
Scheduling and Mapping of Periodic Tasks on Multi-Core Embedded Systems with
Energy Harvesting

Jun Lu and Qinru Qiu
Department of Electrical and Computer Engineering

Binghamton University, State University of New York
Binghamton, New York, USA
{jlu5, qqiu}@binghamton.edu

ABSTRACT- In this paper we propose a low-complexity and effective

task mapping, scheduling and power management method for multi

core real-time embedded systems with energy harvesting. The

proposed method is based on the concept of task CPU utilization,

which is defined as the worst-case task execution time divided by its

period. This work mathematically proves that by allocating the new

task to the core with the lowest utilization, we can achieve the lowest

overall energy dissipation. This method, combined with a new

dynamic voltage and frequency selection (DVFS) algorithm with

energy harvesting awareness and task slack management (TSM)

forms the proposed UTilization Based (UTB) algorithm. With

periodical tasks in a multi-core platform, this partitioned scheduling

method is optimal for energy dissipation if the proposed utilization

based scheduling and DVFS algorithm is applied on each core.

Experimental results show that new algorithm achieves better

performance in terms of deadline miss rate in a single-core

environment, comparing to the best of existing algorithm. When

applied on a multi-core platform, the UTB algorithm achieves better

efficiency in utilizing the harvested energy and overflowed energy.

Keywords-energy harvesting; multi-core; power management; task
scheduling; real-time embedded system

I. INTRODUCTION

Embedded systems have evolved tremendously in recent years
as high frequency and low-power integrated circuits research
advances forward. However, there is no significant extension in the
lifetime of battery-powered embedded systems because of the
limitation of the battery technologies. In recent years, the energy
harvesting/scavenging [1] technologies has been explored to
provide renewable energy to the portable electronic systems. It is
expected that with the energy-harvesting technologies, we will
eventually achieve energy autonomy in portable computing and
communication.

Many techniques have been proposed in the area of power
management of energy harvesting real-time embedded systems
(EH-RTES). They range from task scheduling and workload
distribution to dynamic voltage and frequency selections. In [2],
the tasks are executed as late as possible at full speed by using a
lazy scheduling algorithm (LSA). Compared to the earliest
deadline first (EDF) scheduling, the LSA maintains the same
deadline miss rate with much smaller battery size. The authors of
[3] proposed an algorithm named energy aware dynamic voltage
and frequency selection (EA-DVFS) that achieves better energy
saving by slowing down tasks when the harvested energy is not
sufficient. The algorithm was further improved in [4] by using an
adaptive scheduling and DVFS algorithm (AS-DVFS), in which
the processor operation voltage and frequency are adjusted under
timing and energy constraints to achieve the energy efficiency. The
AS-DVFS algorithm exploits the tasks slack for energy saving by
evenly distributing workload over time. In [7], the authors
proposed a reliable solar harvesting prediction algorithm with
energy management considering both solar and weather conditions,
to achieve better energy utilization. The authors of [8] proposed a
task scheduler based on a linear regression model with DVFS to
achieve health monitoring accuracy and measurements.

978-1-4577-1221-0/111$26.00 mOll IEEE

All above research works are targeted at task scheduling and
DVFS techniques for EH-RTES with a single-core processor.
Recent research work has started to move towards multi-core
processor architectures. Many studies have been done on multi
core systems with DVFS-capability to minimize energy
dissipation. Aydin et al [9] showed that multi-core scheduling is an
NP-Hard problem, and developed a framework with minimum
energy consumption objective by using the variable voltage earliest
deadline first algorithm. In [10], the authors proposed an adaptive
minimal bound first-fit (AMBFF) algorithm with realistic
constraint consideration to save more energy. The authors of [11]
proposed a new approximation algorithm for energy-efficient
homogeneous multi-core processor with the 1.21-approximation
factor. Ref. [12] gave general suggestions of interfacing energy
harvesting model with multi-core scheduling. The work in [13]
introduced the task movement algorithm (TMA) to schedule tasks
on a multi-core energy harvesting system. These research works
provided coarse-grain scheduling framework and preliminary
results, even though they are initial research on the multi-core
scheduling problem for energy harvesting systems.

