
Task Merging for Dynamic Power Management of Cyclic
Applications in Real-Time Multiprocessor Systems

Qinru Qiu, Shaobo Liu, and Qing Wu

Department of Electrical and Computer Engineering
Binghamton University, State University of New York

Binghamton, NY 13902 USA
{qqiu, sliu5, qwu}@binghamton.edu

Abstract—In this paper we propose the method of task
merging and idle period clustering for dynamic power
management (DPM) in a real-time system with multiple
processing elements. We show that with good task scheduling,
the energy and delay overheads due to power mode switching
can be reduced significantly, while the opportunity for the
system to switch to low power modes can be further improved.
New on-line and off-line task scheduling algorithms are proposed
that minimize the number of idle time intervals under the
deadline and precedence constraints. A simple DPM policy is
then used to save the energy dissipation during the idle time
intervals. Experimental results show that, comparing to the
DPM schemes without proper task scheduling, the proposed
method reduces the number of power mode switching by 56% in
average.

Index Terms—dynamic power management, low power,
multiprocessor, real-time

I. INTRODUCTION
Multiprocessor systems, which were used only in the area

of high performance computing, has become more and more
popular in the sensor, mobile entertainment, and other real-
time applications. In these systems, the processors collaborate
with each other to process tasks with precedence and deadline
constraints. For example, a system could consist of an
embedded processor and a digital signal processing (DSP)
FPGA [1]. A simple flow of sensing and cognition application
running on this system involves both processors. At first, the
data need to be preprocessed by the embedded processor, and
then the results are given to the DSP FPGA for advanced
processing. The DSP outputs are sent back to the embedded
processor for knowledge rule generation.

 Dynamic power management (DPM) is one of the most
effective system-level power reduction techniques [7]. For any
DPM technique, there are always energy and delay overheads
associated with power mode switching. For example, it is
shown that [8], to power up an XScale processor, it takes 10ms
precharge time and 500mW power drains. These are
significant overheads considering that the processor’s active
power is only 200mW when running at full speed. As another
example, the cost to power on and off an FPGA chip is also
very high if SRAM based LUT is used [9]. Such overheads are
normally not negligible, especially in long-term mobile
applications where the system consumes little active power.

The goal of an optimal DPM policy is to maximize the system
sleeping time while minimize switching overhead.

Most of the previous power management techniques focus
on the stochastic behavior of the system. Various DPM
techniques have been proposed, from predictive based
heuristic techniques [1][3] to stochastic optimization based
techniques [4][5]. However, there are a large number of
systems whose behavior is deterministic. For example, a
sensor node senses, processes, communicates and records
information periodically. Because of the deterministic
behavior, we know exactly how long the next idle period will
be. In such system, the greedy DPM policy, which switches
the system into low power mode if the next idle period is
longer than the break even time (Tbe), is the most simple and
effective approach. Because the application is deterministic,
the overall idle time and active time of the system is fixed. The
only variable that affects the performance of power
management is how these idle and active intervals are
distributed. Obviously, proper application scheduling that
merges tasks together or clusters the idle periods will facilitate
the power management because it increases the chances to put
the system into low power modes and reduces the number of
power mode switching.

For a real-time multiprocessor system and a set of cyclic
deterministic tasks, the problem of low-power task scheduling
that is considered in this paper, can be stated as follows. Given
any task graph, assuming that the mapping between tasks and
processors is determined, find the optimal task scheduling
combined with power management techniques, such that the
system power consumption is minimized while meeting the
deadline and precedence constraints.

Only few existing DPM research works consider
scheduling and DPM at the same time. Among them, the
authors of [10] proposed a scheduling algorithm with the
consideration of min/max timing and min/max power
constraints. In reference [11], an on-line scheduling algorithm
is proposed to reduce the number of power mode switching in
a multiprocessor system. However, precedence and deadline
constraints are not considered during the optimization. The
authors of [12] solve the task scheduling and hierarchical
power management problems at the same time by using the
continuous-time Markov decision process. The model is

constructed based on the architecture with single processor and
multiple peripherals. No task precedence constraints can be
incorporated in the model.

In this paper, we propose new on-line and off-line task
scheduling algorithms that consider task merging to facilitate
power management. The characteristics of the proposed work
are described as follows.
1. Compared with minimum latency task scheduling, the

proposed scheduling algorithms significantly reduces the
number of idle intervals and extends the length of each idle
interval. Therefore, they produce a sequence of scheduled
system activities that are more suitable for power
management.

2. The proposed problem formulation considers the general
constraints in a real-time multiprocessor system, such as the
task arrival time, task deadline, data/control dependency,
and buffer size. The mapping between the tasks and the
processors is assumed to be given.

3. The proposed method is targeted at periodic task graphs.
The on-line algorithm buffers and burst processes the tasks.
The off-line algorithm first unrolls the given task graph for
a number of times, then schedules the unrolled task graph
using a faster heuristic algorithm called slack-based task
merging (STM).

4. We apply a simple DPM policy to reduce power
consumption by turning off the processors if their idle time
intervals are longer than Tbe.
The rest of this paper is organized as follows. Section II

gives a motivational example that demonstrates the importance
of task scheduling to DPM. Section III presents the formal
problem definition. The two proposed task scheduling
algorithms are introduced in Section IV and V. Sections VI
and VII provide the experimental results and summaries.

