,1ሿ. We approximate this using two
output channels, for positive and negative ݔ.

And we choose 	ܴ݄ܴܶ ൌ ݊ܵ/2 to reflect the scaling and get the
behavior of a hard tanh in Eqn. (4).

4) Dot Product Module
As shown in Figure 6(c), the inputs of the dot product module are

two-channeled inputs Ct, which is burst coded, and a rate-coded
sigmoid. The function of the dot product is to help the gating functions,
by allowing a certain percent of the information to flow through.
Because the output of sigmoid function has numerical values between
0 and 1 and is stochastically rate-coded, we explore the stochastic

nature of the input and perform the multiplication by stochastic
computing. A simple logical AND of the two spike streams is used as
the multiplication.

An example is given in Figure 7(c). In a window of 10 ticks, there
are 5 spikes from the sigmoid, which represents ߪ ൌ 0.5, and 4 spikes
in the in1, representing ݅݊1 ൌ 0.4. The logical AND produces 2 spikes
at the output representing 1ݐݑ ൌ 0.2. The logical AND operation can
be easily realized using an integrate and fire neuron with threshold 2,
by setting its input synapses weight and leak to be +1.

E. Mapping Algorithm

 As a single TrueNorth core consists of 256 neurons and axons,
there is a distinct fan-in and fan-out constraint. To deal with this
constraint and freely map LSTM networks of arbitrary sizes, we
develop an incremental mapping algorithm. The mapping of IC module
and other modules vary slightly as the IC module’s size is dependent
on the number of LSTM units as well as the number of inputs whereas
the sizes of other modules are only dependent on the number of LSTM
units. Thus, IC modules are mapped and extended across two
dimensions (axons and neurons) and the other modules are mapped and
extended only across one dimension (axons). The mapping algorithms
(Algorithm 1 and 2) are straightforward and, due to the incremental
nature, cores are added only when the resources of the current core fills
up and so on for each module as shown in Figure 8. This results in
number of cores increasing in steps of the number of LSTM units and
average neuron density (number of neurons used per core) increasing
within those steps.

(a) (b) (c)

Figure 7. (a) Approximated hard sigmoid (b) Approximated hard tanh
(c) Dot product through logical AND of spikes

F
ir

in
g

 R
at

e

F
ir

in
g

 R
at

e
ሻݔሺ݄݊ܽݐ ൌ

݁ଶ௫ െ 1
݁ଶ௫ 1

 (3)

Algorithm 1. IC Module Mapping Algorithm
h = number of hidden units
x = number of inputs
function ExtendCores
 addCore
 numNeurons = 0
 for I = 1 to h
 add 2 neurons each for f, i, o, i_tanh
 numNeurons +=8
 if numNeurons>256
 addCore
 numNeurons = 0

call ExtendCores
numAxons = 0
for i = 1 to (x+h)
 add 8 axons (4 each for +ve and -ve)
 make synaptic connections as per 4 axon scheme
 numAxons += 8
 if numAxons > 256
 call ExtendCores
 numAxons = 0

ሻݔሺ݄݊ܽݐ ൌ maxሺെ1,minሺ1, ݔ ∗ 2ሻሻ (4)

(a) (b)

(c) (d)

Figure 6. (a) Sigmoid module (b) Tanh module
(c) Dot product module (d) IC module

Algorithm 2. Sigmoid, Tanh, Dot product Mapping Algorithm
h = number of hidden units
addCore
numAxons = 0
for i = 1 to h
 add a respective module with n axons
 numAxons += n
 if numAxons > 256
 addCore
 numAxons = 0

ሻݔሺ݄݊ܽݐ ൌ ൜
				maxሺെ1,݉݅݊ሺ0, ݔ ∗ 2ሻሻ , ݔ ൏ 0
maxሺ0,minሺ1, ݔ ∗ 2ሻሻ , ݔ 0

(5)

 (a) (b)

Figure 8(a) Algorithm 1 (b) Algorithm 2 in action

IV. EXPERIMENTS

In the following experiments, we compare the Spike-based LSTM
mapped on TrueNorth against the standard LSTM implemented using
Keras with TensorFlow backend. For all experiments, the network is
comprised of one hidden layer of LSTM units and are trained with
weights constrained to the range -2 to 2. Spike-based LSTM is set to
mx=5 and results are noted for various phase lengths.

