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Abstract—Deep Convolutional Neural Networks (DCNN), a
branch of Deep Neural Networks which use the deep graph
with multiple processing layers, enables the convolutional model
to finely abstract the high-level features behind an image.
Large-scale applications using DCNN mainly operate in high-
performance server clusters , GPUs or FPGA clusters; it is
restricted to extend the applications onto mobile/wearable devices
and Internet-of-Things (IoT) entities due to high power/energy
consumption. Stochastic Computing is a promising method to
overcome this shortcoming used in specific hardware-based sys-
tems. Many complex arithmetic operations can be implemented
with very simple hardware logic in the SC framework, which al-
leviates the extensive computation complexity. The exploration of
network-wise optimization and the revision of network structure
with respect to stochastic computing based hardware design have
not been discussed in previous work. In this paper, we investigate
Deep Stochastic Convolutional Neural Network (DSCNN) for
DCNN using stochastic computing. The essential calculation com-
ponents using SC are designed and evaluated. We propose a joint
optimization method to collaborate components guaranteeing a
high calculation accuracy in each stage of the network. The
structure of original DSCNN is revised to accommodate SC
hardware design’s simplicity. Experimental Results show that as
opposed to software inspired feature extraction block in DSCNN,
an optimized hardware oriented feature extraction block achieves
as higher as 59.27% calculation precision. And the optimized
DSCNN can achieve only 3.48% network test error rate compared
to 27.83% for baseline DSCNN using software inspired feature
extraction block.

Keywords—Deep Learning; Deep Convolutional Neural
Networks; Stochastic Computing; Hardware-oriented Co-
optimization

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have been proved
as an effective series of models for analyzing, abstracting,
and understanding image contents. In recent years, deep
convolutional neural networks (DCNN), a branch of Deep
Neural Network (DNN) which use the deep graph with mul-
tiple processing layers [1], enable the convolutional model to
finely abstract the high-level features behind an image. The
applications range from document recognition [2], [3] to face
detection [4], from image/video classification [5–7], [8] to ob-
ject detection [9], [10]. DCNN is now the dominant approach
for almost all recognition and detection tasks, and approaches
human performance on some tasks [1]. Nevertheless, deep
graph of layers in DNN has brought about significant increases
in computation complexity. Large-scale applications using
DCNN mainly operate in high-performance server clusters ,
GPUs or FPGA clusters [11–14]; it is restricted to extend
the applications onto mobile/wearable devices and Internet-of-
Things (IoT) entities due to high power/energy consumption.
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Aforementioned efforts focused on improving computing
capability for DCNN and highly relied on the development of
hardware devices. The rate of progress, however, will saturate
gradually in next decade due to Moore’s law’s fading foreseen
by Gordon Moore himself [15]. An urgent need of new
computation technology encourages researchers’ further inves-
tigation. Stochastic Computing (SC) is a promising method to
overcome this shortcoming used in specific hardware-based
systems, which has ultra-low footprint and inherent fault
tolerance against soft errors [16], [17]. As a unique data repre-
sentation and processing technique, SC enables the design of
fully-parallel and scalable hardware implementations of large-
scale deep networks. Many complex arithmetic operations can
be implemented with very simple hardware logic in SC the
framework [18], which alleviates the extensive computation
complexity. This offers an immense design space for (i) neuron
integrations due to the significantly reduced area per neuron
and (ii) performance optimizations with respect to resiliency
by trading off power/energy, speed, and area budget.

Previous works in [19–21] have validated SC’s capability
in neural network computation. The exploration of network-
wise optimization and the revision of network structure with
respect to stochastic computing based hardware design were
not discussed in aforementioned researches. In this paper,
we investigate LeNet-5 [2] as a DCNN case study. We call
the DCNN using stochastic computing as Deep Stochastic
Convolutional Neural Network (DSCNN). The essential calcu-
lation components using SC are designed and evaluated. We
propose a joint optimization method to collaborate components
guaranteeing a high calculation accuracy in each stage of
the network. The structure of original DSCNN is revised to
accommodate SC hardware design’s simplicity.

The contribution of this paper is summarized as follows,

• We analyzed hardware components’ properties and de-
signed the essential components used in DSCNN infer-
ence calculation.

• We concluded optimization functions to jointly configure
components’ parameters in DSCNN to guarantee a high
calculation precision.

• The software inspired structure of DSCNN is revised and
evaluated. Incorporating with the proposed optimization
function, the hardware-oriented DSCNN achieves a high
calculation precision and low network test error rate.

