
Task Allocation for Minimum System Power in a Homogenous Multi-core Processor
Yang Ge, Qinru Qiu

Department of Electrical and Computer Engineering,
Binghamton University, State University of New York

{yge2, qqiu}@binghamton.edu

Abstract— In this paper we address the impact of task
allocation to the system power consumption of a homogenous
multi-core processor with a main focus on its impact on the
leakage power and fan power. Although the leakage power is
determined by the average die temperature and the fan power
is determined by the peak temperature, our analysis shows that
the overall power can be minimized if a task allocation with
minimum peak temperature is adopted together with an
intelligent fan speed adjustment technique that finds the
optimal tradeoff between fan power and leakage power. We
further propose a multi-agent distributed task migration
technique that searches for the best task allocation during
runtime. By choosing only those migration requests that will
result chip maximum temperature reduction, the proposed
framework achieves large fan power savings as well as overall
power reduction. Experimental results show that, our agent-
based distributed task migration policy can save up to 37.2%
fan power and 17.9% system overall power compared to the
random mapping policy when the temperature constraint is
tight. When the temperature constraint is loose, the overall
system power is insensitive to the task allocation.

Keywords--low power, task allocation, thermal aware, multi-
agent distributed framework

I. INTRODUCTION

The ever-increasing power consumption of the computing
system challenges the cooling system at all different levels. At data
center level, the cooling infrastructure is becoming a limiting factor.
The annual cooling cost for a large data center is considerably high
and can reach up to tens of millions of dollars. At micro-
architecture level, increased power density has set up a “Power
Wall” which blocks the micro-processor’s performance
improvement, and the clock frequency growth is restricted due to
the thermal issue. To cool down the processor, a typical cooling fan
can consume up to 51% power budget of a server [9].

Multi-core architecture has recently become the dominant
design platform as it explores task and application parallelism in a
power efficient way and hence relieves the power and thermal
crisis. With the unprecedented number of transistors integrated on a
single chip, the current multi-core trend may soon progress to
hundreds or thousands of cores era. Examples of such system are
the 80 tile network-on-chip that has been fabricated and tested by
Intel [17] and Tilera’s 64 core TILE64 processor [1].

Even in a homogenous multi-core system, highly heterogeneous
workload on different cores can produce local hotspot and create
large thermal gradient. Elevated core temperature increases leakage
current and stresses the cooling system. The cooling fan has to
operate at a speed to accommodate the worst case power density
and guarantee the chip temperature under a safe threshold anywhere
and anytime. This would require the fan operating at higher speed
to maintain fast air flow and strong heat dissipation ability.
However, operating at high speed for long time consume more
energy and reduce fan life time [3].

In this paper, we address the impact of task mapping on the
overall power consumption of a homogenous multi-core system.

The system power consists of three components, dynamic power,
static power, and fan power. Although different task mappings have
little impact on the dynamic power in a homogeneous multi-core
system, they do change the temperature distribution across the
system and can potentially affect the leakage power and fan power.
While the leakage power is determined by the average temperature,
the fan power is determined by the peak power. Hence different
optimization techniques are required. However, as we will show in
Section IV that the impact on leakage power from task mapping is
negligible if the fan convection speed is fixed. For a given
workload, the chip leakage power can be approximated to a linear
function of the convective resistance of the cooling system while
the fan power is an inverse cubic function of the same parameter.
Our analysis shows that the overall power can be minimized if a
task allocation with minimum peak temperature is adopted together
with an intelligent fan speed adjustment technique that finds the
optimal tradeoff between fan power and leakage power.
Furthermore, the impact of task allocation on the overall system
power is significant when the temperature constraint is tight. When
the temperature constraint is loose, the overall system power is
insensitive to task allocation.

We further investigate the techniques to search for the task
allocation for minimum peak temperature. We formulate the task
allocation problem as a zero-one linear programming. Because
solving the binary linear programming problem does not scale well
for large system, we proposed an agent based distributed task
migration approach for peak temperature reduction. Our agent
based algorithm has good scalability as the number of processors
increases. It achieves up to 18% power savings compare to a
random mapping policy.

The rest of paper is organized as follows: Section II reviews the
previous work. Section III introduces the many core system model,
the system power and thermal model and cooling system model.
We formulate the task allocation problem in section IV. In Section
V we present the temperature aware distributed task migration
framework. Experimental results are reported in Section VI.
Finally, we conclude the paper in Section VII.

II. RELATED WORK

Various dynamic thermal management (DTM) techniques have
been studied at different levels [8][6][11]. Most of these works rely
on a widely used thermal modeling tool Hotspot [15] for fast
thermal analysis. At micro-architecture level, DTM techniques
such as clock gating, dynamic voltage and frequency scaling
(DVFS), thread migration has been thoroughly explored [8].

At system level, different approaches have been taken to tackle
the high processor operating temperature issues. Thermal aware
task allocation and task migration has been studied in [6][12]. A
multiple-input-multiple-output optimal control theory based power
and thermal control algorithm has been proposed in [18]. The
algorithm can control the power of the chip to a specific set point
and maintain the chip temperature under a threshold. Recently,
several proactive thermal management scheme has been proposed
[7][19]. They utilized different temperature prediction model to

accurately estimate the future temperature in different scenarios
and take actions in advance to prevent thermal emergencies.