A. Parity check / XOR problem

Parity check of a bit stream is a classic problem that is difficult to
solve with a standard feed-forward network, but simple to solve with
an RNN. In this problem, we have a sequence of binary inputs, and
determine at each input whether the number of 1’s observed so far in
the sequence is even or odd. Here we train LSTM with one hidden layer
containing 2, 4 and 10 LSTM units on 9000 varying length binary
sequences with maximum length of 20. Then it is tested with 1000
sequences on TrueNorth with varying phase lengths.

In Figure 9, we can see that the performance improves with the
phase length as this increases the precision of activations. The accuracy
also increases when the number of LSTM units is increased.

B. Embedded Reber Grammar

Embedded Reber grammar (ERG) is a popular RNN benchmark
[2] used by many authors and is useful for training sequences with short
time lags. Figure 10 (a) shows a Reber Grammar graph which is
extended to an Embedded Reber Grammar in Figure 10 (b). An ERG
sequence starts from the leftmost node ‘B’ of the ERG graph, and
sequentially generates a finite number of symbols by following edges
until the rightmost node ‘E’ is reached. At some nodes, there can be
two possible paths. This choice is made randomly.

Input and target patterns are represented by 7-dimensional binary
vectors, representing one symbol each, in the training set. And the task
is to read the symbols one at a time, and to continually predict the next
possible symbol(s). Input vectors have exactly one nonzero component
but the target vector could have one or two nonzero components
representing one or two possible paths. The prediction is considered
correct if it predicts either one or both possible symbols. Here we train
LSTM networks with one hidden layer containing 10, 30 and 50 LSTM
units on 5000 ERG sequences with maximum sequence length 36. We
tested on 500 ERG sequences on TrueNorth with varying phase
lengths.

Again, the accuracy is directly correlated to the phase length such
that as the accuracy drastically improves for precision higher than
1/10	ሺ1	݁݇݅ݏ	 ൌ .ሻ݁ݑ݈ܽݒ	ܮܲ/ݔ݉	 The trend is noticeable in all 3
network sizes as shown in Figure 11.

The network using rate-coded internal cell state (S-LSTM-50RCt)
instead of burst-coded one (S-LSTM-50) performs significantly worse.
This, as mentioned in section C, is due to the accumulation of rounding
error and additionally the sampling error while the spikes move from
one buffer to another and then feeds back.

When trained without any constraints, the range of learned weights
varies. If that range is wide, it is hard to find a scaling factor that raises
the smaller values to hardware supported range for less rounding error
without making the larger values to overflow. So, we simply set the
scaling factor sf to be 1. Compared to the networks trained with
constraints, the rounding error of the unconstrained network is higher.
However, setting ݂ݏ ൌ 1 leads to higher nS and better precision (i.e.
lower 1/nS) than setting sf > 1. Therefore, the unconstrained network
(S-LSTM-50NoC) produces better accuracy than the constrained
network (S-LSTM-50) at lower PL, because it allows higher data
precision. When the PL is high, the large window size already ensures
reasonable data precision, so the constrained network performs better
than the unconstrained version.

Table 1 shows the results of 50-unit LSTM network and the
respective TrueNorth implementations with 200 (high accuracy) phase
lengths. It shows that although time to process a sample is much less
for NVIDIA Tegra X1 (20nm technology) and NVIDIA Titan X (16nm
technology), the TrueNorth networks (running at normal operating
frequency 1 kHz) is more energy efficient. It consumes only 56 µJ at
0.8V for 200 PL per sample making it up to 84x and 416x energy
efficient than Tegra X1 and Titan X respectively. At faster than real
time operation (3.5 kHz operating frequency) at the same voltage level
of 0.8V, TrueNorth performs even better with 165x and 817x higher
energy efficiency compared to Tegra X1 and Titan X.