The rest of this paper is organized as follows. Section II
presents the modularization of DCNN and the SC imple-
mentation of each module in DSCNN. Section III shows the
proposed joint optimization of DSCNN modules and structural
optimization of DSCNN. Finally, Section IV summarizes the
work.
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Fig. 1. Neurons in a DCNN. (a) Inner Product, (b) pooling, and (c) activation

II. MODULARIZATION OF DCNN AND ITS SC
IMPLEMENTATION

A. Deep Convolutional Neural Network Architecture
A general DCNN architecture consists of a stack of con-

volutional layers, pooling layers, and fully connected layers.
A convolutional layer is associated with a set of learnable
filters (or kernels), which are activated when specific types
of features are found at some spatial positions in the inputs.
Filter-sized moving windows are applied to the inputs to obtain
a set of feature maps by calculating the convolution of the
filter and inputs in the moving window. Each convolutional
neuron, representing one pixel in a feature map, takes a set
of inputs and corresponding filter weights to calculate their
inner-product.

After obtaining features using convolution, a subsampling
step can be applied to aggregate statistics of these features to
reduce the dimensions of data and mitigate over-fitting issues.
This subsampling operation is realized by a pooling neuron
in pooling layers, where different non-linear functions can be
applied, such as max pooling, average pooling, and L2-norm
pooling.

The activation functions are non-linear transformation func-
tions, such as Rectified Linear Units (ReLU) f(x) =
max(0, x), hyperbolic tangent (tanh) f(x) = tanh(x) or
f(x) = |tanh(x)|, and sigmoid function f(x) = 1

1+e−x .
Usually, a combination of convolutional neurons, pooling
neurons, and activation functions forms a feature extraction
block to extract high-level abstraction from the input images
or previous low level features.

The fully connected layer is a normal neural network
layer with its inputs fully connected with its previous layer.
Each fully connected neuron calculates the inner product of
its inputs and corresponding weights. The loss function of
a DCNN specifies how the network training penalizes the
deviation between the predicted and true labels, and typical
loss functions are softmax loss, sigmoid cross-entropy loss or
Euclidean loss.

In general, we can conclude three kinds of basic calculations
in a DCNN based on their corresponding operations as Fig.1
shows. Neurons in convolutional layers and fully connection
layers calculate the inner product shown in Fig.1 (a) of
inputs and weights based on its incoming connection with the
previous layer. And the products are subsampled through a
pooling neuron shown in Fig.1 (b). The subsampled outputs
are transformed by an activation function shown in Fig.1 (c)
to ensure the inputs of next layer are within the valid range.

B. Stochastic Computing based components
Stochastic computing is a technology that represents a

probabilistic number in the range of [0, 1] by counting the
number of ones in a bit-stream. For instance, the bit-stream
0100110100 represents P (X = 1) = 4/10 = 0.4. In addition
to this unipolar encoding format, SC can also represent num-
bers in the range of [−1, 1] using the bipolar encoding format.

In the bipolar encoding scheme, a real number x is processed
by x = 2P (X = 1) − 1 i.e. P (X = 1) = x+1

2 , thus 0.4 can
be represented by 1011011101.

Previous works [19], [20] haven briefly introduced three
basic arithmetic operations in neural network inference pro-
cess, including addition, multiplication, and hyperbolic tangent
(tanh). These stochastic based operations are implemented
with much lower hardware cost compared to conventional
binary computing. As mentioned in Section II-A, calculations
in a DCNN inference process includes inner product, pooling,
and activation function. Hardware designs of these three
calculations are introduced as follows in this section. Please
note that we use bipolar encoding format for the design, for
numbers in a DCNN are distributed on both sides of zero.

1) MUX-based Inner Product Calculation Unit: The inner
production calculation is composed of multiple multiplications
and one addition. Multiplications are conducted by XNOR
gates [19] to generate products of each pair of inputs. We
use an n-to-1 MUX to sum all the aforementioned products
up; the result of the MUX is the inner product of a pair
of vectors with a scaling down factor of 1

n . This is because
every bit of the output is randomly selected from n input bits;
the probability of each input to be selected is 1

n . This the
inherent down-scaling property of MUX. From the perspective
of stochastic computing, the output bit-stream represents a
number of 1

n (x0w0 + x1w1 + · · ·+ xn−1wn−1).
2) Average pooling: Pooling, also known as down-

sampling or sub-sampling, significantly reduce the number of
neurons in next layer in a DCNN. The inter-layer connections
are reduced and the invariance of the extracted features are
maintained. As Fig. 1(b) shows, in most DCNN structures,
each 2× 2 region of pixels in feature maps is down-sampled
to be one pixel. Average pooling calculates a mean of a small
matrix, thus similarly the inherent down-scaling property of
the MUX mentioned in Section II-B1 is used to average
stochastic numbers. Thus for four bit-streams representing
pixels in a 2 × 2 region in a feature map, we can use a 4-
to-1 MUX to calculate the mean of four bit-streams.

