
Task Allocation for Minimum System Power in a Homogenous Multi-core Processor  
Yang Ge, Qinru Qiu 

Department of Electrical and Computer Engineering, 
Binghamton University, State University of New York 

{yge2, qqiu}@binghamton.edu

Abstract— In this paper we address the impact of task 
allocation to the system power consumption of a homogenous 
multi-core processor with a main focus on its impact on the 
leakage power and fan power. Although the leakage power is 
determined by the average die temperature and the fan power 
is determined by the peak temperature, our analysis shows that 
the overall power can be minimized if a task allocation with 
minimum peak temperature is adopted together with an 
intelligent fan speed adjustment technique that finds the 
optimal tradeoff between fan power and leakage power. We 
further propose a multi-agent distributed task migration 
technique that searches for the best task allocation during 
runtime.  By choosing only those migration requests that will 
result chip maximum temperature reduction, the proposed 
framework achieves large fan power savings as well as overall 
power reduction. Experimental results show that, our agent-
based distributed task migration policy can save up to 37.2% 
fan power and 17.9% system overall power compared to the 
random mapping policy when the temperature constraint is 
tight. When the temperature constraint is loose, the overall 
system power is insensitive to the task allocation. 

Keywords--low power, task allocation, thermal aware, multi-
agent distributed framework  

I.  INTRODUCTION 

The ever-increasing power consumption of the computing 
system challenges the cooling system at all different levels. At data 
center level, the cooling infrastructure is becoming a limiting factor. 
The annual cooling cost for a large data center is considerably high 
and can reach up to tens of millions of dollars. At micro-
architecture level, increased power density has set up a “Power 
Wall” which blocks the micro-processor’s performance 
improvement, and the clock frequency growth is restricted due to 
the thermal issue. To cool down the processor, a typical cooling fan 
can consume up to 51% power budget of a server [9].  

Multi-core architecture has recently become the dominant 
design platform as it explores task and application parallelism in a 
power efficient way and hence relieves the power and thermal 
crisis. With the unprecedented number of transistors integrated on a 
single chip, the current multi-core trend may soon progress to 
hundreds or thousands of cores era. Examples of such system are 
the 80 tile network-on-chip that has been fabricated and tested by 
Intel [17] and Tilera’s 64 core TILE64 processor [1].  

Even in a homogenous multi-core system, highly heterogeneous 
workload on different cores can produce local hotspot and create 
large thermal gradient. Elevated core temperature increases leakage 
current and stresses the cooling system. The cooling fan has to 
operate at a speed to accommodate the worst case power density 
and guarantee the chip temperature under a safe threshold anywhere 
and anytime. This would require the fan operating at higher speed 
to maintain fast air flow and strong heat dissipation ability. 
However, operating at high speed for long time consume more 
energy and reduce fan life time [3].  

In this paper, we address the impact of task mapping on the 
overall power consumption of a homogenous multi-core system. 

The system power consists of three components, dynamic power, 
static power, and fan power. Although different task mappings have 
little impact on the dynamic power in a homogeneous multi-core 
system, they do change the temperature distribution across the 
system and can potentially affect the leakage power and fan power.  
While the leakage power is determined by the average temperature, 
the fan power is determined by the peak power. Hence different 
optimization techniques are required. However, as we will show in 
Section IV that the impact on leakage power from task mapping is 
negligible if the fan convection speed is fixed. For a given 
workload, the chip leakage power can be approximated to a linear 
function of the convective resistance of the cooling system while 
the fan power is an inverse cubic function of the same parameter. 
Our analysis shows that the overall power can be minimized if a 
task allocation with minimum peak temperature is adopted together 
with an intelligent fan speed adjustment technique that finds the 
optimal tradeoff between fan power and leakage power. 
Furthermore, the impact of task allocation on the overall system 
power is significant when the temperature constraint is tight. When 
the temperature constraint is loose, the overall system power is 
insensitive to task allocation. 

We further investigate the techniques to search for the task 
allocation for minimum peak temperature. We formulate the task 
allocation problem as a zero-one linear programming. Because 
solving the binary linear programming problem does not scale well 
for large system, we proposed an agent based distributed task 
migration approach for peak temperature reduction. Our agent 
based algorithm has good scalability as the number of processors 
increases. It achieves up to 18% power savings compare to a 
random mapping policy.  

The rest of paper is organized as follows: Section II reviews the 
previous work. Section III introduces the many core system model, 
the system power and thermal model and cooling system model. 
We formulate the task allocation problem in section IV. In Section 
V we present the temperature aware distributed task migration 
framework. Experimental results are reported in Section VI.  
Finally, we conclude the paper in Section VII. 