At higher level, power and temperature management
techniques for severs, for ensembles and even for data centers have
been proposed in the previous works. In [11], a model for data
center air conditioner cooling efficiency has been proposed. In
[16], the heat transfer in data center has been studied thoroughly
and a linear heat recirculation model has been introduced. Based
on these works, an online workload allocation algorithm for data
center has been proposed in [13]. They predict the future incoming
requests and solve an integer linear programming problem online
to allocate the workload and optimally turn on or turn off those
severs in a data center.

Recently, the cooling fan power optimization has received
noticeable attention. In [14], a joint fan power and processor
leakage power consumption optimization has been considered.
They formulate the problem as a convex optimization problem and
solve it to obtain the optimum fan speed. In [3], fan cooling cost
minimization for a multi-machine system has been studied. Their
techniques intelligently adjust the workload at virtual machine
level and CPU socket level and achieve large fan energy savings.

III. SYSTEM MODEL

A. Processor Model

In this paper, we consider a tile-based network-on-chip many-
core architecture [17]. Each tile is a processor with dedicated
memory and an embedded router. It will also be referred to as core
or processing element (PE) in this paper. All the processors and
routers are connected by an on-chip network where information is
communicated via packet transmission. We refer to the cores that
can reach to each other via one-hop communication as the nearest
neighbors. Note that a pair of cores that are nearest neighbors
sometimes does not have to be close to each other geometrically.

We assume the existence of a temperature sensor on each core.
A temperature sensor can be a simple diode with reasonably fast
and accurate response [8]. We also assume that a dedicated OS
layer is running on each core that provides functions for
scheduling, resource management as well as communication with
other cores.

B. Processor Thermal Model

Due to the duality between heat transfer and RC circuits, we
abstract the many-core system as an RC network. Let n denote the
number of all thermal nodes in the system, including those in the
heat sink layer and heat spread layer. Let N denote the number of
processors in the system. The relation between n and N is
determined by the equation n = 4×N+12 [15]. Let TSSi and ௜ܲ
denote the steady state temperature and average power
consumption of node i. Pi is 0 if node i belongs to the heat sink
layer or heat spread layer because they does not consume any
power. Let TSS and P denote vectors of TSSi and Pi, 1≤i≤n. When
the system reaches the steady state, for each thermal node, its
temperature is a linear function of power consumptions P1, P2, …,
Pn. The relation can be represented by the following equation

 ܶܵܵ ൌ ଵܲ (1)ିࡳ
where ିࡳଵ ൌ ሾ݃௜௝ሿ is the inverse matrix of thermal

conductance matrix G. We simplify equation (1) by keeping only
the thermal nodes related to the PEs:

 ൭
ଵܶ
ڭ
ேܶ

൱ ൌ ൭
݃ଵଵ ڮ ݃ଵே

ڭ ڰ ڭ
݃ேଵ ڮ ݃ேே

൱ ൭
ଵܲ
ڭ
ேܲ

൱ ൅ ൭
ଵܦ
ڭ

ேܦ

൱ (2)

where N is the number of processors, and ܦ௜ ൌ ∑ ݃௜௝ ·௡
௝ୀேାଵ

௝ܲ is a set of constants, because the power consumption ௝ܲ of those
thermal nodes related to the heat sink and heat spreader does not
change. The coefficients gij and Di 1≤i, j≤N can be obtained by
offline analysis. Equation (2) shows that the steady state
temperature of each PE is a linear function of average power
consumptions on other PEs and increasing/decreasing the power
consumption of one PE will have an impact on the steady state
temperature of all other PEs.

C. Processor Cooling Model

In this paper, we assume one standard heat sink and fan
cooling system for the entire many-core chip as the configuration
of the TILERA TILE64 processor [1]. Our cooling system
modeling follows the similar techniques described in the previous
works [3] [14].

The heat generated in the die layer is transferred from the heat
sink layer to the ambient environment and brought away by the
cool air flow provided by the fan. The speed of the air flow
determines how efficiently the heat can be dissipated and thus
determines the temperature of the die. This heat dissipation
efficiency is characterized by convective thermal resistance Rconv.
The faster of the air flow speed, the more easily the heat can be
dissipated, and the lower the convective resistance will be.
Reference [3] pointed out that the convective resistance Rconv is
proportional to V-α, where V is the air flow speed and α is a
constant between 0.8 and 1.0. The air flow speed is determined by
the fan speed, which in turn controls the fan power consumption. It
has been pointed out in [14] that the fan power has cubic relation
with the fan speed, i.e. ௙ܲ௔௡ ן ܸଷ . Finally, we obtained the
relation between the fan power consumption Pfan and convective
thermal resistance Rconv.

௙ܲ௔௡ ן ܴ௖௢௡௩

ି
ଷ
ఈ (3)

We next model the relation between the convective resistance
and the die temperature. Although the Hotspot [15] provides a
detailed and accurate thermal model at micro-architecture level, its
complexity is too high to be used analytically. And it does not
directly reveal the relation between convective resistance and the
die temperature. Therefore, we adopted a simple yet accurate
model as shown in Figure 1 [3]. In this model, Pi, Ci, and Ri are the
power consumption, thermal conductance and die to package
thermal resistance of processor i respectively. Rconv is the
convective resistance.