II. A MOTIVATIONAL EXAMPLE
Consider a sensing and data processing application that is

implemented on a two-processor system. The sensor acquires
data every 1ms and each data goes through three steps of
operations. The first and the third operations are executed on
processing element 1 (PE1), while the second operation is
executed on processing element 2 (PE2). The execution times
of the three operations are 0.1ms, 0.2ms, and 0.1ms
respectively. Because of the nature of the sensing application,
the sampled data do not need to be processed immediately,
however, their processing cannot be delayed excessively
either. Otherwise the system cannot detect the abnormal event
in time. The deadline for data sampled at time t to go through
the ith operation is defined as t + tdi. The value of tdi, i= 1, 2, 3
are 3ms, 4ms, and 5ms respectively. When an operation is
completed, a request is sent to its successor. If the request
cannot be processed then it will be buffered and be noted as
pending request. We assume that the request is serviced in
first-in-first-out order.

The simplest scheduling for the above system is to process
each operation as soon as the input data is available. Figure 1
shows the activities of both processors when the operations are
scheduled for minimum latency. The light blue (light grey),

red (medium grey) and dark blue (dark grey) areas indicate the
time when the processors are busy processing op1, op2, and op3
respectively. The white area indicates the time when the
processor is idle. A number is associated with each active
interval, which indicates the index of the sampled data that is
currently under processing.

Figure 1 System activities under minimum latency scheduling.

A simple DPM policy is applied to each processor such
that, if the idle time is less than some break even time Tbe, then
the processor will be turned off during the idle period.
Obviously, the minimum latency scheduling does not work
well with dynamic power management because it breaks the
idle period into many small intervals. This will either prohibit
the processor to switch to low power mode because the idle
intervals are long enough or lead to a lot of on/off power mode
switching.

 The optimal scheduling algorithm minimizes the number
of idle intervals by merging tasks together. At the same time, it
guarantees the task deadline and precedence constraints.
Figure 2 gives the system activities under the optimal
scheduling. Compared with Figure 1, such active and idle
interval distribution gives more power saving opportunities
and less number of on/off power model switching.

Figure 2 System activities under optimal scheduling.

III. PROBLEM DEFINITION
In this section we are going to give the formal definition of

the scheduling problem. The hardware system that we are
interested is a multiprocessor system with point-to-point
communication. A control/data flow graph (CDFG) G(V, E) is
given that models the application precedence and timing
constraints. V is the set of operations which is also denoted as
OP. An edge from vertex i to vertex j with weight wi,j indicates
that tj-ti ≥ wi,j, where ti and tj are the starting time of opi and
opj. Associated with operation i there is a queue (qi). When all
of the input data of i is ready, a request for opi is generated and
is buffered in the queue. The capacity of the queue is denoted
as Bi. The number of pending requests in qj is denoted as βj.

Some of the operations do not have any predecessor. These
operations are triggered periodically and the cycle time is
denoted as T. These operations are called the triggering
operations. For example, the data acquisition in a sensor
system and the carrier detection in a wireless communication

2 4 6 8 10 12

2 4 6 8 10 12

0
Active/Idle Intervals on PE1

Active/Idle Intervals on PE2

1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

t

t

2 4 6 8 10 122 4 6 8 10 12

2 4 6 8 10 122 4 6 8 10 12

0
Active/Idle Intervals on PE1

Active/Idle Intervals on PE2

1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

t

t

2 4 6 10 12

0~2 3~6 7~10
Active/Idle Intervals on PE2

Active/Idle Intervals on PE1

2 4 6 8 10 12 t

t82 4 6 10 12

0~2 3~6 7~10
Active/Idle Intervals on PE2

Active/Idle Intervals on PE1

2 4 6 8 10 12 t

t8

system are both triggering operations. The start time of the
triggering operation is fixed. Whenever the triggering
operation is active, there is a triggering event (trg) generated.
The triggering event will propagate through the CDFG and
drives the system operation.

The deadline of an operation is defined relative to the time
when the triggering event is generated. The triggering events
and deadlines are anchors in the CDFG.

We assume that the mapping of the operations to the
processors is provided. In a heterogeneous multiprocessor
system, such mapping is usually based on the different
functionality of the processors. We use proc(opi) to denote the
processor to which the opi is mapped. The processing time and
the deadline of opi is denoted as tpi and tdi respectively. The
value of tdi may be larger than the cycle time T. The rth
initiation of the triggering operation starts at rT, 0<r<∞.

The scheduling problem is to find the starting time (ti,r) for
the rth initiation of operation i, 0<r<∞. The objective is to
minimize average number of idle intervals in each cycle while
satisfying general system constraints such as the deadline
constraints, buffer size constraints, precedence constraint and
sequencing constraints. These constraints can be formulated as
the following:

 iiri tdTrtpt +⋅≤+, , 0<r<∞

jiji B ,, ≤β , (i, j) ∈ E

rjiri ttpt ,, ≤+ , (i, j) ∈ E, and 0<r<∞
φ=+∩+),(),(',',,, jrjrjiriri tptttptt ,

 proc(opi)=proc(opj), 0<r’,r <∞, and r’ ≠ r
We assume that the utilization ratio of each processor

T
tp

U popproc i
p

i∑
= =)(is less than 1. Otherwise no feasible

scheduling solution can be found. In the formulation, we
assume that the system uses a DPM policy in which each
processor will switch from “on” to “off” if its idle time
exceeds Tbe.

IV. ON-LINE TASK MERGING BASED ON BURST PROCESSING
WITH EDF TASK SELECTION

An ad-hoc way to cluster active and idle intervals is to
buffer and burst process the requests. Based on this
motivation, we developed two ad-hoc task merging algorithms.

A processor using Burst Processing I (BP-I) scheduling
algorithm buffers the requests for each operation. If the
deadline of the first pending request for opi approaches, then
the processor will start processing this request. It will not stop
until all pending requests for opi are processed.

The Burst Processing II (BP-II) is similar as the BP-I,
except that each time after processing all pending requests for
one operation, the processor will not stop if there is any other
pending requests. The processor will stop only if it finishes
processing all pending requests in the system.