II. RELATED WORK 

Various dynamic thermal management (DTM) techniques have 
been studied at different levels [8][6][11]. Most of these works rely 
on a widely used thermal modeling tool Hotspot [15] for fast 
thermal analysis. At micro-architecture level, DTM techniques 
such as clock gating, dynamic voltage and frequency scaling 
(DVFS), thread migration has been thoroughly explored [8].  

At system level, different approaches have been taken to tackle 
the high processor operating temperature issues. Thermal aware 
task allocation and task migration has been studied in [6][12]. A 
multiple-input-multiple-output optimal control theory based power 
and thermal control algorithm has been proposed in [18]. The 
algorithm can control the power of the chip to a specific set point 
and maintain the chip temperature under a threshold. Recently, 
several proactive thermal management scheme has been proposed 
[7][19]. They utilized different temperature prediction model to 



accurately estimate the future temperature in different scenarios 
and take actions in advance to prevent thermal emergencies.  

At higher level, power and temperature management 
techniques for severs, for ensembles and even for data centers have 
been proposed in the previous works. In [11], a model for data 
center air conditioner cooling efficiency has been proposed. In 
[16], the heat transfer in data center has been studied thoroughly 
and a linear heat recirculation model has been introduced. Based 
on these works, an online workload allocation algorithm for data 
center has been proposed in [13]. They predict the future incoming 
requests and solve an integer linear programming problem online 
to allocate the workload and optimally turn on or turn off those 
severs in a data center.  

Recently, the cooling fan power optimization has received 
noticeable attention. In [14], a joint fan power and processor 
leakage power consumption optimization has been considered. 
They formulate the problem as a convex optimization problem and 
solve it to obtain the optimum fan speed. In [3], fan cooling cost 
minimization for a multi-machine system has been studied. Their 
techniques intelligently adjust the workload at virtual machine 
level and CPU socket level and achieve large fan energy savings.  

III. SYSTEM MODEL 

A. Processor Model 

In this paper, we consider a tile-based network-on-chip many-
core architecture [17]. Each tile is a processor with dedicated 
memory and an embedded router. It will also be referred to as core 
or processing element (PE) in this paper. All the processors and 
routers are connected by an on-chip network where information is 
communicated via packet transmission. We refer to the cores that 
can reach to each other via one-hop communication as the nearest 
neighbors. Note that a pair of cores that are nearest neighbors 
sometimes does not have to be close to each other geometrically.  

We assume the existence of a temperature sensor on each core. 
A temperature sensor can be a simple diode with reasonably fast 
and accurate response [8]. We also assume that a dedicated OS 
layer is running on each core that provides functions for 
scheduling, resource management as well as communication with 
other cores.  

B. Processor Thermal Model 

Due to the duality between heat transfer and RC circuits, we 
abstract the many-core system as an RC network. Let n denote the 
number of all thermal nodes in the system, including those in the 
heat sink layer and heat spread layer. Let N denote the number of 
processors in the system. The relation between n and N is 
determined by the equation n = 4×N+12 [15]. Let TSSi and ௜ܲ 
denote the steady state temperature and average power 
consumption of node i. Pi is 0 if node i belongs to the heat sink 
layer or heat spread layer because they does not consume any 
power. Let TSS and P denote vectors of TSSi and Pi, 1≤i≤n. When 
the system reaches the steady state, for each thermal node, its 
temperature is a linear function of power consumptions P1, P2, …, 
Pn. The relation can be represented by the following equation  

 ܶܵܵ ൌ ଵܲ (1)ିࡳ
where ିࡳଵ ൌ ሾ݃௜௝ሿ  is the inverse matrix of thermal 

conductance matrix G. We simplify equation (1) by keeping only 
the thermal nodes related to the PEs: 
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where N is the number of processors, and ܦ௜ ൌ ∑ ݃௜௝ ·௡
௝ୀேାଵ

௝ܲ is a set of constants, because the power consumption ௝ܲ of those 
thermal nodes related to the heat sink and heat spreader does not 
change. The coefficients gij and Di 1≤i, j≤N can be obtained by 
offline analysis. Equation (2) shows that the steady state 
temperature of each PE is a linear function of average power 
consumptions on other PEs and increasing/decreasing the power 
consumption of one PE will have an impact on the steady state 
temperature of all other PEs. 

C. Processor Cooling Model 

In this paper, we assume one standard heat sink and fan 
cooling system for the entire many-core chip as the configuration 
of the TILERA TILE64 processor [1]. Our cooling system 
modeling follows the similar techniques described in the previous 
works [3] [14]. 