Figure 1. Simplified multiprocessor thermal model

Similar to the previous works [3][14] we are only interested in
the temperature at steady state when the system reaches the
equilibrium. This is because the time constant of heat sink is much
larger than the time constant of the core. Therefore all the
capacitors in the system are open circuit and only thermal

……R1P1C1 RnPnCn

Rconv

Tamb

resistances will be considered. Then the die temperature Ti of core
i can be computed as

 ௜ܶ ൌ ௜ܴܲ௜ ൅ ܴ௖௢௡௩ ෍ ௜ܲ

ே

௜ୀଵ

 (4)

where Pi is the power consumption of core i and Ri is the
approximation thermal resistance from die to package. If the power
consumption of core i does not change, the die temperature of core
i is a linear function of Rconv. To verify the simple model, we run
the simulation in Hotspot to obtain the die temperature of core by
varying the convective thermal resistance. Figure 2 shows that the
simulated core temperature and the core temperature predicted by
the linear model matches very well.

Figure 2 Linear approximation of relation between die temperature and

convective resistance

D. Leakage power model

The leakage power consumption of a processor depends on the
die temperature, supply voltage and a number of other factors. If
the supply voltage is constant, the leakage power consumption can
be expressed as follows:

௟ܲ௘௔௞ ൌ ଵܣ ௗܶ

ଶ݁
஺మ
்೏ ൅ ଷ (5)ܣ

Figure 3 Linear approximation of leakage power model

Where A1, A2 and A3 are constants which are dependent on
processing technology and supply voltage, Td is the die
temperature. It has been pointed out in [10] that the leakage power
can be approximated using a linear model and the resulting error is
expected to be less than 5% for a large temperature range from
20oC to 120oC. We approximate the leakage power using its first
order Taylor expansion at 80oC and compare the linear
approximation model with the original model in Figure 3. The
green line is the linear approximation while the red line is the

original model given by equation (5). Figure 3 shows that the
linear model has very small error compare to the original model in
the normal operating range, which is between 60oC and 100oC.

Based on this observation, we approximate the leakage power
of the ith core using a linear model ௟ܲ௘௔௞,௜ ൌ ܽ ௗܶ,௜ ൅ ܾ, where ௗܶ,௜
is the average die temperature of the core , a and b are two
scalars. The total leakage power consumption can be simply
calculated as ௟ܲ௘௔௞௧௢௧௔௟ ൌ ܽ ∑ ௗܶ,௜ ൅ ܾܰ ൌ ܰܽ ௗܶି௔௩௚ ൅ ܾܰ,
where ௗܶି௔௩௚ ൌ ∑ ௗܶ,௜

ே
௜ୀଵ ܰ⁄ is the average temperature of N

cores. Thus the total chip leakage power can be approximated as a
linear function of average die temperature. Because ௗܶ,௜ is linearly
proportional to ܴ௖௢௡௩, the leakage power ௟ܲ௘௔௞௧௢௧௔௟ is also a linear
function of the convective resistance.

IV. PROBLEM FOMULATION AND ANALYSIS

In this paper, we study the impact of task allocation on the
overall system power. The overall power consumption is the sum
of the CPU power consumption and the fan power consumption
while the CPU power consumption consists of dynamic power and
leakage power. Therefore the overall power consumption model
can be written as follows.

 ௧ܲ௢௧௔௟ ൌ ௗܲ௬௡ ൅ ௟ܲ௘௔௞ ൅ ௙ܲ௔௡ (6)
In a homogenous multi-core system, task allocation has little

impact on the dynamic power consumption because all cores are
identical. However, because task allocation changes the
temperature distribution across the system, it has the potential to
change the leakage power and fan power which are temperature
related power consumptions.

Figure 4 The relation between full chip leakage power consumption

and different task allocations

To show the relation between task allocation and leakage
power consumption, we randomly generated 100 groups of task
allocation for a given workload and compare their leakage power
consumption on a 36 core chip multiprocessor. The workload
consists of 36 tasks whose power consumption varies from 10mW
to 20mw (details about workload generation are described in
section VI.) Figure 4 shows the leakage power for all 100 groups
as the convective resistance increases. The leakage power
consumption for the worst mapping and the best mapping differs
only by less than 1% for a given convective resistance. This is
intuitively correct. The leakage power is linearly proportional to
the average die temperature which is determined by the average
power density across the chip. Since the task allocation has little
impact on the processor dynamic power consumption, which is still
the dominant part of the CPU power consumption when it is
actively running, it does not significantly change the average chip

0.01 0.015 0.02 0.025 0.03 0.035

345

350

355

360

365

370

375

380

385

convective resistance (oC)

di
e

te
m

pe
ra

tu
re

 (
K

)

Hotspot
simulation

linear model

330 340 350 360 370 380
10

10.5

11

11.5

12

12.5

13

13.5

temperature (K)

le
ak

ag
e

po
w

er
 (

m
W

)

accurate model

linear
approxiamation

0.01 0.011 0.012 0.013

410

415

420

convective resistance (oC/W)

fu
ll

ch
ip

 le
a

ka
g

e
 c

o
n

su
m

p
tio

n
 (

m
w

)

temperature either. Consequently, the leakage power remains
stable. Figure 5 (a) shows the average die temperature for those
100 different random mappings as the convective resistance
increases. (The blue line that lies at the bottom corresponds to the
task allocation scheme that is found by our multi-agent distributed
task migration framework that will be introduced in the next
section.) As we can see, the maximum difference in average die
temperature is less than 1oC.