As an example, we use BP-I and BP-II to schedule the
applications that is described in the motivational example.
Figure 3 shows the resulting system activities. As we can see,

the BP-II gives a better way to cluster the active/idle intervals
on PE1, however, it fragments the active/idle intervals on PE2.

Figure 3 System activities under ad-hoc task scheduling.

 Compared with the system activities after the optimal
scheduling, the system under BP-I or BP-II scheduling has
more idle intervals during the same period of time. On the
other hand, the duration of each idle interval is shorter.
Another serious problem with BP-I and BP-II is that they
cannot guarantee deadline. This is because the ad-hoc
scheduling algorithms do not consider the overall deadline and
precedence constraints.

A notable difference between the optimal scheduling and
the ad-hoc scheduling is that, instead of simply buffering and
burst processing the incoming tasks, the optimal scheduling
algorithm interleaves the processing of different operations on
the same processor to achieve better clustering. Motivated by
this observation, we propose the third on-line task merging
method, which is based on burst processing with the earliest
deadline first task selection (BP-EDF.)

The BP-EDF method is similar as BP-II. However, instead
of processing all the pending requests for one operation after
another, the processor always selects the pending request that
has the earliest deadline first. Compared with BP-I and BP-II,
BP-EDF significantly reduces the ratio of deadline miss, while
having almost the same or sometime even less average number
of idle intervals in the same period of time.

Although the BP-EDF has a reduced deadline miss ratio
compared with BP-I and BP-II, it still cannot guarantee
deadline. To fix this problem, a scaled deadline is used to
determine the latest time that a request must be processed.
More specifically, the latest starting time of the rth request for
opi is calculated as ii tptdTr −⋅+⋅ α . Here α is a scaling factor,

itdTr +⋅ is the deadline of the request and tpi is the processing
time of the request. It is easy to see that decreasing the value of
α reduces the number of deadline misses. However, it also
reduces the chances of task merging.

2

4

4

6

6

8

8

10

10

12

12

0~3 0~
3

4~7 4~7 8~11 8~11

0~3 4~7 8~11

Active/Idle Intervals on PE1

Active/Idle Intervals on PE2
t

t

2

2

4

4

6

6

8

8

10

10

12

12

0~3 0~
3

4~7 4~7 8~11 8~11

0~3 4~7 8~11

Active/Idle Intervals on PE1

Active/Idle Intervals on PE2
t

t

2

(a) BP-I

(b) BP-II

2

2 4

4

6

6

8

8

10

10

12

12 14

0~3 0~3 4~5 6~910~114~5 6~9

0~3 4~5 6~9 10~11

Active/Idle Intervals on PE1

Active/Idle Intervals on PE2

t

t

14

2

2 4

4

6

6

8

8

10

10

12

12 14

0~3 0~3 4~5 6~910~114~5 6~9

0~3 4~5 6~9 10~11

Active/Idle Intervals on PE1

Active/Idle Intervals on PE2

t

t

14

Table 1 Scaling Factor vs. Quality of Scheduling.

We measure the quality of task merging and scheduling

algorithm using two parameters, the average number of idle
intervals per triggering cycle and the average deadline miss
ratio. Here we need to emphasize again that the overall idle
and active time of each processor is fixed. The only variable is
how these idle and active intervals are distributed. The first
parameter associates with the average power consumption of
the system, since the less number of idle intervals (or longer
idle intervals) corresponds to less on/off switching and more
opportunities to go to low power mode. The second parameter
associates with the performance and delay of the system.
Therefore, we denote the quality of scheduling using a pair of
symbols (P, D), where P represents the average number of idle
intervals and D represents the deadline miss ratio.

Simulations have been carried out to evaluate the relation
between the scaling factor (α) and the quality of BP-EDF. Our
simulation setup consists of systems with 2 or 3 PEs. Several
different task graphs are randomly generated using TGFF [12].
We vary α from 0.1 to 1.0 and collected a set of (P, D) values
as the measurement of the quality of BP-EDF. Table 1 gives
our simulation results. The first three rows give the experiment
setup information, which include the number of PEs, the
number of tasks in the CDFG and the average processor
utilization ratio of the overall system. The last 11 rows give the
(P, D) value for different setups when α varies from 0.1 to 1.0.
The results show that as the value of α increases, the average
number of idle intervals in a triggering cycle decreases while
the deadline missing ratio increases.

Because the BP-EDF requires very little computation, it
can be used for on-line scheduling and task merging.

V. OFF-LINE TASK SCHEDULING WITH THE CONSIDERATION
OF TASK MERGING

In this section, we are going to introduce an off-line
algorithm that considers task merging and idle period
clustering during task scheduling. The algorithm utilizes task
slack time to merge them together. Therefore, in the rest of the
paper, we refer to this algorithm as slack-based task merging
(STM) algorithm. Compared with BP-EDF, the STM
algorithm guarantees deadline and merges tasks more
efficiently when the processor utilization is relatively low.

Figure 4 The STM algorithm.

Figure 4 gives the flow of STM algorithm. The algorithm
first works on the original CDFG to merge tasks together. A
cluster of merged tasks is called composite task and the
original single task is called atomic task. After merging, new
task graph is generated that consists of both composite and
atomic tasks. A heuristic algorithm is used to schedule the
tasks in the new CDFG so that those tasks that are mapped to
the same processor will be executed sequentially. If the task
deadlines are less than one initiation cycle, then the algorithm
stops. Otherwise cross-boundary task merge should be
performed to further reduce the number of idle intervals. The
STM algorithm will unroll the CDFG and merge tasks that
belong to different triggering cycles. After that task scheduling
is performed again. If a repeating pattern is found in the
scheduling result then we will stop, otherwise we increases the
length of the unrolled CDFG and repeat the previous steps. In
all our experiments, we are able to find repeating pattern by
unrolling the CDFG 100 times.