The heat generated in the die layer is transferred from the heat 
sink layer to the ambient environment and brought away by the 
cool air flow provided by the fan. The speed of the air flow 
determines how efficiently the heat can be dissipated and thus 
determines the temperature of the die. This heat dissipation 
efficiency is characterized by convective thermal resistance Rconv. 
The faster of the air flow speed, the more easily the heat can be 
dissipated, and the lower the convective resistance will be. 
Reference [3] pointed out that the convective resistance Rconv is 
proportional to V-α, where V is the air flow speed and α is a 
constant between 0.8 and 1.0. The air flow speed is determined by 
the fan speed, which in turn controls the fan power consumption. It 
has been pointed out in [14] that the fan power has cubic relation 
with the fan speed, i.e. ௙ܲ௔௡ ן ܸଷ . Finally, we obtained the 
relation between the fan power consumption Pfan and convective 
thermal resistance Rconv.   

 
௙ܲ௔௡ ן ܴ௖௢௡௩

ି 
ଷ
ఈ (3)

We next model the relation between the convective resistance 
and the die temperature. Although the Hotspot [15] provides a 
detailed and accurate thermal model at micro-architecture level, its 
complexity is too high to be used analytically. And it does not 
directly reveal the relation between convective resistance and the 
die temperature. Therefore, we adopted a simple yet accurate 
model as shown in Figure 1 [3]. In this model, Pi, Ci, and Ri are the 
power consumption, thermal conductance and die to package 
thermal resistance of processor i respectively. Rconv is the 
convective resistance. 

 
Figure 1. Simplified multiprocessor thermal model 

Similar to the previous works [3][14] we are only interested in 
the temperature at steady state when the system reaches the 
equilibrium. This is because the time constant of heat sink is much 
larger than the time constant of the core. Therefore all the 
capacitors in the system are open circuit and only thermal 
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resistances will be considered. Then the die temperature Ti of core 
i can be computed as  

 ௜ܶ ൌ ௜ܴܲ௜ ൅ ܴ௖௢௡௩ ෍ ௜ܲ

ே

௜ୀଵ

 (4)

where Pi is the power consumption of core i and Ri is the 
approximation thermal resistance from die to package. If the power 
consumption of core i does not change, the die temperature of core 
i is a linear function of Rconv. To verify the simple model, we run 
the simulation in Hotspot to obtain the die temperature of core by 
varying the convective thermal resistance. Figure 2 shows that the 
simulated core temperature and the core temperature predicted by 
the linear model matches very well.  

 
Figure 2 Linear approximation of relation between die temperature and 

convective resistance 

D. Leakage power model 

The leakage power consumption of a processor depends on the 
die temperature, supply voltage and a number of other factors. If 
the supply voltage is constant, the leakage power consumption can 
be expressed as follows: 

 
௟ܲ௘௔௞ ൌ ଵܣ ௗܶ

ଶ݁
஺మ
்೏ ൅ ଷ (5)ܣ

 
Figure 3 Linear approximation of leakage power model 

Where A1, A2 and A3 are constants which are dependent on 
processing technology and supply voltage, Td is the die 
temperature. It has been pointed out in [10] that the leakage power 
can be approximated using a linear model and the resulting error is 
expected to be less than 5% for a large temperature range from 
20oC to 120oC. We approximate the leakage power using its first 
order Taylor expansion at 80oC and compare the linear 
approximation model with the original model in Figure 3. The 
green line is the linear approximation while the red line is the 

original model given by equation (5). Figure 3 shows that the 
linear model has very small error compare to the original model in 
the normal operating range, which is between 60oC and 100oC. 

Based on this observation, we approximate the leakage power 
of the ith core using a linear model ௟ܲ௘௔௞,௜ ൌ ܽ ௗܶ,௜ ൅ ܾ, where ௗܶ,௜ 
is the   average die temperature of the core , a and b are two 
scalars. The total leakage power consumption can be simply 
calculated as ௟ܲ௘௔௞௧௢௧௔௟ ൌ ܽ ∑ ௗܶ,௜ ൅ ܾܰ ൌ ܰܽ ௗܶି௔௩௚ ൅ ܾܰ, 
where ௗܶି௔௩௚ ൌ ∑ ௗܶ,௜

ே
௜ୀଵ ܰ⁄  is the average temperature of N 

cores. Thus the total chip leakage power can be approximated as a 
linear function of average die temperature.  Because ௗܶ,௜ is linearly 
proportional to ܴ௖௢௡௩, the leakage power ௟ܲ௘௔௞௧௢௧௔௟ is also a linear 
function of the convective resistance. 