3) Finite State Machine (FSM) based Hyperbolic Tangent
(tanh): Authors in [19] proposed a K-state FSM-based design
Stanh for tanh. A relationship between Stanh and tanh was
given as Stanh(K,x) ∼= tanh(K2 x) with input x. An input
distributed in [−K

2 ,
K
2 ] in tanh is mapped to [−1, 1] in Stanh

guaranteeing this mapped number to be represented by a
bipolar stochastic bit-stream. Claimed in [19], the FSM design
achieved better accuracy with increased state number K,.

TABLE I
THE RELATIONSHIP BETWEEN STATE NUMBER AND RELATIVE ERROR OF

STANH WITH BIT-STREAM LENGTH = 8192
State Number 8 10 12 14 16 18 20
Relative Error 10.06% 8.27% 7.43% 7.36% 7.51% 8.07% 8.55%

Fig. 2. Stanh v.s. tanh results with state K = 14 and bit-stream length
L = 8192
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Fig. 3. (a) software-based feature extraction block, (b) hardware-oriented
feature extraction block

However, this conclusion cannot br applied to our work for
three reasons: (i) as shown in Table. I, when the input of tanh
is distributed in [−1, 1] instead of [−K

2 ,
K
2 ], the accuracy is not

linearly proportional to K; (ii) the aforementioned conclusion
resulted from the assumption that x is precisely represented,
which means the bit-stream must be very long. But when
the bit-stream is not impractical long, the bit-stream length
must be taken into consideration to refine the equation; (iii)
one can observe in Fig. 2, when the input is closer to zero,
the error between tanh and Stanh gets bigger. So a scaled-
down input to Stanh must be scaled back to [−1, 1] to reduce
error. Hence, equation Stanh(K,x) ∼= tanh(K2 x) must be
optimized considering bit-stream length and scaling factor of
the inputs. We proposed a optimized function K = f(L,N)
where L is the length of bit-stream and N is the fan-in, and
the optimized parameters will be discussed in Section III.

III. HARDWARE ORIENTED OPTIMIZATION FOR DSCNN
In software based algorithm design, a feature extraction

block of DCNN is formed by convolution neurons, pooling
neurons and activation funtion in order as Fig. 3(a) shows.
This is reasonable, because intuitively the order of pooling
before activation can save 3/4 computation resources to do
the activation. However, in hardware design, due to the cross-
dependency of components, another arrangement of neurons
(pooling after activation shown in Fig. 3(b)) in a feature
extraction block must be investigated. In this section, we
investigate two different arrangements as shown in Fig. 3(a)
and Fig. 3(b) using MUX-based inner product calculation unit
(in short, MUXIP), Average pooling (AVG), and FSM-based
Stanh (STANH).

A. MUXIP-AVG-STANH
As mentioned in Section II-B3, when Stanh is utilized, the

state number needs to be carefully selected with a comprehen-
sive consideration of the scaling factor and bit-stream length.
Below is the empirical equation that is extracted from immense
experiments to obtain the approximately optimal state number
providing a high accuracy.

K = f(L,N) ≈ 2 log2(N) +
N log2(L)

γ log2(N)
(1)

where N = 1/s which is the input size of the feature
extraction block (as well as the size of weights), L is the
bit-stream length. γ is the empirical parameter which is 33 in
our case. Given N and L, the state number K is the nearest
even number of the value of the right side of above equation.
We evaluated the average absolute error of non-optimized

and optimized feature extraction blocks given 10, 000 sets of
random inputs ranging from −1 to 1 with different input sizes
and bit-stream lengths. The average absolute error is the mean
of absolute differences between the expected results and the
observed results for the same test cases. Shown in Fig. 4,
we observed for the non-optimized feature extraction block:

Fig. 4. Absolute error for non-optimized feature extraction block

Fig. 5. Absolute error for optimized feature extraction block

(i) As bit-stream gets longer, the absolute error decreases for
the same input size N . Because a number can be represented
more precisely with longer bit-stream. But the improvements
are not significant. (ii) With the same length of bit-stream,
more inputs lead to larger absolute error.