The timing relations between composite tasks are very
complex. Sometime, a composite task cannot start too early or
too late relative to the starting time of another composite task.
Both maximum and minimum timing constraints [13] may
exist in the CDFG after task merging. Given two operation i
and j. The maximum timing constraint uij≥0 requires tj ≤ ti + uij.
It is represented as an edge from vertex j to i with negative
weight −uij. The minimum timing constraint lij≥0 requires tj ≥ ti
+ lij. It is represented as an edge from vertex i to j with
positive weight lij.

A. Task Merging Algorithm
The key of STM algorithm is slack based task merging.

The slack of an operation is the difference between its earliest
and latest starting time obtained from the ASAP and ALAP
scheduling. The slack defines the mobility of the scheduling of
an operation. If the slack of two operations that are running on
the same processor allows them to be scheduled back to back
then these two operations can be merged to form a bigger
operation.

of PEs 3 2
#of tasks 12 15 12 15

Utilization
ratio 41% 12% 74% 22% 76% 22% 68% 20%

P

D
(%)

P
D

(%)
P

D
(%)

P
D

(%)
P

D
(%)

P
D

(%)
P

D
(%)

P
D

(%)

0.1 5.0 0 5.0 0 4.5 0 6.0 0 3.0 0 4.0 0 3.0 0 3.0 0
0.2 5.0 0 5.0 0 4.5 0 6.0 0 3.0 0 4.0 0 3.0 0 3.0 0
0.3 3.0 0 4.0 0 4.5 0 5.0 0 3.0 0 4.0 0 3.0 0 3.0 0
0.5 2.5 0 4.0 0 4.3 0 4.0 0 3.0 0 4.0 0 2.5 0 2.0 0
0.7 2.0 0 4.0 0 3.0 0 4.0 0 3.0 0 4.0 0 2.0 0 2.0 0
0.8 2.0 0 3.5 0 2.7 0 4.0 0 3.0 0 4.0 0 2.0 0 2.0 0
0.9 2.0 0 2.5 0 1.6 2 4.0 0 3.0 10 2.5 0 2.0 0 2.0 0
0.95 2.0 0 2.5 0 1.6 2 3.9 0 2.8 16 2.5 0 1.5 0 2.0 0
1.0 2.0 17 2.3 0 1.5 1 3.3 0 2.4 15 2.5 4 1.5 0 2.0 0

(P, D)
α

Slack-based task merging in the original CDFG

Schedule tasks in the new CDFG

Deadline < period

Unroll the CDFG

Slack-based task merging in the unrolled CDFG

Schedule tasks in the new CDFG

Any repeating pattern in
the scheduling results?

Increase
the length

of
unrolled
CDFG

Done

Yes

Yes

No

No

Slack-based task merging in the original CDFG

Schedule tasks in the new CDFGSchedule tasks in the new CDFG

Deadline < period

Unroll the CDFG

Slack-based task merging in the unrolled CDFG

Schedule tasks in the new CDFGSchedule tasks in the new CDFG

Any repeating pattern in
the scheduling results?

Increase
the length

of
unrolled
CDFG

Done

Yes

Yes

No

No

Let (esti, lsti) denotes the slack of an operation i, where esti
is the earliest starting time and lsti is the latest starting time.
Given an unrolled CDFG, two operations i and j can be
merged if and only if the following conditions are true:
C1: i and j are both executed on the same processor
C2: The slacks of the two operations are overlapping, i.e.

φ≠+∩+),(),(jjjiii tplstesttplstest
C3: Let the LDi,j and LDj,i denote the distance of the longest

path from i to j and from j to i respectively. (If j is not
reachable from i then LDi,j = -∞. Similarly, LDj,i = -∞
indicates that i is not reachable from j.) The processing
time of i and j must satisfy either of the following:

ijiji LDtpLD ,, −≤≤ (1)

 or jijij LDtpLD ,, −≤≤ (2)

 If (1) is satisfied then task j should follow task i after
merge. If (2) is satisfied then task i should follow task j.

C4: To merge i and j with j following i, the following
inequality must be true: lstk – estk > tpj if there is an edge
from i to k and both i and k are mapped to the same
processor. This condition guarantees that after merging,
executing task i, j and k sequentially will not violate the
timing constraint of k.

The necessity for condition C1, C2, and C4 is obvious. We
will give some discussions about C3 using the following two
examples.

Example 1 Consider the task graph given by Figure 5 (a),
which models three sequentially executed tasks. Assume that
all of three tasks are running on the same processor and there
is no deadline constraint (i.e. the slack of each task is infinite).
It is easy to see that task 1 and 3 cannot be merged. Checking
conditions C1~C4, we will find that C3 is not satisfied. From
the graph we know that LD1,3 = 3 and LD3,1 = −∞. Therefore,
neither (1) or (2) is true because tp1<LD1,3 and tp3>LD3,1. 

Example 2 Consider the task graph given by Figure 5 (b),
which models two tasks with minimum and maximum timing
relations. Task 1 must start at least 3 cycles but no more than 5
cycles after task 2 started. It is not difficult to find that task 1
and 2 can be merged with task 1 following task 2. Indead,
condition C3 is satisfied for this example. Because LD1,2 = −5
and LD2,1 = 3, we have 2,121,2 LDtpLD −≤≤ . 

Figure 5 Meeting condition C3.

After two operations i and j are merged, the corresponding
two vertices and all the edges associated with them are
removed from the graph. Assume that i is placed in front of j, a
new vertex i-j is created for the composite task. The graph is
updated based on the following rules.

U1: If there is an edge (k, i) in the original graph with weight
w, add an edge (k, i-j) and set its weight to w.

U2: If there is an edge (k, j) in the original graph with weight
w, add an edge (k, i-j). If k is mapped to a different
processor other than i and j, the weight of the new edge is
equal to w-tpi; otherwise it is equal to w.