IV. PROBLEM FOMULATION AND ANALYSIS 

In this paper, we study the impact of task allocation on the 
overall system power. The overall power consumption is the sum 
of the CPU power consumption and the fan power consumption 
while the CPU power consumption consists of dynamic power and 
leakage power. Therefore the overall power consumption model 
can be written as follows. 

 ௧ܲ௢௧௔௟ ൌ ௗܲ௬௡ ൅ ௟ܲ௘௔௞ ൅ ௙ܲ௔௡ (6)
In a homogenous multi-core system, task allocation has little 

impact on the dynamic power consumption because all cores are 
identical. However, because task allocation changes the 
temperature distribution across the system, it has the potential to 
change the leakage power and fan power which are temperature 
related power consumptions.  

 
Figure 4 The relation between full chip leakage power consumption 

and different task allocations 

To show the relation between task allocation and leakage 
power consumption, we randomly generated 100 groups of task 
allocation for a given workload and compare their leakage power 
consumption on a 36 core chip multiprocessor. The workload 
consists of 36 tasks whose power consumption varies from 10mW 
to 20mw (details about workload generation are described in 
section VI.) Figure 4 shows the leakage power for all 100 groups 
as the convective resistance increases. The leakage power 
consumption for the worst mapping and the best mapping differs 
only by less than 1% for a given convective resistance. This is 
intuitively correct. The leakage power is linearly proportional to 
the average die temperature which is determined by the average 
power density across the chip. Since the task allocation has little 
impact on the processor dynamic power consumption, which is still 
the dominant part of the CPU power consumption when it is 
actively running, it does not significantly change the average chip 
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temperature either. Consequently, the leakage power remains 
stable. Figure 5 (a) shows the average die temperature for those 
100 different random mappings as the convective resistance 
increases. (The blue line that lies at the bottom corresponds to the 
task allocation scheme that is found by our multi-agent distributed 
task migration framework that will be introduced in the next 
section.) As we can see, the maximum difference in average die 
temperature is less than 1oC. 

 
Figure 5 (a) 

 
 Figure 5 (b) 

Figure 5 Comparison of average and maximum temperature of 100 
different task allocations 

Based on the experimental results we have two observations, 
(1) for a given ܴ௖௢௡௩, the leakage power can be considered to be 
independent to the task allocation, (2) when the workload is given, 
the only parameter that controls the leakage power is the fan speed 
which is reflected by ܴ௖௢௡௩. Their relation can be represented by a 
linear function: ௟ܲ௘௔௞ ൌ ܿଵܴ௖௢௡௩ ൅ ܿଶ.  

On the other hand, different task allocation significantly affects 
the peak temperature. In order to bring the peak temperature below 
the constraint, the fan speed needs to be adjusted accordingly, 
which in turn leads to different ܴ௖௢௡௩. For example, Figure 5 (b) 
shows the maximum chip temperature of 100 different mappings 
as the convective resistance increases. (Again, the blue line that 
lies at the bottom corresponds to the task allocation that is found 
by our multi-agent distributed task migration framework.) We can 
see that the difference in peak temperature is more than 10oC. Note 
that because the average temperatures for different allocations are 
almost the same, the task allocation that gives the lowest peak 
temperature is the one that generates the most balanced 

temperature distribution. A task allocation that generates highly 
unbalanced temperature distribution will force the cooling fan to 
work harder (and consumes more power) to keep the peak 
temperature under the constraint. However, as the speed of cooling 
fan increases, the average chip temperature will decrease and 
therefore bring down the leakage power. When searching for the 
optimal task mapping, we need to consider the tradeoff between 
fan power and leakage power. 

Because ௗܲ௬௡ is independent to thermal convective resistance, 

௟ܲ௘௔௞ is linearly proportional to convective resistance and ௙ܲ௔௡ is 
an inverse cubic function of the convective resistance, the overall 
power consumption is a convex function on the convective 
resistance. There will be an optimal convective resistance ܴ௖௢௡௩

כ  
(corresponding to the optimal fan speed) which minimizes the 
overall system power. Furthermore, for a given workload, task 
allocation cannot change the relation between the overall power 
consumption and the convective resistance. 