(a) (b)

Figure 10. (a) Reber Grammar (b) Embedded Reber Grammar

Figure 12. Neuron density, number of cores and

energy/sample for the 3 S-LSTM networks

Number of LSTM units
10 30 50

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

#cores=17

#cores=18

#cores=28

Table 1. Power and performance on different platforms

Network Devices
Time/

Sample
(ms)

Active
Power

(W)

Energy/
Sample

(mJ)

50-
LSTM

NVIDIA Tegra X1 1.928 2.45 4.72

NVIDIA Titan X 0.5 46.5 23.3

50-
LSTM
200-PL

IBM TrueNorth 400 0.00014 0.056

*IBM TrueNorth 114 0.00025 0.0285

*running at faster than real time (3.5x faster)

Figure 11. Accuracy vs Phase Length (PL) for Spike-based
LSTM (Keras/Tensorflow counterparts have 100% for all

cases). RCt=Rated coded Ct, NoC = No Constraints

Phase Length (ticks)
0 50 100 150 200

20

40

60

80

100

S-LSTM-10
S-LSTM-30
S-LSTM-50
S-LSTM-50RCt
S-LSTM-50NoC

96.3

58

94.6
88.3
83

Figure 9. Accuracy vs Phase Length for Spike-based LSTM

(Keras/Tensorflow counterparts have 100% for all cases)

The actual power consumption only for the resources utilized on
TrueNorth chip is computed by measuring chip idle power which is
leakage power Pleak and total power Ptotal with the network running [21].
Active power is Pactive = Ptotal - Pleak. The scaled leakage power for the
cores utilized is Pleak= Pleak*#cores/4096. Therefore, the total power
consumed for the utilized resources is Ptotal_s = Pactive + Pleak_s. For a
given network the active power is directly proportional to the spiking
activity however, the same network can be designed to be mapped
utilizing different number of cores. To ensure minimum power
consumption it is critical to pack as many neurons possible on to each
core for minimizing Ptotal_s as, Pleak_s is the only free variable. Figure 12.
shows the results of neuron packing density achieved by the proposed
modular design of the Spike-based LSTM and the incremental mapping
algorithms. We see that the neuron density is increasing as the number
of LSTM unit increases for larger networks. It also shows the
energy/sample for 50-S-LSTM, 200PL, 0.8V implementation.

Table 1 also shows the TrueNorth implementation is slower than
the GPU implementations. In practical deployment, this factor of time
delay is unsuitable and it points to a large performance/energy tradeoff.
This tradeoff is drastic mainly due to the inability to reliably train
LSTM networks with very limited precision. Here, we chose 200 PL
setup for comparison to ensure reasonable data precision when we use
sf > 1 to get reasonably high accuracy. If we can deploy an LSTM net-
work trained with very limited precision, we can use sf = 1 without
reducing the accuracy. And with that we can choose a much lower PL
to get tolerable or even close to the GPU implementation delays with
the same or even lower energy footprint as of now. Thus, minimizing
the performance/energy tradeoff significantly.

V. CONCLUSION

The paper presents a Spike-based implementation of LSTM on the
IBM TrueNorth Neurosynaptic Processor. A standard LSTM is divided
into modules and separately approximated using spiking neurons. On
TrueNorth, modules are in the form of corelets which are then
combined, connected and mapped to form Spike-based LSTM
networks and synchronized using a store-and-release mechanism.
These networks are tested on two RNN benchmarks with promising
accuracy results and high power efficiency.

REFERENCES
[1] Y. Bengio, P. Simard and P. Frasconi, "Learning long-term dependencies with

gradient descent is difficult," IEEE transactions on neural networks, vol. 5, pp.
157-166, 1994.

[2] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural
computation, vol. 9, pp. 1735-1780, 1997.