Figure 5 (a)

 Figure 5 (b)

Figure 5 Comparison of average and maximum temperature of 100
different task allocations

Based on the experimental results we have two observations,
(1) for a given ܴ௖௢௡௩, the leakage power can be considered to be
independent to the task allocation, (2) when the workload is given,
the only parameter that controls the leakage power is the fan speed
which is reflected by ܴ௖௢௡௩. Their relation can be represented by a
linear function: ௟ܲ௘௔௞ ൌ ܿଵܴ௖௢௡௩ ൅ ܿଶ.

On the other hand, different task allocation significantly affects
the peak temperature. In order to bring the peak temperature below
the constraint, the fan speed needs to be adjusted accordingly,
which in turn leads to different ܴ௖௢௡௩. For example, Figure 5 (b)
shows the maximum chip temperature of 100 different mappings
as the convective resistance increases. (Again, the blue line that
lies at the bottom corresponds to the task allocation that is found
by our multi-agent distributed task migration framework.) We can
see that the difference in peak temperature is more than 10oC. Note
that because the average temperatures for different allocations are
almost the same, the task allocation that gives the lowest peak
temperature is the one that generates the most balanced

temperature distribution. A task allocation that generates highly
unbalanced temperature distribution will force the cooling fan to
work harder (and consumes more power) to keep the peak
temperature under the constraint. However, as the speed of cooling
fan increases, the average chip temperature will decrease and
therefore bring down the leakage power. When searching for the
optimal task mapping, we need to consider the tradeoff between
fan power and leakage power.

Because ௗܲ௬௡ is independent to thermal convective resistance,

௟ܲ௘௔௞ is linearly proportional to convective resistance and ௙ܲ௔௡ is
an inverse cubic function of the convective resistance, the overall
power consumption is a convex function on the convective
resistance. There will be an optimal convective resistance ܴ௖௢௡௩

כ
(corresponding to the optimal fan speed) which minimizes the
overall system power. Furthermore, for a given workload, task
allocation cannot change the relation between the overall power
consumption and the convective resistance.

Figure 6 (a)

Figure 6 (b)
Figure 6 The overall power consumption depend on convective

resistance
Figure 6 shows the overall power consumption and the peak

temperature under different task allocations as functions of the
convective resistance. Figure 6 (a) shows the scenario when the
temperature constraint is strict and the convective resistance (i.e.
ଵ௠௔௫ݎ and ݎଶ௠௔௫) that could bring the peak temperature to the
constraint are located to the left of ܴ௖௢௡௩

כ . In this case the overall
power is dominated by the fan power. Increasing the fan speed can
only increase the overall power consumption. The best task
allocation that minimizes the overall system power is allocation 2
which minimizes the peak temperature. Figure 6 (b) shows the
scenario when the temperature constraint is loose and the
convective resistance that could bring the peak temperature to the
constraint are located to the right of ܴ௖௢௡௩

כ . In this case the leakage
power dominates the overall power. If the fan speed is set to
exactly satisfy the temperature constraint (i.e. the convective
resistance is set to ݎଵ௠௔௫ or ݎଶ௠௔௫) then the best allocation is
scheme 1 which has higher peak temperature. We denote the
maximum ܴ௖௢௡௩ that keeps the peak temperature under constraint
as ݎ௠௔௫. Obviously, any convective resistance that is less than ݎ௠௔௫
can keep the system in safe temperature zone. This includes ܴ௖௢௡௩

כ .

0.0260.02650.0270.02750.0280.02850.029

367

368

369

370

371

372

convective resistence (oC)

av
er

ag
e

ch
ip

 t
em

pe
ra

tu
re

 (
K

)

0.025 0.03 0.035

370

375

380

385

390

convective resistence (oC)

m
ax

im
um

 c
hi

p
te

m
pe

ra
tu

re
 (

K
)

r_convec r_convec

y = x y = x

overall power peak temperature

temperature
constraint

allocation 1 allocation 2

allocation 2
opt power

allocation 1
opt power

*
convR

r_convec r_convec

y = x y = x

overall power peak temperature

temperature
constraint

allocation 1 allocation 2

allocation 2
opt power

allocation 1
opt power

*
convR r1max r2max

For both allocation 1 and 2, setting the convective resistance to
ܴ௖௢௡௩

כ can minimizes the overall power while satisfying the
temperature constraint. Because with a loose temperature
constraint, the fan power does not dominate the overall power
alone, leakage power plays an important role as well. Increase the
fan speed would increase the fan power but could reduce the
temperature and leakage power. In this case, power consumption is
not sensitive to task allocation. Any allocation scheme whose ݎ௠௔௫
is greater than ܴ௖௢௡௩

כ could be used to find the optimal tradeoff
point between the fan power and the leakage power. Obviously,
among all possible task allocations, the allocation that minimizes
the peak temperature is most likely to satisfy this property.

Based on these observations, we concluded that, to optimize
the overall power consumption, there are two steps. First is to find
the task allocation that minimizes the peak temperature. Second is
to adjust the fan speed to find the optimal tradeoff point between
fan power and leakage power such that the overall power
consumption is minimized and the temperature constraint is
satisfied. The latter step could be achieved by using feedback
control while former step will be discussed in detail in the
following sections.