U3: If there is an edge (i, k) in the original graph with weight
w, add an edge (i-j, k). If k is mapped to a different
processor other than i and j, the weight of the new edge is
equal to w; otherwise it is equal to w+tpj.

U4: If there is an edge (j, k) in the original graph with weight
w, add an edge (i-j, k) and set its weight to w+tpi.
The four updating rules preserve the relative timing

constraints of the original CDFG. They also enforce the
sequencing constraints among the tasks that are mapped to the
same PE. It can also be proved that if the original CDFG does
not have any positive cycle, then there will be no positive
cycle in the new CDFG. Therefore, a feasible schedule can be
found for the new CDFG.

Figure 6 Pseudo code of Update_slack().

Figure 7 Pseudo code of Slack Based Task Merging.

After merging, the slack of the composite task i-j is set to
be (max(esti, estj-tpi), min(lsti, lstj-tpi)). The slack of other
tasks should also be updated. This is done in the update_slack
procedure. In this procedure, two FIFOs are maintained. They
are denoted as FIFO-EST and FIFO-LST. FIFO-EST is used to
store the operations whose earliest starting time has been
changed and FIFO-LST is used to store the operations whose
latest starting time has been changed. After operation merge,
each of the FIFO has only one element, i-j. While the FIFO-
EST is not empty, its first entry k will be popped out. If the
earliest starting time of k’s successors g is smaller than tk+wk, g,

Update_Slack(i-j) begin
 FIFO-EST = FIFO-LT = {i-j};
 While (FIFO-EST is not empty) begin
 k = pop(FIFO-EST);
 For each g ∈ {successor of k} begin
 If estg < estk + wk, g
 estg = estk + wk, g and push g into FIFO-EST;
 End
 End

While (FIFO-LST is not empty) begin
 k = pop(FIFO-LST);
 For each g ∈ {predecessor of k} begin
 If lstg > lstk - wg, k
 lstg = lstk - wg, k and push g into FIFO-LST;
 End
 End
End

Slack Based Task Merging:
M = {Operations pairs that can be merged in the CDFG};
While (M≠Φ) loop begin
 Merge the operation pair (i, j) that has the highest priority;
 Remove vertex i and j as well as the associated edges;
 Create new vertex i-j;
 Update graph;
 Update_Slack(i-j);
 M = {Operations pairs that can be merged in the updated graph};
End

(a) Task merging in a CDFG with
minimum timing constraints

1

2
3

tp1=1
tp2=2
tp3=3

1

2

(b) Task merging in a CDFG
with min/max timing constraints

1 2

-5

3

tp1=1
tp2=4

(a) Task merging in a CDFG with
minimum timing constraints

1

2
3

tp1=1
tp2=2
tp3=3

1

2

11

22
33

tp1=1
tp2=2
tp3=3

1

2

(b) Task merging in a CDFG
with min/max timing constraints

1 2

-5

3

tp1=1
tp2=41 2

-5

3

tp1=1
tp2=4

where wk, g is the weight of the edge (k, g), then the estg is
updated and g is pushed into FIFO-EST. Similar operations are
performed on FIFO-LST. The pseudo code of Update_slack()
procedure is given in Figure 6.

When several task pairs are available for merging, we only
merge one of them at each time. The two operations that have
the longest slack after they merge will have the highest
priority. By doing so, we increase the possibility to further
merge the composite operations. The overall algorithm for
slack based task merging is given in Figure 7.

Example 3 This example shows how slack based task
merging works on the original CDFG. Figure 8 (a) gives the
original CDFG. The system consists 6 tasks and 2 PEs. We
assume that task 1~4 are mapped to PE0 and task 5~6 are
mapped to PE1. tp1~tp4 are 1 and tp5~tp6 are 4. Vertex 0 and n
are anchors that represent the triggering operation and
deadline. Assume that the triggering event is generated at time
0 and the deadline is at time 10. An edge from vertex 3 to n
indicates that the latest starting time of task 3 is 8 (i.e. the
deadline of task 3 is 9.) The slack of each task is listed beside
the CDFG.

Figure 8 Example of slack based task merging.

Checking the CDFG conditions C1~C4 we found several
task pairs that can be merged. They include task 1 and 2, task 2
and 3, task 2 and 4 and task 3 and 4. Because task 2 and 3
gives the largest slack after merging, these two are selected
and merged first. We then update the CDFG based on rule
U1~U4. The new CDFG is given in Figure 8 (b). After that
task 1-2-3, 5-6 are further merged. The resulting CDFGs are
given in Figure 8 (c) and (d) respectively. Note that in the last
CDFG, from composition task 1-2-3 to composition task 5-6,
there are two edges, because 5 must start at least one cycle
after 1-2-3 and 6 must start at least 2 cycles after 1-2-3. In this

case, only the longest edge will be kept. We cannot merge
composite task 1-2-3 with atomic task 4, because condition C3
is not satisfied. 

B. Task Scheduling
Task scheduling in the STM algorithm is a relative easy

step because we are not interested in finding the optimal
scheduling for minimum resource or latency. The only goal is
to find an execution order that satisfies relative timing
constraints and sequencing constraints.

It can be proved that, if two composite tasks x and y that
are mapped to the same processor cannot be merged, then
either there is a directed path between them or their slacks are
non-overlapping. Therefore, a simple ASAP algorithm can be
used to schedule the tasks. For example, for the task graph
given in Figure 8 (d), composite task 1-2-3 will start at time 0,
5-6 will start at time 1 and task 4 will start at time 5.