Similarly, we evaluated the average absolute errors with
different input sizes and bit-stream lengths for an optimized
feature extraction block applying eqn.1 to set up the FSM state
number in Stanh. As Fig. 5 shows, compared with the error
by the same configuration of bit-stream length and input size
respectively in Fig.4, the optimized feature extraction blocks
achieves as high as 42.22% better accuracy.

B. MUXIP-STANH-AVG
Conventional feature extraction block design down-samples

the inner products first and then calculates the activation func-
tion for the down-sampled value, which is described in Section
III-A. However, this design is not the optimal for DSCNN in
reality. We take handwritten digits recognition using LeNet-5
[2] as example. LeNet-5 consists of two consecutive feature
extraction layers followed by a fully-connected layer. We
investigate the influences of errors in the first (Layer-0) and
second (Layer-1) feature extraction layers on the overall test
error rate of the entire DCNN. Then the combined impact
of Layer-0 and Layer-1 on the overall test error rate is also
explored. Shown in Fig. 6,the absolute errors of feature extrac-
tion blocks in each layer follow a normal distribution. Given
various standard deviation of error distribution, we evaluate
the test error rate for complete DSCNN. The handwritten digit
image dataset consisting of 60, 000 training data and 10, 000
testing data with 28x28 grayscale image and 10 classes is used
in the experiments. We trained the network model to achieve
a network test error of 1.54% as the reference.

It is observed in Fig. 6 that a layer closer to the inputs has
a more serious impact on the overall accuracy of the DCNN
than a layer closer to the output layer. Because inaccurate
features captured near the inputs may affect all the following
layers, whereas the errors occurring near the output layer
can only disturb a few subsequent layers. It also shows that
with the error range of each feature extraction block increase,



Fig. 6. Test error rate of LeNet-5 with inaccurate Layer-0,Layer-1,and Layer-
0,1 together

Fig. 7. Absolute error for optimized revised feature extraction block

test error rates with inaccurate Layer-0 and 1 together gives
unacceptable results (≥ 5% error rate). When the error of each
layer ranges from [−0.3, 0.3], errors in Layer-0 itself gives
the network error rate of 5.74%. and the errors in both feature
extraction layers lead to an 8.21% error rate. Considering each
feature extraction block in LeNet-5 takes 25 inputs, intuitively
the error in each layer is about 0.45 estimated from Fig. 5
which leads to network test error rate of [8.21%, 17.61%] from
Fig. 6. What is worse, for the non-optimized feature extraction
block design, each of which has an absolute error of about 0.6,
the network test error rate is 27.83% based on Fig. 6.

To improve the optimization method proposed in Section
III-A , we revised the conventional design by switching the
order of AVG and STANH, which is shown in Fig. 3(b).
Similarly, we also propose an empirical equation to get an
optimized state number K of stanh unit as follows,

K = f(L,N) ≈ α log2N +
N log5 L

β log2N
(2)

where α = 1.3 and β = 8.74 which are empirical parameters.
N = 1/s is the input size of the feature extraction block (as
well as the size of weights), L is the bit-stream length. Given
N and L, the state number K is the nearest even number of
the value of the right side of above equation.

As shown in Fig. 7, we have a similar but smaller error
distribution compared to Fig. 5. The revised feature extraction
block structure achieves as high as 33.48% better accuracy
compared to conventional optimized design and 59.57% better
compared to conventional non-optimized design. We evaluated
impact of the optimized revised feature extraction block on
entire DCNN. Given N = 25(each filter is 5 × 5 pixels) and
L = 512, 1024, 1536, 2048, the network test error rates are
3.97%, 3.65%, 3.53%, 3.48%.

IV. CONCLUSION

This paper introduced hardware oriented structural op-
timization for Deep Convolutional Neural Network using
Stochastic Computing. The first optimization method relied on
the characteristics of Stochastic Computing based component;
it concluded a joint optimization equation, by which we

achieved as higher accuracy as 42.22% compared to the
software inspired feature extraction block in the DSCNN
without optimized parameters of the components. The second
optimization method broke out the stereotype in software-
inspired DSCNN; it restructured the order of neurons in a
feature extraction block in DSCNN to reduce the absolute
error by 33.48% compared with the first optimization and
59.57% compared to non-optimized baseline. Experimental
results showed that the optimized hardware-oriented feature
extraction block can achieve the network error rate as low as
3.48% while the non-optimized baseline only achieved the test
error of 27.83%.
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