  
Figure 6 (a) 

Figure 6 (b) 
Figure 6 The overall power consumption depend on convective 

resistance 
Figure 6 shows the overall power consumption and the peak 

temperature under different task allocations as functions of the 
convective resistance. Figure 6 (a) shows the scenario when the 
temperature constraint is strict and the convective resistance (i.e. 
ଵ௠௔௫ݎ  and ݎଶ௠௔௫ ) that could bring the peak temperature to the 
constraint are located to the left of ܴ௖௢௡௩

כ . In this case the overall 
power is dominated by the fan power. Increasing the fan speed can 
only increase the overall power consumption. The best task 
allocation that minimizes the overall system power is allocation 2 
which minimizes the peak temperature. Figure 6 (b) shows the 
scenario when the temperature constraint is loose and the 
convective resistance that could bring the peak temperature to the 
constraint are located to the right of ܴ௖௢௡௩

כ . In this case the leakage 
power dominates the overall power. If the fan speed is set to 
exactly satisfy the temperature constraint (i.e. the convective 
resistance is set to ݎଵ௠௔௫  or ݎଶ௠௔௫ ) then the best allocation is 
scheme 1 which has higher peak temperature. We denote the 
maximum ܴ௖௢௡௩ that keeps the peak temperature under constraint 
as ݎ௠௔௫. Obviously, any convective resistance that is less than ݎ௠௔௫ 
can keep the system in safe temperature zone. This includes ܴ௖௢௡௩

כ . 
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For both allocation 1 and 2, setting the convective resistance to 
ܴ௖௢௡௩

כ  can minimizes the overall power while satisfying the 
temperature constraint. Because with a loose temperature 
constraint, the fan power does not dominate the overall power 
alone, leakage power plays an important role as well. Increase the 
fan speed would increase the fan power but could reduce the 
temperature and leakage power. In this case, power consumption is 
not sensitive to task allocation. Any allocation scheme whose ݎ௠௔௫ 
is greater than ܴ௖௢௡௩

כ  could be used to find the optimal tradeoff 
point between the fan power and the leakage power. Obviously, 
among all possible task allocations, the allocation that minimizes 
the peak temperature is most likely to satisfy this property.    

Based on these observations, we concluded that, to optimize 
the overall power consumption, there are two steps. First is to find 
the task allocation that minimizes the peak temperature. Second is 
to adjust the fan speed to find the optimal tradeoff point between 
fan power and leakage power such that the overall power 
consumption is minimized and the temperature constraint is 
satisfied. The latter step could be achieved by using feedback 
control while former step will be discussed in detail in the 
following sections. 

V. POWER OPTIMAL TASK ALLOCATION 

Based on the analysis in the previous section, we will focus on 
searching for the optimal task allocation that minimizes the peak 
temperature among all cores.  

In the following subsections, we first present an exact 
formulation of this problem which is a zero-one min-max problem. 
Because the exact formulation has extremely high complexity, we 
then propose a multi-agent task migration framework that searches 
for the best task allocation during runtime. 

A. An exact formualtion  

Given a floorplan of a multi-processor system with n cores 
integrated on a chip, we assume that the thermal conductance 
matrix can be characterized by offline training. We further assume 
that the given workload consist of n different tasks {τ1, τ2, … , τn} 
whose power consumption {P1, P2, … , Pn} can be obtained through 
offline training or online estimation by observing the event counter. 
We assume the power consumption is a constant for each task, 
because we are only concerned about the steady state temperature. 
Here we assume that the core does not support multitasking and the 
number of tasks is equal to the number of cores. If the number of 
tasks is less than the number of cores, we can simply add some 
dummy tasks with 0 zero power consumption.  

Our goal is to obtain a mapping between the n tasks and the 
processors such that the resulting maximum temperature among all 
the cores is minimized. For each task k and processor j, there is a 
variable ݔ௝௞. Variable ݔ௝௞ is 1 when task k is mapped to processor 
j, otherwise it is 0. We formulate the problem as a zero-one min-
max linear programming as follows: 

 min max
௜

ሺ෍ ෍ ݃௜௝ݔ௝௞ ௞ܲሻ

௡

௞ୀଵ

௡

௝ୀଵ

൅ ௜ (7)ܦ

Subject to: 

 ෍ ௝௞ݔ

௡

௝ୀଵ

ൌ 1, ݇׊ ൌ 1, … , ݊ (8)

 ෍ ௝௞ݔ

௡

௞ୀଵ

ൌ 1, ݆׊ ൌ 1, … , ݊ (9)

௝௞ݔ  א ሼ0, 1ሽ (10)

Constraint (8) guarantees that a processor is only occupied by 
one task and constraint (9) ensures that a task can only be mapped 
to one processor. The item within the min-max operator in the 
objective function is the temperature of the ith core. To see this, we 
rewrite the equation (2) as follows: 
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where ܺ ൌ ሾݔ௜௝ሿ is a permutation matrix which assigns the n 
tasks to the processors. Expand the right hand side the equation 
would give the equation ௜ܶ ൌ ܽ௜௝ݔ௝௞ ௞ܲ . Then the objective 
function min-max(Ti) is to minimize the maximum temperature 
among all n processors.  