C. CDFG Unrolling
CDFG unrolling is performed to merge tasks that belong to

different triggering cycles. The original CDFG is copied L
times and the new task graph Gu = (Vu, Eu) is generated. The
lth copy corresponds to the system behavior triggered by the
lth triggering event. l

iop denotes the ith operation in the lth
copy and its starting time is denoted as ti,l. The Eu contains all
the edges that are in the original CDFG and some additional
edges. The following edges are added to specify the
dependency of the operations in different copies.

Figure 9 Example of unrolled task graph.

• An edge from l
iop to 1+l

iop is added, 0≤l<L-1. Its weight is
equal to tpi. This edge is added because the request queue is
serviced at first-in-first-out order, the lth request for opi must
be executed before the (l+1)th request.

• If there is an edge (i, j) in the original CDFG, then an edge is
added from l

jop to jBl
iop + , 0≤l<L-Bj. Its weight is equal to

−wi,j, where wi,j is the weight of edge (i, j) in the original
graph. This edge is added because the request queue of task j
can only hold up to Bj pending requests. The lth request for
opj must be processed before the (Bj+l)th request is
generated. Therefore we must have ljjiBli twt

j ,,)(, ≥++ which

is equivalent to jiljBli wtt
j ,,)(, −≥−+ .

Figure 9 gives the unrolled task graph for example 3. We
assume that the application is triggered in every unit time and

(a) Original CDFG

n

0

1

2

3

1

4

6

5

4

1 1

2

1

4

1

0
slack

1 (0,4)

2 (1,5)

3 (2,8)

4 (5,9)

5 (1,5)

6 (2,6)

(a) Original CDFG

n

(a) Original CDFG

n

0

1

2

3

1

4

6

5

4

1 1

2

1

4

1

0
slack

1 (0,4)

2 (1,5)

3 (2,8)

4 (5,9)

5 (1,5)

6 (2,6)

0

4

1

1

2-3

1

4

6

5

4

1

3

1

n

0

slack

1 (0,4)

2-3 (1,5)

4 (5,9)

5 (1,5)

6 (2,6)

(b) Merge task 2 and 3

0

4

1

1

2-3

1

4

6

5

4

1

3

1

nn

0

slack

1 (0,4)

2-3 (1,5)

4 (5,9)

5 (1,5)

6 (2,6)

slack

1 (0,4)

2-3 (1,5)

4 (5,9)

5 (1,5)

6 (2,6)

(b) Merge task 2 and 3

slack

1-2-3 (0,4)

4 (5,9)

5-6 (1,2)

1

4

6

5

4

0

2

4

4

1

1-2-3

(c) Merge task 1-2-3

slack

1-2-3 (0,4)

4 (5,9)

5 (1,5)

6 (2,6)

0

n

1-2-3

8

5-6

4

0

-1

4

1

4

1

(d) Merge task 5-6

0

n

slack

1-2-3 (0,4)

4 (5,9)

5-6 (1,2)

slack

1-2-3 (0,4)

4 (5,9)

5-6 (1,2)

1

4

6

5

4

0

2

4

4

1

1-2-3

(c) Merge task 1-2-3

slack

1-2-3 (0,4)

4 (5,9)

5 (1,5)

6 (2,6)

0

n

1

4

6

5

4

0

2

4

4

1

1-2-3

(c) Merge task 1-2-3

slack

1-2-3 (0,4)

4 (5,9)

5 (1,5)

6 (2,6)

0

n

1-2-3

8

5-6

4

0

-1

4

1

4

1

(d) Merge task 5-6

0

nn

10

1-2-3

5-6

4

0

1-2-3

5-6

4

1

11

1-2-3

5-6

4

2

11

3 3

6 6

1 1

0

-1

-3

10

1-2-3

5-6

4

0

1-2-3

5-6

4

1

11

1-2-3

5-6

4

2

11

3 3

6 6

1 1

0

-1

-3

buffer size for each operation is 2. Note that there are multiple
anchors in the unrolled graph and they specify different
triggering times and deadlines for different copies. An edge is
connecting from the first copy of composite task 1-2-3 to the
anchor of time 2. It indicates that the first initiation of
composite task 1-2-3 must start before time 2. An edge is
connecting from the first copy of composite task 5-6 to the
third copy of composite task 1-2-3 and from the first copy of
task 4 to the third copy of task 5-6. It indicates that the
maximum starting time of the first request for operation 5 and
6 is 1ns after the third initiation of composite task 1-2-3.

Figure 10 System activities under STM scheduling.

After CDFG unrolling, tasks belongs to different iterations
can be merged. As an example, we apply the STM algorithm
to schedule the applications specified in the motivational
example. Figure 10 shows the system activities. As we can see
for this example, the STM algorithm has almost the same task
merging quality as the optimal scheduling algorithm.

VI. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed algorithm,

two hardware systems are used in the experiments with two
and three PEs respectively. In both systems, the processors use
point-to-point communication with each other. We assume that
each processor has two power modes, active and sleep.

Table 2 Summary of Task Graphs.
of
PEs 3 2

work
load High Medium Low High Medium Low

TG γ σ γ σ γ σ γ σ γ σ γ σ

1 0.72 0.08 0.43 0.05 0.21 0.03 0.68 0.08 0.41 0.05 0.20 0.03

2 0.48 0.14 0.29 0.09 0.14 0.04 0.60 0.14 0.36 0.09 0.17 0.04

3 0.56 0.30 0.34 0.18 0.17 0.09 0.47 0.30 0.42 0.18 0.21 0.09

4 0.83 0.26 0.50 0.16 0.24 0.08 0.70 0.26 0.41 0.16 0.20 0.08

5 0.57 0.12 0.34 0.08 0.16 0.04 0.86 0.12 0.51 0.08 0.25 0.04

6 0.41 0.17 0.25 0.10 0.12 0.05 0.77 0.17 0.46 0.10 0.23 0.05

7 0.74 0.22 0.44 0.13 0.22 0.07 0.68 0.22 0.40 0.13 0.20 0.07

In the experiments, we compare the performance of STM

algorithm, minimum latency scheduling (MLS) algorithm, BP-
I, BP-II and BP-EDF algorithms. As we have mentioned in
Section IV, the quality of a scheduling algorithm is measured
using two parameters, the average number of idle intervals in a
triggering cycle (P) and deadline miss ratio (D). The parameter
P is proportional to the energy overhead of power mode
switching and the parameter D is related to system
performance. An event driven simulator is developed that
simulates systems that are running under different scheduling

algorithms. For all the burst processing on-line algorithms, the
deadline scaling factor α is set to 0.8.