V. POWER OPTIMAL TASK ALLOCATION

Based on the analysis in the previous section, we will focus on
searching for the optimal task allocation that minimizes the peak
temperature among all cores.

In the following subsections, we first present an exact
formulation of this problem which is a zero-one min-max problem.
Because the exact formulation has extremely high complexity, we
then propose a multi-agent task migration framework that searches
for the best task allocation during runtime.

A. An exact formualtion

Given a floorplan of a multi-processor system with n cores
integrated on a chip, we assume that the thermal conductance
matrix can be characterized by offline training. We further assume
that the given workload consist of n different tasks {τ1, τ2, … , τn}
whose power consumption {P1, P2, … , Pn} can be obtained through
offline training or online estimation by observing the event counter.
We assume the power consumption is a constant for each task,
because we are only concerned about the steady state temperature.
Here we assume that the core does not support multitasking and the
number of tasks is equal to the number of cores. If the number of
tasks is less than the number of cores, we can simply add some
dummy tasks with 0 zero power consumption.

Our goal is to obtain a mapping between the n tasks and the
processors such that the resulting maximum temperature among all
the cores is minimized. For each task k and processor j, there is a
variable ݔ௝௞. Variable ݔ௝௞ is 1 when task k is mapped to processor
j, otherwise it is 0. We formulate the problem as a zero-one min-
max linear programming as follows:

 min max
௜

ሺ෍ ෍ ݃௜௝ݔ௝௞ ௞ܲሻ

௡

௞ୀଵ

௡

௝ୀଵ

൅ ௜ (7)ܦ

Subject to:

 ෍ ௝௞ݔ

௡

௝ୀଵ

ൌ 1, ݇׊ ൌ 1, … , ݊ (8)

 ෍ ௝௞ݔ

௡

௞ୀଵ

ൌ 1, ݆׊ ൌ 1, … , ݊ (9)

௝௞ݔ א ሼ0, 1ሽ (10)

Constraint (8) guarantees that a processor is only occupied by
one task and constraint (9) ensures that a task can only be mapped
to one processor. The item within the min-max operator in the
objective function is the temperature of the ith core. To see this, we
rewrite the equation (2) as follows:

 ൭
ଵܶ
ڭ
ேܶ

൱ ൌ ൭
ଵ݃ଵ ڮ ݃ଵே
ڭ ڰ ڭ

݃ேଵ ڮ ݃ேே

൱ ൭
ଵଵݔ ڮ ଵேݔ

ڭ ڰ ڭ
ேଵݔ ڮ ேேݔ

൱ ൭
ଵܲ
ڭ
ேܲ

൱ ൅ ൭
ଵܦ
ڭ

ேܦ

൱ (11)

where ܺ ൌ ሾݔ௜௝ሿ is a permutation matrix which assigns the n
tasks to the processors. Expand the right hand side the equation
would give the equation ௜ܶ ൌ ܽ௜௝ݔ௝௞ ௞ܲ . Then the objective
function min-max(Ti) is to minimize the maximum temperature
among all n processors.

By some simple transformation, the min-max problem can be
converted to traditional linear programming:

 min (12) ݑ
Subject to:

 ሺ෍ ෍ ݃௜௝ݔ௝௞ ௞ܲሻ

௡

௞ୀଵ

௡

௝ୀଵ

൅ ௜ܦ ൑ ,ݑ ݅׊ ൌ 1, … , ݊ (13)

 ෍ ௝௞ݔ

௡

௝ୀଵ

ൌ 1, ݇׊ ൌ 1, … , ݊ (14)

 ෍ ௝௞ݔ

௡

௞ୀଵ

ൌ 1, ݆׊ ൌ 1, … , ݊ (15)

௝௞ݔ א ሼ0, 1ሽ (16)
The above zero-one min-max linear programming is an exact

formulation of the task allocation problem. However, it is
extremely difficult to solve. For example, for a problem with 36
cores there will be 1296 binary variables, it would take more than
two days to solve this problem using the open source linear
programming solver lp_solver [2] on a 3.2GHz Quad core Xeon
processor. Therefore, it is infeasible to use the solution online for
power and thermal optimization in the future many-core platform
as the core counter could go up to hundreds and thousands [4].
Instead of solving this min-max problem directly, we propose the
following online heuristic.

B. Distributed task migration

In this section, we presented our distributed task migration
framework that searches the optimal task allocation during
runtime.

We denote our multi-agent task migration algorithm as
MATM. The framework has a low cost agent residing in each core.
It is implemented as part of the OS based resource management
program which performs thermal-aware task migration. The agent
observes the workload and temperature of local processor while
communicating and exchanging tasks with its nearest neighbors.
The agent based distributed framework has better scalability
compared to the centralized method as the communication cost and
migration overhead for each core does not increase when the
number of cores in the system increases.

The proposed MATM adopts a task exchange based migration
scheme. By exchanging tasks, the processors can maintain a
balanced temperature distribution and hence reduces the peak
temperature.