By some simple transformation, the min-max problem can be 
converted to traditional linear programming: 

 min (12) ݑ  
Subject to: 
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The above zero-one min-max linear programming is an exact 

formulation of the task allocation problem. However, it is 
extremely difficult to solve. For example, for a problem with 36 
cores there will be 1296 binary variables, it would take more than 
two days to solve this problem using the open source linear 
programming solver lp_solver [2] on a 3.2GHz Quad core Xeon 
processor. Therefore, it is infeasible to use the solution online for 
power and thermal optimization in the future many-core platform 
as the core counter could go up to hundreds and thousands [4]. 
Instead of solving this min-max problem directly, we propose the 
following online heuristic. 

B.  Distributed task migration 

In this section, we presented our distributed task migration 
framework that searches the optimal task allocation during 
runtime.  

We denote our multi-agent task migration algorithm as 
MATM. The framework has a low cost agent residing in each core. 
It is implemented as part of the OS based resource management 
program which performs thermal-aware task migration. The agent 
observes the workload and temperature of local processor while 
communicating and exchanging tasks with its nearest neighbors. 
The agent based distributed framework has better scalability 
compared to the centralized method as the communication cost and 
migration overhead for each core does not increase when the 
number of cores in the system increases.  

The proposed MATM adopts a task exchange based migration 
scheme. By exchanging tasks, the processors can maintain a 
balanced temperature distribution and hence reduces the peak 
temperature. 

 
Communication protocol 
Each core running a MATM agent can be in two phases: 

execution phase and communication phase. These two phases are 
interleaved. During the execution phase the core executes the 



current computing task while during the communication phase it 
initiates task migration request to its nearest neighbor or respond to 
the task migration request from its nearest neighbor.  The 
communication phase can further be divided into four sub-phases: 
broadcasting self workload to neighboring cores, receiving 
workload information from neighbors, sending migration requests 
to neighbors, exchanging tasks with neighbors. Figure 7 shows the 
diagram of the communication protocol. We assume that a MPI 
(Message Passing Interface) based communication is adopted. 
Therefore two cores do not have to enter the communication phase 
synchronously in order to communicate to each other. We also 
refer the communication phase as scheduling interval. 

 
Figure 7 Diagram of communication protocol 

At the beginning of each scheduling interval, an agent on a 
processor would broadcast its own work load to neighbors and 
request them sending back their workload. Because the scheduling 
intervals in all processors are not synchronized, the request is not 
likely to be checked and responded by neighbor agents right away. 
On the other hand, because all processors adopt the same execution 
and scheduling interval, it is guaranteed that all neighboring agents 
will response before the next scheduling interval after the request 
is issued.  

After receiving the response of neighbor workloads, the agent 
performs the MATM algorithm to decide whether to exchange task 
with neighbors and select which neighbor to exchange task with. 
Then it will send a migration request to the selected processor. For 
all other neighboring processors, the agent will also send an 
acknowledgement to them which indicates no task exchange. After 
that, the agent waits for the migration response from the selected 
processor. Note that this communication protocol will only be 
performed in a neighborhood when there are workload changes in 
a core. Therefore the communication overhead is relatively low.  

 
MATM distributed migration algorithm 
The FDTM algorithm distributes the tasks among processors 

based on their heat dissipation. It moves high power tasks to 
processors with strong heat dissipation capability and moves low 
power tasks to processors with weak heat dissipation capability.  
By distributing tasks in this way, local hotspots can be mitigated 
and thus peak temperature of the chip can be reduced. 

To determine if an exchange of tasks between two processors 
is beneficial to the whole system, we consider equation (2) again.  

Assume that PEi and PEj exchange tasks, and their average power 
consumptions are altered by ߂ ௜ܲ  and ߂ ௝ܲ  respectively. Using 
equation (2), the total die temperature change of all processors in 
the system after task migration can be calculated as: 

 ෍ ߂ ௞ܶ

ே

௞ୀଵ
ൌ ௜ܩ · ߂ ௜ܲ ൅ ௝ܩ · ߂ ௝ܲ (17)

 
where ܩ௜  (or ܩ௝ ) is a parameter that characterizes the heat 

dissipation ability of processor  i (or j) , . ௜ܩ  ൌ ∑ ݃௠௜
ே
௠ୀଵ , ௝ܩ ൌ

∑ ݃௡௝
ே
௡ୀଵ . The temperature contributed by processor i running task 

k can be calculated as ܩ௜ ௞ܲ . If ܩ௜ ൏ ௝ܩ ,  then the temperature 
contribution made by processor i will be less than the contribution 
made by processor j when running the same task, which means 
processor i can dissipate heat better. Thus running high power task 
on processor i have smaller chance to produce high peak 
temperature than running high power task on processor j. 
Therefore, if ܩ௜ ൏ ௝ܩ  and ௜ܲ ൏ ௝ܲ , it is reasonable to switch the 
tasks on the two processors. This leads to ∑ ߂ ௞ܶ