Table 3 Quality of Scheduling (High Workload, 3 PEs).

Algorithms MLS STM BP-I BP-II BP-EDF
TG P D (%) P D (%) P D (%) P D (%) P D (%)
1 2.99 0 0.37 0 0.77 0 0.77 0 0.77 0
2 3.00 0 1.37 0 1.70 19.2 0.86 8.0 1.23 0
3 3.00 0 1.00 0 1.31 10.8 0.86 6.0 0.86 0
4 2.99 0 0.16 0 0.62 7.7 0.27 9.4 0.38 0
5 5.26 0 3.14 0 3.33 36.2 3.00 0 3.00 0
6 5.00 0 1.51 0 2.24 24.6 2.01 8.3 2.01 0
7 4.66 0 4.02 0 5.45 13.1 2.52 9.7 2.67 0

Table 4 Quality of Scheduling (Medium Workload, 3 PEs).

Algorithms MLS STM BP-I BP-II BP-EDF
TG P D (%) P D (%) P D (%) P D (%) P D (%)
1 3.00 0 0.51 0 0.96 0 0.96 0 0.96 0
2 4.00 0 2.26 0 1.47 9.6 1.33 0.4 1.11 0
3 3.00 0 0.75 0 1.96 0 1.23 0 1.47 0
4 3.00 0 0.33 0 0.71 10.3 0.49 0 0.37 0
5 7.00 0 3.00 0 4.66 11.0 3.00 0 3.00 0
6 5.00 0 2.00 0 6.00 0 2.51 8.2 2.51 0
7 7.00 0 2.55 0 7.91 0 3.98 0 3.98 0

Table 5 Quality of Scheduling (Low Workload, 3 PEs).

Algorithms MLS STM BP-I BP-II BP-EDF
TG P D (%) P D (%) P D (%) P D (%) P D (%)
1 3.00 0 0.75 0 0.80 0 0.80 0 0.80 0
2 4.00 0 1.51 0 1.24 0 1.45 0 1.37 0
3 3.00 0 0.75 0 1.96 0 0.99 0 0.99 0
4 3.00 0 0.49 0 0.78 0 0.48 0 0.48 0
5 7.00 0 2.02 0 5.79 0 3.00 0 3.00 0
6 5.00 0 1.51 0 6.98 0 3.50 0 3.50 0
7 7.00 0 2.52 0 8.60 0 3.96 0 3.96 0

Table 6 Quality of Scheduling (High Workload, 2 PEs).

Algorithms MLS STM BP-I BP-II BP-EDF
TG P D (%) P D (%) P D (%) P D (%) P D (%)
1 1.51 0 0.40 0 0.75 08.0 0.46 0. 7 0.46 0
2 2.69 0 1.89 0 0.98 0 0.99 0 1.47 0
3 2.01 0 0.38 0 1.65 0 0.50 3.8 0.53 0
4 3.00 0 1.01 0 1.23 13.7 0.50 9.0 0.66 0
5 3.00 0 7.00 0 1.36 39.6 0.68 11.0 0.62 0
6 3.05 0 2.96 0 5.03 13.5 3.01 0 3.00 0
7 3.00 0 3.00 0 5.00 3.3 2.01 6.6 2.01 0

Table 7 Quality of Scheduling (Medium Workload, 2 PEs).

Algorithms MLS STM BP-I BP-II BP-EDF
TG P D (%) P D (%) P D (%) P D (%) P D (%)
1 3.00 0 1.01 0 1.00 8.3 1.76 0.3 0.76 0
2 4.00 0 2.02 0 1.31 0 1.22 0 1.31 0
3 2.01 0 0.99 0 2.74 0 0.75 0 0.87 0
4 4.00 0 1.01 0 1.97 0 0.50 3.6 0.79 0
5 3.00 0 1.50 0 3.17 1.8 2.00 0 2.00 0
6 5.00 0 2.01 0 6.98 2.7 4.00 0 4.00 0
7 3.00 0 1.50 0 7.48 0 2.01 0 2.01 0

2

2 4

4

6

6

8

8

10

10

12

12

Active/Idle Intervals on PE2
0~3 4~5 6~9

Active/Idle Intervals on PE1

t

t2

2 4

4

6

6

8

8

10

10

12

12

Active/Idle Intervals on PE2
0~3 4~5 6~9

Active/Idle Intervals on PE1

t

t

0

4

8

12

16

High
workload,

3 PEs

Medium
workload,

3 PEs

Low
workload,

3 PEs

High
workload,

2 PEs

Medium
workload,

2 PEs

Low
workload,

2 PEs

BP-I
BP-II

0

4

8

12

16

High
workload,

3 PEs

Medium
workload,

3 PEs

Low
workload,

3 PEs

High
workload,

2 PEs

Medium
workload,

2 PEs

Low
workload,

2 PEs

BP-I
BP-II
BP-I
BP-II

Table 8 Quality of Scheduling (Low Workload, 2 PEs).
Algorithms MLS STM BP-I BP-II BP-EDF