Communication protocol
Each core running a MATM agent can be in two phases:

execution phase and communication phase. These two phases are
interleaved. During the execution phase the core executes the

current computing task while during the communication phase it
initiates task migration request to its nearest neighbor or respond to
the task migration request from its nearest neighbor. The
communication phase can further be divided into four sub-phases:
broadcasting self workload to neighboring cores, receiving
workload information from neighbors, sending migration requests
to neighbors, exchanging tasks with neighbors. Figure 7 shows the
diagram of the communication protocol. We assume that a MPI
(Message Passing Interface) based communication is adopted.
Therefore two cores do not have to enter the communication phase
synchronously in order to communicate to each other. We also
refer the communication phase as scheduling interval.

Figure 7 Diagram of communication protocol

At the beginning of each scheduling interval, an agent on a
processor would broadcast its own work load to neighbors and
request them sending back their workload. Because the scheduling
intervals in all processors are not synchronized, the request is not
likely to be checked and responded by neighbor agents right away.
On the other hand, because all processors adopt the same execution
and scheduling interval, it is guaranteed that all neighboring agents
will response before the next scheduling interval after the request
is issued.

After receiving the response of neighbor workloads, the agent
performs the MATM algorithm to decide whether to exchange task
with neighbors and select which neighbor to exchange task with.
Then it will send a migration request to the selected processor. For
all other neighboring processors, the agent will also send an
acknowledgement to them which indicates no task exchange. After
that, the agent waits for the migration response from the selected
processor. Note that this communication protocol will only be
performed in a neighborhood when there are workload changes in
a core. Therefore the communication overhead is relatively low.

MATM distributed migration algorithm
The FDTM algorithm distributes the tasks among processors

based on their heat dissipation. It moves high power tasks to
processors with strong heat dissipation capability and moves low
power tasks to processors with weak heat dissipation capability.
By distributing tasks in this way, local hotspots can be mitigated
and thus peak temperature of the chip can be reduced.

To determine if an exchange of tasks between two processors
is beneficial to the whole system, we consider equation (2) again.

Assume that PEi and PEj exchange tasks, and their average power
consumptions are altered by ߂ ௜ܲ and ߂ ௝ܲ respectively. Using
equation (2), the total die temperature change of all processors in
the system after task migration can be calculated as:

 ෍ ߂ ௞ܶ

ே

௞ୀଵ
ൌ ௜ܩ · ߂ ௜ܲ ൅ ௝ܩ · ߂ ௝ܲ (17)

where ܩ௜ (or ܩ௝) is a parameter that characterizes the heat

dissipation ability of processor i (or j) , . ௜ܩ ൌ ∑ ݃௠௜
ே
௠ୀଵ , ௝ܩ ൌ

∑ ݃௡௝
ே
௡ୀଵ . The temperature contributed by processor i running task

k can be calculated as ܩ௜ ௞ܲ . If ܩ௜ ൏ ௝ܩ , then the temperature
contribution made by processor i will be less than the contribution
made by processor j when running the same task, which means
processor i can dissipate heat better. Thus running high power task
on processor i have smaller chance to produce high peak
temperature than running high power task on processor j.
Therefore, if ܩ௜ ൏ ௝ܩ and ௜ܲ ൏ ௝ܲ , it is reasonable to switch the
tasks on the two processors. This leads to ∑ ߂ ௞ܶ

ே
௞ୀଵ ൏ 0 in (18). In

conclusion, if a task exchange between two neighbor processors
leads to ∑ ߂ ௞ܶ

ே
௞ୀଵ ൏ 0, then this task exchange is beneficial for the

system and the task exchange should be carried out.
If an agent found that it is beneficial to exchange task with

several neighbor agent, the agent will select a neighbor that lead to
maximum temperature reduction, i.e. the minimum ∑ ߂ ௞ܶ

ே
௞ୀଵ

(because it is negative), and send migration request to the selected
neighbor. If an agent received several migration requests from
neighbors, it will follow the same criterion to select a neighbor to
exchange tasks. We summarized the MATM in Figure 8.

Figure 8 MATM algorithm

VI. EXPERIMENTAL RESULTS

We implemented a multicore system simulator using C++.
Hotspot [15] is integrated to the simulator to analyze the system
thermal behavior. Though the model is scalable for any number of
cores, a 36 core system with 6x6 grids is chosen for our
experiments due to the limitation of simulation time. Each core has
a size of 4mm x 4mm with silicon layer of 24mm x 24mm.

We carried out experiments using power sequences collected
from real applications. We used 9 different CPU benchmarks
comprising of 3 SPEC 2000 benchmarks (bzip2, applu and mesa),
4 Mediabench applications (mpeg2enc, mpeg2dec, jpegdec,
jpegenc) and 2 telecom applications (crc32 and fft) from MiBench
benchmark suite. We collected cycle level power trace by
modifying the Wattch power analysis tool [5]. The average
dynamic power consumptions and steady state temperatures of
each task are summarized in Table I. The workloads of the
following experiments are random combinations of multiple copies
of these 9 benchmarks. All experiment results reported below are
the average of 10 runs.