ே
௞ୀଵ ൏ 0 in (18). In 

conclusion, if a task exchange between two neighbor processors 
leads to ∑ ߂ ௞ܶ

ே
௞ୀଵ ൏ 0, then this task exchange is beneficial for the 

system and the task exchange should be carried out.  
If an agent found that it is beneficial to exchange task with 

several neighbor agent, the agent will select a neighbor that lead to 
maximum temperature reduction, i.e. the minimum ∑ ߂ ௞ܶ

ே
௞ୀଵ  

(because it is negative), and send migration request to the selected 
neighbor. If an agent received several migration requests from 
neighbors, it will follow the same criterion to select a neighbor to 
exchange tasks. We summarized the MATM in Figure 8. 

 

 
Figure 8 MATM algorithm 

VI. EXPERIMENTAL RESULTS 

We implemented a multicore system simulator using C++. 
Hotspot [15] is integrated to the simulator to analyze the system 
thermal behavior. Though the model is scalable for any number of 
cores, a 36 core system with 6x6 grids is chosen for our 
experiments due to the limitation of simulation time. Each core has 
a size of 4mm x 4mm with silicon layer of 24mm x 24mm. 

We carried out experiments using power sequences collected 
from real applications. We used 9 different CPU benchmarks 
comprising of 3 SPEC 2000 benchmarks (bzip2, applu and mesa), 
4 Mediabench applications (mpeg2enc, mpeg2dec, jpegdec, 
jpegenc) and 2 telecom applications (crc32 and fft) from MiBench 
benchmark suite. We collected cycle level power trace by 
modifying the Wattch power analysis tool [5]. The average 
dynamic power consumptions and steady state temperatures of 
each task are summarized in Table I. The workloads of the 
following experiments are random combinations of multiple copies 
of these 9 benchmarks. All experiment results reported below are 
the average of 10 runs.  

Table I. Average Power and Steady State Temperature of CPU Benchmarks 

Bench 
marks 

crc32
mp2 
enc 

mp2 
dec 

fft applu mesa bzip2
jpeg 
dec 

jpeg 
enc 

Avg. Power 
(mW) 

24.4 19.4 19 18.5 17.4 17.3 13.3 10.7 10.4 

Broadcast self workload

Receive neighbor workload 
Perform MATM algorithm 
Make migration decisions

Send migration request

Receive migration 
response

Migrate tasks

Broadcast self workload

Receive migration requests

Make migration decisions

Migrate tasks

Core i

Core j

1. for each neighbor processor j, compute 
߂             .2 ௜ܶ௝ ൌ ௜ܩ · ߂ ௜ܲ ൅ ௝ܩ · ߂ ௝ܲ 
߂  .3 ௠ܶ௜௡ ൌ minሺ߂ ௜ܶ௝ሻ 
4. Select processor j, and send migration request to it  

Algorithm 1 MATM 



Steady 
Temp. (oC) 

99.42 84.17 82.95 81.42 78.07 77.76 65.56 57.63 56.72

The experiment is performed on 5 different task sets. Each task 
set consists of 36 tasks. Each task is random selected from the 9 
bench marks listed in Table I. We control the selection probability 
of a benchmark based on its average power consumption so that 
the average power consumption of the 36 tasks can follow a 
desired distribution. Uniform distribution evenly generates tasks 
with different average power consumptions. Triangular (cool) 
distribution generates more low power tasks than high power tasks, 
whereas triangular (hot) distribution generates more high power 
tasks. Normal distribution generates a set of tasks whose power 
consumption is mostly clustered around the medium power. On the 
other hand, inverse normal distribution generates more high power 
tasks and low power tasks than the medium power tasks.  

A. Fan power savings 

Figure 9 compares the ݎ௠௔௫  (i.e. the maximum thermal 
convective resistance that is required to exactly meet the 
temperature constraint) between the random allocation and MATM 
based allocation with the temperature constraint setting to 85oC. 
The results show that, to maintain the whole system under the 
temperature constraint, the minimum fan speed required by 
MATM based allocation is 14.5% less than that is required by the 
random task allocation.  The reduced fan speed could bring cubic 
savings in fan power for the system.  And Table II shows the fan 
power savings of our proposed MATM policy compared to the 
random allocation policy. The MATM can achieve an average of 
37.2% fan power savings over random allocation while maintains 
the maximum chip temperature under the thermal constraint.  