TG P D (%) P D (%) P D (%) P D (%) P D (%)
1 3.00 0 1.01 0 1.32 0 1.00 0 1.00 0
2 4.00 0 2.00 0 1.32 0 1.63 0 1.62 0
3 2.01 0 1.00 0 3.12 0 0.99 0 0.99 0
4 4.00 0 0.75 0 1.97 0 0.98 0 0.99 0
5 3.00 0 0.70 0 4.79 0 2.00 0 2.00 0
6 5.00 0 2.03 0 7.63 0 3.99 0 3.99 0
7 3.00 0 1.50 0 7.97 0 3.00 0 2.00 0

Table 3~8 report the quality of five scheduling algorithms

when applied to schedule different applications in the different
hardware systems. In most of the cases, STM, BP-I, BP-II and
BP-EDF algorithms result in smaller P value (i.e. the number
of idle time intervals) than the MLS algorithm. Figure 11 gives
the average reduction of the P value for STM, BP-I, BP-II and
BP-EDF algorithms compared to the minimum latency
scheduling. The BP-II and BP-EDF always have very similar
P value. The STM algorithm outperforms these two when the
workload is low or medium. More specifically, when the
workload is low, the average P value reduction of STM
algorithm is 24% and 31% more than that of BP-EDF and BP-
II algorithms, respectively. When the workload is medium, the
average P value reduction of STM algorithm is 10% and 14%
more than that of BP-EDF and BP-II algorithms, respectively.
Overall, comparing to the MLS algorithm, the STM, BP-II and
BP-EDF have 56% reduction of the P value while the BP-I has
only 16% reduction, in average.

Experimental results also show that, neither STM nor BP-
EDF algorithm causes any task deadline misses. The BP-I and
BP-II scheduling have task deadline miss in most of the test
cases when the workload is high or medium. The task deadline
miss ratio increases when the workload increases. Figure 12
gives the average deadline miss ratio for these two algorithms
in different scenarios.

Figure 11 Average reduction of number of idle intervals.

Figure 12 Average deadline miss ratio (%).

For the STM scheduling, we unroll the task graph 100
times. We are able to find repeating scheduling pattern without

increasing the length of the unrolled DFG. Table 9 gives the
length of the repeating period for the low workload task graphs
in the unit of triggering cycles.

Table 9 Repeating period of STM scheduling (Low Workload).
TG 1 2 3 4 5 6 7

2 PEs 6 2 4 4 2 2 2
3 PEs 4 4 4 8 4 10 6

VII. CONCLUSIONS
We have proposed a method of task merging for dynamic

power management in a real-time system with multiple
processing elements. It shows that, with good task scheduling,
the energy and delay overheads due to power mode switching
in the DPM scheme can be reduced significantly. Two new
task scheduling algorithms are proposed to minimize the
number of idle time intervals under the deadline and
precedence constraints. A simple DPM policy is then used to
reduce the energy during the idle intervals. Experimental
results show that, comparing to the DPM schemes without
proper task scheduling, the proposed method reduces the
number of power mode switches by 56% at average.

REFERENCES

[1] http://pasta.east.isi.edu/
[2] M. Srivastava, A. Chandrakasan, and R. Brodersen, "Predictive system

shutdown and other architectural techniques for energy efficient
programmable computation," IEEE Transactions on VLSI Systems, Vol.
4, pp. 42–55, March 1996.

[3] C-H. Hwang and A. Wu, “A predictive system shutdown method for
energy saving of event-driven computation,” Proceeding of
International Conference on Computer-Aided Design, November 1997.

[4] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Transactions on
Computer-Aided Design, Vol. 18, pp. 813–33, June 1999.

[5] Q. Qiu, Q Wu and M. Pedram, “Stochastic modeling of a power-
managed system-construction and optimization,” IEEE Transactions on
Computer-Aided Design, Vol. 20, pp. 1200-1217, October 2001.

[6] B. Zhai, D. Blaauw, D Sylvester, and K Flautner, “Theoretical and
practical limits of dynamic voltage scaling,” Proceedings of Design
Automation Conference, 2004.

[7] L. Benini, A. Bogliolo and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE
Transactions on Very Large Scale Integration Systems, Volume 8,
Issue 3, pp. 299-316, June 2000.

[8] B. Schott, M. Bajura, J. Czarnaski, J. Flidr, T. Tho and L. Wang, “A
modular power-aware microsensor with >1000X dynamic power
range,” International Symposium on Information Processing in Sensor
Networks, April 2005.

[9] K. Morris, “Power: suddenly, we care,” FPGA and Programmable
Logic Journal, April 2005.

[10] J. Liu, P. Chou, N. Bagherzadeh, and F. Kurdahi, “A constraint-based
application model and scheduling techniques for power-aware systems,”
International Conference on Hardware Software Codesign, April 2001.

[11] Y. Lu, L. Benini, and G. D. Micheli, “Low-power task scheduling for
multiple devices,” International Workshop on Hardware/Software
Codesign, 2000.

[12] P. Rong and M. Pedram, “Hierarchical dynamic power management
with application scheduling,” Proc. of Symp. on Low Power Electronics
and Design, Aug. 2005.

[13] G. D. Micheli, “Synthesis and optimization of digital circuits,”
McGraw-Hill, Inc, 1994.

[14] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”
Proc. of Int. Workshop Hardware/Software Codesign, pp. 97-101, Mar.
1998.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

High workload, 3 PEs

Medium workload, 3 PEs

Low workload, 3 PEs

High workload, 2 PEs

Medium workload, 2 PEs

Low workload, 2 PEs

BP-EDF
BP-II
BP-I
STM

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

High workload, 3 PEs

Medium workload, 3 PEs

Low workload, 3 PEs

High workload, 2 PEs

Medium workload, 2 PEs

Low workload, 2 PEs

BP-EDF
BP-II
BP-I
STM