Table I. Average Power and Steady State Temperature of CPU Benchmarks

Bench
marks

crc32
mp2
enc

mp2
dec

fft applu mesa bzip2
jpeg
dec

jpeg
enc

Avg. Power
(mW)

24.4 19.4 19 18.5 17.4 17.3 13.3 10.7 10.4

Broadcast self workload

Receive neighbor workload
Perform MATM algorithm
Make migration decisions

Send migration request

Receive migration
response

Migrate tasks

Broadcast self workload

Receive migration requests

Make migration decisions

Migrate tasks

Core i

Core j

1. for each neighbor processor j, compute
߂ .2 ௜ܶ௝ ൌ ௜ܩ · ߂ ௜ܲ ൅ ௝ܩ · ߂ ௝ܲ
߂ .3 ௠ܶ௜௡ ൌ minሺ߂ ௜ܶ௝ሻ
4. Select processor j, and send migration request to it

Algorithm 1 MATM

Steady
Temp. (oC)

99.42 84.17 82.95 81.42 78.07 77.76 65.56 57.63 56.72

The experiment is performed on 5 different task sets. Each task
set consists of 36 tasks. Each task is random selected from the 9
bench marks listed in Table I. We control the selection probability
of a benchmark based on its average power consumption so that
the average power consumption of the 36 tasks can follow a
desired distribution. Uniform distribution evenly generates tasks
with different average power consumptions. Triangular (cool)
distribution generates more low power tasks than high power tasks,
whereas triangular (hot) distribution generates more high power
tasks. Normal distribution generates a set of tasks whose power
consumption is mostly clustered around the medium power. On the
other hand, inverse normal distribution generates more high power
tasks and low power tasks than the medium power tasks.

A. Fan power savings

Figure 9 compares the ݎ௠௔௫ (i.e. the maximum thermal
convective resistance that is required to exactly meet the
temperature constraint) between the random allocation and MATM
based allocation with the temperature constraint setting to 85oC.
The results show that, to maintain the whole system under the
temperature constraint, the minimum fan speed required by
MATM based allocation is 14.5% less than that is required by the
random task allocation. The reduced fan speed could bring cubic
savings in fan power for the system. And Table II shows the fan
power savings of our proposed MATM policy compared to the
random allocation policy. The MATM can achieve an average of
37.2% fan power savings over random allocation while maintains
the maximum chip temperature under the thermal constraint.

Figure 9. Convective resistance comparison between Random

allocation and FDTM allocation

Table II. Fan power savings of FDTM compare to the random task
allocation

Workload Uniform
Cool

triangle
Hot

triangle
Norm Inv Norm

Fan power
savings

38.79% 29.35% 35.58% 35.78% 46.60%

The reason that the MATM policy can achieve power savings
is that through agent negotiation and task migration, tasks can be
distributed among processors evenly according to a processor’s
heat dissipation ability, i.e. high power tasks are moved to cores
with stronger heat dissipation ability while lower power tasks are
moved to cores with weaker heat dissipation. Therefore the
processors’ temperatures are distributed more evenly across the
chip and the maximum temperature is reduced. The fan can run at

a relatively lower speed to guarantee the temperature constraint.
Therefore the fan power savings is achieved.

B. Overall system power consumption

In the second experiment, we examine the effect of
temperature constraint and task allocation on the overall system
power consumption, i.e. the power consumption summation of
dynamic power, leakage power and fan power. We select the
uniform workload distribution in this experiment. We vary the
temperature constraint for 80oC, 85oC and 90oC and compare the
power consumption between MATM based task allocation and
random allocation. For both systems, optimal tradeoff point
between fan power and leakage power will be searched after the
system reaches stable state. As shown in Table III, MATM based
allocation policy could achieve 17.9% overall power savings when
the temperature constraint is 80oC. When the temperature
constraint increases to 85oC and 90oC, the power saving reduces to
5.1% and 1.2% respectively.

The experimental results show a diminishing power savings as
the constraint temperature increases from the Table III, and task
allocation gives large power savings especially when temperature
constraint is strict. To understand this, we draw the overall power
consumption and fan power consumption against the convective
resistance curve in Figure 10. When temperature constraint is
strict, the convective resistance has to be small to satisfy the
constraint. When fan working in this area, the curve slope is sharp
and a little decrease in convective resistance would increase the fan
power as well as the overall system power significantly; therefore a
better task allocation which reduces maximum chip temperature
can achieve large power savings. On the other hand, when
temperature constraint is loose, the convective resistance does not
have to be small to satisfy the constraint. In this case, the curve
slope is flat and the difference in convective resistance does not
affect the fan power and overall power consumption significantly.
Therefore, different task allocation achieves similar overall system
power consumptions. If we further relax the temperature constraint
so that the ݎ௠௔௫ of both random and MATM allocations are located
to the right side of ܴ௖௢௡௩

כ , the MATM allocation will not give any
power saving over the random allocation as both of them can work
at the optimal tradeoff point.

Table III. Overall system power consumption comparison under different
temperature constraints

Figure 11 shows each component in the overall system power
consumption. The fan power consumption plays an important part
in the random allocation when temperature constraint is strict. It
accounts for 21.1% of total consumption. When the constraint is
relaxed, the share of fan power decreases. The MATM allocation
reduces maximum chip temperature and the fan can be maintained
in a low speed. Therefore the fan power consumption is small, less
than 6% for all temperature constraint. We also notice that the
dynamic power stays the same for all constraint while the leakage
power increase as the constraint is relaxed. This is because
allowing higher maximum chip temperature will also increase the
average chip temperature, therefore the leakage power increases.
We also notice the MATM based task allocation has higher

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
o
n
ve
ct
iv
e
re
si
st
an
ce

Random

FDTM

Overall System Power Consumption (mW)

Temp. Constraint 80oC 85oC 90oC

Random Mapping 1268.9 1110.8 1067.3

FDTM 1076.6 1057 1055.1

leakage power consumption compare to the random allocation.
This is because in order to maintain the same maximum chip
temperature, the higher fan speed needed for random allocation
makes its average temperature lower and hence it consumes less
leakage power. However, after combining the fan power, the
MATM based allocation still has lower total power consumption.