[3] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A.
Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch and others,
"Convolutional networks for fast, energy-efficient neuromorphic computing,"
Proceedings of the National Academy of Sciences, p. 201604850, 2016.

[4] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu and M. Pfeiffer, "Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing," in Neural Networks (IJCNN), 2015 International Joint Conference
on, 2015.

[5] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni and E. Neftci, "Conversion
of artificial recurrent neural networks to spiking neural networks for low-
power neuromorphic hardware," in Rebooting Computing (ICRC), IEEE
International Conference on, 2016.

[6] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical evaluation of gated
recurrent neural networks on sequence modeling," arXiv preprint
arXiv:1412.3555, 2014.

[7] F. A. Gers, N. N. Schraudolph and J. Schmidhuber, "Learning precise timing
with LSTM recurrent networks," Journal of machine learning research, vol. 3,
pp. 115-143, 2002.

[8] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F.
Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura and others, "A
million spiking-neuron integrated circuit with a scalable communication
network and interface," Science, vol. 345, pp. 668-673, 2014.

[9] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser, A.
Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza and others,

"Cognitive computing programming paradigm: a corelet language for
composing networks of neurosynaptic cores," in Neural Networks (IJCNN),
The 2013 International Joint Conference on, 2013.

[10] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran,
J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla and K. Boahen,
"Neurogrid: A mixed-analog-digital multichip system for large-scale neural
simulations," Proceedings of the IEEE, vol. 102, pp. 699-716, 2014.

[11] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras and S. B.
Furber, "SpiNNaker: mapping neural networks onto a massively-parallel chip
multiprocessor," in Neural Networks, 2008. IJCNN 2008.(IEEE World
Congress on Computational Intelligence). IEEE International Joint
Conference on, 2008.

[12] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv and Y. Bengio, "Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1," arXiv preprint arXiv:1602.02830, 2016.

[13] F. Li, B. Zhang and B. Liu, "Ternary weight networks," arXiv preprint
arXiv:1605.04711, 2016.

[14] J. Ott, Z. Lin, Y. Zhang, S.-C. Liu and Y. Bengio, "Recurrent neural networks
with limited numerical precision," arXiv preprint arXiv:1608.06902, 2016.

[15] S. S. Talathi and A. Vartak, "Improving performance of recurrent neural
network with relu nonlinearity," arXiv preprint arXiv:1511.03771, 2015.

[16] T. M. Breuel, "Benchmarking of LSTM networks," arXiv preprint
arXiv:1508.02774, 2015.

[17] Q. Chen and Q. Qiu, "Real-time Anomaly Detection for Streaming Data using
Burst Code on a Neurosynaptic Processor," in Proc. Conf. Design, Autom. Test
Eur.(DATE), 2017.

[18] P. U. Diehl, B. U. Pedroni, A. Cassidy, P. Merolla, E. Neftci and G. Zarrella,
"Truehappiness: Neuromorphic emotion recognition on truenorth," in Neural
Networks (IJCNN), 2016 International Joint Conference on, 2016.

[19] A. Laudani, G. M. Lozito, F. R. Fulginei and A. Salvini, "On training
efficiency and computational costs of a feed forward neural network: a
review," Computational intelligence and neuroscience, vol. 2015, p. 83, 2015.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin and others, "Tensorflow: Large-scale
machine learning on heterogeneous distributed systems," arXiv preprint
arXiv:1603.04467, 2016.

[21] A. S. Cassidy, R. Alvarez-Icaza, F. Akopyan, J. Sawada, J. V. Arthur, P. A.
Merolla, P. Datta, M. G. Tallada, B. Taba, A. Andreopoulos and others, "Real-
time scalable cortical computing at 46 giga-synaptic OPS/watt with," in
Proceedings of the international conference for high performance computing,
networking, storage and analysis, 2014.

[22] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser, W. P.
Risk, H. D. Simon and D. S. Modha, "Compass: A scalable simulator for an
architecture for cognitive computing," in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2012.