Multi-core scheduling, generally, can be divided into two
categories, global or partitioned [9][10]. The global scheduling
uses a global scheduler to assign task to each core and allows task
migration among cores, while partitioned scheduling allocates each
task to one core permanently. In this paper, we propose a new
partitioned scheduling and CPU utilization based DVFS algorithm
for multi-core EH-RTES. We start with introducing the utilization
based DVFS algorithm and discuss its performance on a single
core EH-RTES. Then we present the least utilization based
partitioned scheduling and algorithm for multi-core EH-RTES. The
major contributions of this work include,
I) We propose a new scheduling algorithm with low

implementation complexity for single-core EH-RTES.
2) We propose four Task Slack Management (TSM) algorithms

to utilize the task slack to achieve energy efficiency for EH
RTES.

3) We prove analytically that the core energy dissipation is a
convex function of the summation of tasks utilization, for
periodical tasks.

4) We propose a UTilization Based (UTB) algorithm and
analytically prove that it is the optimal partitioned scheduling
method to schedule periodical tasks on a multi-core EH-RTES.

The remainder of the paper is organized as follows. In Section
2, the single/multi-core EH-RTES model is introduced and its
major components are discussed. Section 3 gives a motivational
example of improved task scheduling on EH-RTES, followed by
the proposed algorithm. In Section 4, we propose algorithm called
UTilization Based (UTB) multi-core scheduling by applying the
improved task scheduling to the multi-core processor. Section 5
presents experimental setups and results with two DVFS processor
models. Finally Section 6 gives the conclusions of the work.

II. SYSTEM MODEL

In this work, we consider a typical EH-RTES with a single
core or multi-core processor. Figure I shows the major modules of

a node-level EH-RTES platfonn: energy harvesting module (EH
Module), energy storage module (ES Module), real-time embedded
system module (RTES Module) and the Conversion Monitoring
Circuitry. The EH module could be a solar panel or any other
harvesting units (e.g. piezoelectric devices). The ultracapacitor and
lithium-ion rechargeable battery are primary choices for the ES
module. The examples of RTES module include the XScale [5][6]
and PowerPC 405LP [10] microprocessor which has dynamic
voltage and frequency capabilities for low power task scheduling.

,

RTES
Module

EH Module ... C!]. Conversion Monitoring ES Module
'-C_ir_cu _it....;rv ____ -'

Figure I. A simple EH-RTES platform.

A. Energy Harvesting Module
In this work, solar panels are chosen to be the primary energy

harvesting technology for EH-RTES, since sunlight is the most
well-known and prevalent renewable energy source. The energy
harvesting rate is heavily dependent on the operating environment
and fluctuates in real time, e.g., the output power of a solar panel is
usually regarded as a random process affected by the light
intensity, temperature, output voltage, manufacturing process
variation, etc. We denote P�t) as the power harvested by the EH
Module, and the harvested energy E�t\, t2) during time a particular
interval [t" 12] is calculated as:

J,t2
EH(tv t2) = tl PH(t)dt (I)

Note that P�t) it is time-vary variable, and it is not detennined
beforehand, but we can predict it by historic data using time series
forecasting techniques [6].
B. Energy Storage Module

Energy storage is essential for EH-RTES to allow system to
continue operation during periods of insufficient harvested energy.
However, energy storage has limited capacity, and there is energy
overhead when moving energy in or out of the ES Module. In this
paper, the capacity of ES Module is denoted as Ecap, Ec(t) is the
remaining energy in the ES Module at time t, and 175 is the charging
or discharging efficiency factor, Es is energy flow at time interval
[I" 12] in or out of the ES Module. We also define ED as the energy
dissipation by the RTES Module at time interval [I" 12]. When the
stored energy of ES Module reaches its capacity, the incoming
energy overflows the ES Module, therefore we have,

o :::; Ec(t) :::; Ecap (2)
If the ES Module is discharging during time interval rtf, t2]'

then:

Es(tl, t2) = (EH(tv t2) -ED (tv t2))/TJs Vtl < t2 (3)
Similarly, when the ES Module is charging the extra energy

without overflow from the EH Module, we have:

Es(tv t2) = TJS(EH(tv t2) - ED (tv t2)) Vtl < t2 (4)
C. Real-Time Embedded System Module

We consider DVFS-enabled single-core or multi-core
processor running real-time applications. Without loss of
generality, a DVFS-enabled core is modeled to have N discrete
variable voltage and frequency settings. And its speed SI/ can vary
from 0 to the maximum speed, where 1::; n::; N .For simplicity, we

nonnalize the processor speed with respect to maximum speed,
therefore 0 < SI/ ::; Smax = I. O. At speed S,,, the power consumption
of the processor is calculated by g(SI/), where the gO is a strictly
convex function and increasing function on non-negative real
numbers [9]. Consider a period of time [t" 12], if the speed is S",
then the energy dissipation during this interval is

E(tv t2) = f2 g(Sn)dt (5)

The real-time task set T running on the processor consist of P
periodic real-time tasks {T\, . . . , Tp}, the worst case execution
time of a task Tp is denoted by wI" Dp is denoted as the relative
deadline of Tp, which is also equal to the period of Tp. All tasks are
assumed to be independent and ready at the beginning of their
period. The actual execution time of Tp is Tp=WJSp, if it is executed
at speed Sp. We define the utilization of task Tp as up=wJDp when
running at maximum speed Sp=Smax = I.

For a multi-core processor, we assume there are M identical
cores {C], . . . , CM}. The total utilization of the task set Tis,
Utot = If=l Ui = If'!,l Ui , where Ui is the total task utilization of
Ci. The real-time system is considered to be a preemptive system,
and the task with the earliest deadline has the highest priority to be
executed. The scheduler preempts any other task if necessary.

D. Conversion and Monitoring Circuitry
As mentioned in 2.1, the renewable energy source can have

high random variations due to environmental changes. This
randomness causes the uncertainty in harvested energy by the EH
module. Therefore we need the conversion and monitoring (CM)
circuitry to measure and modulate the output from the EH Module
and direct the energy flow among the EH, ES and RTES modules.
Another important aspect is that we assume that the CM circuitry is
capable of perfonning automatic maximum power point (MPP)
tracking (MPPT) [5] to yield the maximum output power by the
solar panel. The conversion (from solar irradiation to electricity)
efficiency is denoted as 17.

III. UTLIZATION BASED DVFS FOR SINGLE-CORE

In this section, we will first introduce the utilization-based
scheduling algorithm for a single-core system, starting with a
motivational example to illustrate the basic idea. Then, we will
explain the algorithm in details.

A. Motivalional Example
Assume that there are three periodical tasks T" T2 and T3 in the

task set, and their worst case execution times are 2, 3 and 1 second,
and the periods are 5, 10 and 20 seconds, respectively. Each task's
relative deadline is the same as the task's period. During the one
hyper-period, i.e., a 20-second period of time, the system will
execute four instances of T\: Tn , T12, T\3, T14, two instances of T2:
T2" T22, and one instance of T3: T31. Under this particular load, we
compare the complexity and power consumption of two different
scheduling methods. The first scheduling method is the AS-DVFS
algorithm proposed in [4]. The other method does scheduling (and
DVFS) based on task utilization defined in Section 3.2. We use the
actual XScale processor power and frequency setting in this
example, as shown in Table 1.

TABLE I. XSCALE PROCESSOR POWER AND FREQUENCY LEVELS.