 
Figure 9. Convective resistance comparison between Random 

allocation and FDTM allocation 

Table II. Fan power savings of FDTM compare to the random task 
allocation 

Workload Uniform 
Cool 

triangle 
Hot 

triangle 
Norm Inv Norm

Fan power 
savings 

38.79% 29.35% 35.58% 35.78% 46.60% 

The reason that the MATM policy can achieve power savings 
is that through agent negotiation and task migration, tasks can be 
distributed among processors evenly according to a processor’s 
heat dissipation ability, i.e. high power tasks are moved to cores 
with stronger heat dissipation ability while lower power tasks are 
moved to cores with weaker heat dissipation. Therefore the 
processors’ temperatures are distributed more evenly across the 
chip and the maximum temperature is reduced. The fan can run at 

a relatively lower speed to guarantee the temperature constraint. 
Therefore the fan power savings is achieved. 

B. Overall system power consumption 

In the second experiment, we examine the effect of 
temperature constraint and task allocation on the overall system 
power consumption, i.e. the power consumption summation of 
dynamic power, leakage power and fan power. We select the 
uniform workload distribution in this experiment. We vary the 
temperature constraint for 80oC, 85oC and 90oC and compare the 
power consumption between MATM based task allocation and 
random allocation. For both systems, optimal tradeoff point 
between fan power and leakage power will be searched after the 
system reaches stable state. As shown in Table III, MATM based 
allocation policy could achieve 17.9% overall power savings when 
the temperature constraint is 80oC. When the temperature 
constraint increases to 85oC and 90oC, the power saving reduces to 
5.1% and 1.2% respectively.  

The experimental results show a diminishing power savings as 
the constraint temperature increases from the Table III, and task 
allocation gives large power savings especially when temperature 
constraint is strict. To understand this, we draw the overall power 
consumption and fan power consumption against the convective 
resistance curve in Figure 10. When temperature constraint is 
strict, the convective resistance has to be small to satisfy the 
constraint. When fan working in this area, the curve slope is sharp 
and a little decrease in convective resistance would increase the fan 
power as well as the overall system power significantly; therefore a 
better task allocation which reduces maximum chip temperature 
can achieve large power savings. On the other hand, when 
temperature constraint is loose, the convective resistance does not 
have to be small to satisfy the constraint. In this case, the curve 
slope is flat and the difference in convective resistance does not 
affect the fan power and overall power consumption significantly. 
Therefore, different task allocation achieves similar overall system 
power consumptions. If we further relax the temperature constraint 
so that the ݎ௠௔௫ of both random and MATM allocations are located 
to the right side of ܴ௖௢௡௩

כ , the MATM allocation will not give any 
power saving over the random allocation as both of them can work 
at the optimal tradeoff point.  

Table III. Overall system power consumption comparison under different 
temperature constraints 

Figure 11 shows each component in the overall system power 
consumption. The fan power consumption plays an important part 
in the random allocation when temperature constraint is strict. It 
accounts for 21.1% of total consumption. When the constraint is 
relaxed, the share of fan power decreases. The MATM allocation 
reduces maximum chip temperature and the fan can be maintained 
in a low speed. Therefore the fan power consumption is small, less 
than 6% for all temperature constraint. We also notice that the 
dynamic power stays the same for all constraint while the leakage 
power increase as the constraint is relaxed. This is because 
allowing higher maximum chip temperature will also increase the 
average chip temperature, therefore the leakage power increases. 
We also notice the MATM based task allocation has higher 
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Temp. Constraint 80oC 85oC 90oC 

Random Mapping 1268.9 1110.8 1067.3 

FDTM 1076.6 1057 1055.1 



leakage power consumption compare to the random allocation. 
This is because in order to maintain the same maximum chip 
temperature, the higher fan speed needed for random allocation 
makes its average temperature lower and hence it consumes less 
leakage power. However, after combining the fan power, the 
MATM based allocation still has lower total power consumption. 

   
Figure 10. Power consumption against convective thermal resistance curve 

 
Figure 11. The overall power consumption break down 

VII. CONCLUTION 

In this paper, we studied the impact of task mapping on the 
overall power consumption of a homogenous multi-core system. 
We formulated the task mapping problem as a zero-one linear 
programming problem and proposed an agent based distributed task 
migration approach to solve this problem. Our agent based 
algorithm has good scalability as the number of processors 
increases. Experimental results show that our policy achieves large 
power savings compare to a random mapping policy. 
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