Figure 10. Power consumption against convective thermal resistance curve

Figure 11. The overall power consumption break down

VII. CONCLUTION

In this paper, we studied the impact of task mapping on the
overall power consumption of a homogenous multi-core system.
We formulated the task mapping problem as a zero-one linear
programming problem and proposed an agent based distributed task
migration approach to solve this problem. Our agent based
algorithm has good scalability as the number of processors
increases. Experimental results show that our policy achieves large
power savings compare to a random mapping policy.

REFERENCES

[1] Tile Processor Architecture: Technology Brief. [Online]. Available:
http://www.tilera.com/pdf/ProductBrief_TileArchitecture_Web_v4.p
df

[2] http://lpsolve.sourceforge.net/5.5/
[3] R. Ayoub, S. Sharifi, T. Rosing, “GentleCool: Cooling Aware

Proactive Workload Scheduling in Multi-Machine Systems,” In Proc.
of Design Automation and Test in Europe,pages 295-298, Mar. 2010.

[4] S. Borkar, “Thousand Core Chips – A Technology Perspective,” In
Proc. of Design Automation Conference, pages. 746 – 749, Jun. 2007.

[5] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for
Architectural Level Power Analysis and Optimizations,” In Proc. Int.
Symp. Computer Architecture, pages 83-94, June 2000.

[6] A.Coskun, T. Rosing, K. Whisnant, “Temperature aware task
scheduling in MPSoCs,” in Proc. of Design Automation and Test in
Europe, pages 1659-1664, Apr. 2007.

[7] A. Coskun, T. Rosing and K. Gross, “Utilizing predictors for efficient
thermal management in multiprocessor SoCs,” In IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 10, pages
1503-1516, Oct. 2009.

[8] J. Donald and M. Martonosi, “Techniques for Multicore Thermal
Management: Classification and New Exploration,” In Proc. Int.
Symp. Computer Architecture, pages 78-88, Jun. 2006.

[9] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler and T.
Keller, “Energy Management for Commercial Servers”, IEEE
Computer, Vol. 36, Issue 12, pages 39-48, Dec. 2003.

[10] Y. Liu, R. Dick, L. Shang and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in
Proc. of Design Automation and Test in Europe, pages 1526-1531,
Apr. 2007.

[11] J. Moorey, J. Chasey, P. Ranganathanz and R. Sharma, “Making
Scheduling Cool: Temperature-AwareWorkload Placement in Data
Centers,” in Proc. of the annual conference on USENIX Annual
Technical Conference, pages 5-18, Apr. 2005.

[12] F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini, and
D. Atienza “Thermal Balancing Policy for Streaming Computing on
Multiprocessor Architectures,” In Proc. of Design Automation and
Test in Europe , pages 734-739, Mar. 2008.

[13] E. Pakbaznia, M. Ghasemazar, and M. Pedram, “Temperature-Aware
Dynamic Resource Provisioning in a Power-Optimized Datacenter,”
In Proc. of Design Automation and Test in Europe, pages 124-129,
Mar. 2010.

[14] D. Shin, N. Chang, J. Choi, S. Chung and E. Chung, “Energy-Optimal
Dynamic Thermal Management for Green Computing,” In Proc. Int.
Conf. on Computer-Aided Design, pages 652-657, Nov. 2009.

[15] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy
and D. Tarjan, “Temperature-Aware Microarchitecture: Modeling and
Implementation,” ACM Trans. on Architecture and Code
Optimization, Vol. 1 Issue 1, pages 94-125, Mar. 2004.

[16] Q. Tang, S. Gupta and G. Varsamopoulos, “Energy-Efficient,
Thermal-Aware Task Scheduling for Homogeneous, High
Performance Computing Data Centers: A Cyber-Physical Approach,”
in IEEE Trans. Parallel and Distributed Syst., vol. 19, issue 11, pages
1458-1472, Nov. 2008.

[17] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D.
Finan, P. Lyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y.
Hoskote and N. Borkar “An 80-Tile 1.28 TFLOPS Network-on-Chip
in 65nm CMOS,” In Proc. Int. Solid-State Circuits Conf., pages 98-
589, Feb. 2007

[18] Y. Wang, K. Ma and X. Wang, “Temperature-constrained power
control for chip multiprocessors with online model estimation,” In
Proc. Int. Symp. Computer Architecture, pages 314-324, Jun. 2009.

[19] Y. Ge, P. Malani, Q. Qiu, “Distributed Task Migration for Thermal
Management in Many-core Systems,” In Proc. of Design Automation
Conference, Jun. 2010.

rconv

overall power

rmax,MATM
(80oC)

rmax,RND
(80oC)

power savings
in 80oC

power savings
in 90oC

Fan power

rconv

rmax,RND
(90oC)

rmax,MATM
(90oC)

R*conv

0

200

400

600

800

1000

1200

1400

80 85 90 80 85 90

O
ve
ra
ll
P
o
w
er
 C
o
n
su
m
p
ti
o
n

Fan

Leakage

Dynamic

Random FDTM