Frequcncy(MHz) 150 400 600 800 1000

VoItage(V) 0.75 1.0 1.3 1.6 1.8

Power(mW) 80 170 400 900 1600

Normalized Speed 0.15 0.4 0.6 0.8 1.0

The AS-DVFS scheduling results are shown in Figure 2. At
time instance 0, there are 3 tasks Tn, T2\ and T3\ to be scheduled.
According AS-DVFS, they are scheduled at speed 0.4, 0.4 and 0.15,

respectively, as shown in Figure 2(a). At time instance 5, Tn is
finished and T12 is released, all tasks in task queue, T2], TI2 and T3]'
have to be rescheduled. As shown in Figure 2(b) T21 and TI2 are
executed at speed 0.8 in order to meet their deadlines. We have to
reschedule tasks at time instances 10 (Figure 2(c)) and 15 (Figure
2(d)) when a new task comes into the queue. Figure 2(d) also
shows all the tasks with their start/finish times and execution
speeds. The total energy consumption is calculated as:
5x 170+5x 1600+5x400+5x 1600=18850mJ.

T11 T21 T31

a� 1-r-r@_;T4 �-zj��@_'0�

1

�_)����-'_
(
�@rg��r:),r-�lrl -r-r�jr+. t I I I I I I I I I T

b

c

d

o

o

o

o

T11

(0
,2.5

)
@O.B

5 10 15

5 10 15

5 10 15

Figure 2. Scheduling results under AS-DVFS method.

5 10 15
Figure 3. Scheduling result under utilization-based method.

20

20

20

20

In new method, it schedules the tasks based on the utilization
of tasks in the queue. Basically it chooses the lowest normalized
core speed that is higher than or equal to the summation of the task
utilizations. Therefore at time instant 0, the summation of task Tn,
T21 and T31 is 0.75, the new method will schedule these task at 0.8.
At time instance 5, Til and T21 are finished, T12 is released, the
summation of task utilization is still 0.75, so the tasks is still
running at normalized speed of 0.8. Figure 3 shows the complete
scheduling result. The energy consumption is 16875mJ, which is
about 10.48% lower, comparing to AS-DVFS.
B. Utilization Based Task Speed Selection

The reason that the AS-DVFS gives inferiors scheduling
results is that it ignores the recurring nature of tasks and therefore
tends to underestimate the workload at the beginning.

In order to overcome this problem, here we propose a new
algorithm that selects the task execution speed and supply voltage
level based on the projected CPU utilization. Algorithm 1 shows
the pseudo code of the algorithm. The new algorithm selects the
lowest possible speed that is higher than or equal to the summation
of utilization of all tasks. Therefore the core speed S is a non
decreasing function of total utilization. This speed is set for all
current tasks in the task queue, and will not be changed until a new
task is in. When tasks are scheduled at the same speed based on the
total utilization, it also reduces the time and energy overhead of
voltage and frequency scaling [10]. Algorithm 1 is solely decided
by the number of recurrent tasks P in the queue, hence its

complexity is O(P). Please note that by selecting the core speed,
we are also selecting the core supply voltage by default, due to the
one-to-one correspondence between core speed and voltage.

Algorithm 1: Speed Selection Based on Utilization

1. uti! = 0;
2. for i = I:P {
3. uti! += get_util(T;)
4. }
5. choose lowest S from{ S], . . . SN}' such that uti!::; S
6. for i = I:P {
7. fti = sti + w/S
8. }

C. Avoid Energy Overflow and Shortage
Due to the limited energy storage capacity and the uncertainty

of the harvested energy and discharging current, overflow and
underflow may happen on the energy storage. A good power
management algorithm should be able to predict and avoid the
battery overflow and underflow to reduce wasted energy and lower
deadline misses.

Assume that task Tp is scheduled to execute at time interval
[stp,ftp] with speed Sp. If the energy overflow is predicted to occur
between stp andftp, we can calculate overall overflowing energy Eo
untilftp if no action is taken as follows:

Eo = Ec(stp) + EH(StP,ftp) - ED (stp,ftp) - Eeap (6)

Note that the value of EH(StP,ftp) are predicted based on the
history energy harvesting rate. In order to prevent energy overflow,
ideally the operating frequency of task Tp should be elevated to the
level where Eo is "just" exhausted. However, the processor has
discrete operating frequency-power levels and we may not be able
to achieve it. So we round up the execution speed of task Tp to the
a higher speed Sp,lIew where the needed extra energy is no less than
Eo. That is:

ED (stp, Wp/Sp,new) - ED (stp, Wp/Sp) � Eo (7)

where wmlSp.llew is the new execution time, and ED(stm, wmlSp,lIew is
the new energy dissipation for the task. In some cases, even if task
Tp is executed at full speed Sman Eo cannot be exhausted, then we
schedule task Tp at the full speed Smax. As the task is executed at a
higher speed, it will be completed earlier than expected and hence
increase the slack of future tasks. After the new execution speed
for task Tp is decided, we need to update the finishing time of the
current task, as shown in line 3 to 4 in Algorithm 2.

Algorithm 2: Deal with Energy Overflow and Shortage

Require: maintain P tasks in Q;
1. if (overflow energy){
2. calculate new operating frequency for current task based on

Eq(7);
3. update the finish time of the current task;
4. }
5. } elsif (energy shortage) {
6. remove the task;
7. }
8. }

When energy shortage is predicted to occur during Tp, if there
is still slack available due to previous speed up, we utilize the slack
to wait for the battery recharge otherwise the task will be removed
from task queue even before it starts. This is because, even if we
gathered enough energy by delaying the execution of Tp, then the
successors of Tp is highly likely to miss deadline, because all the
tasks are scheduled to execute at the lowest possible speed. One the

other hand, removing task Tp can save the harvesting energy for
successor tasks. Note that by removing Tp, more slack is created.

D. Task Slack Management
Following the above mentioned scheduling algorithm, the CPU

will not be fully occupied. This is because,
1) The processor provides a finite number of discrete speeds

(e.g. Table 1), and our algorithm selects the lowest possible
speed that is higher than or equal to the summation of
utilization of all tasks.

2) Some tasks will be executed at a higher speed and finished
earlier if energy overflow is predicted.

3) Some tasks will be removed when energy underflow occurs.
All of these contribute to task slacks, which should be utilized

to achieve energy efficiency in EH-RTES.
The slack can be utilized either by inserting idle period to let

the system harvest more energy or by further slowing down the
future tasks for lower energy consumption. In this work, we design
four Task Slack Management (TSM) algorithms to utilize the
slack, including three slack-consuming algorithms and one slack
reclamation algorithm.

The slack-consuming algorithms consume the slack by
inserting idle periods (i.e. halt the system). An idle period is a
chance to refill the energy storage because the system power
consumption is extremely low during this time. Note that a task
will be speed up only when there is a predicted overflow in the
energy storage, which means that right after the completion of the
task, the energy storage is usually full. Therefore, it is better to
save the slack to the future and consume it while the battery is low.

Based on when the slack time is consumed, we name the three
TSM policies as, ASAP (As Soon As Possible)-TSM, ALAP (As
Late As Possible)-TSM and MSTF(MoST Fitted)-TSM, The
ASAP-TSM policy insert the idle period as soon as the battery is
below 80% of the full capacity. As soon as the battery is fully
charged, the CPU will resume its current execution and the
remaining slack will be reserved for the future. The ALAP-TSM
policy holds the slack until there is no more task to be executed
and an idle period is automatically inserted. The MSTF -TSM
policy will not consume the slack unless the energy harvesting rate
exceeds a threshold Eth, This ensures that the battery to be charged
at a higher rate and the slack is utilized efficiently.

Algorithm 3: Slack Reclamation

Require: Task slack is available after Tp is executed;
1. for i = P + I:P {
2. sti= min(sti,fti_l);
3. if (sti+W/Sidfil_l<fti&&(W/(wi+slack)<§idfil_l); {
4. slack = slack - (W/Sidfil-l - W/Sidfil);
5. Si = Si.s/ow;
6. }
7. fti = sti + W/Si;
8. }

The slack reclamation algorithm utilizes the slack to further
slow down the future tasks for more energy saving. Its basic steps
are described in Algorithm 3. Let id[i] be the index of the
execution speed of the periodic task i. Its initial value is determined
based on the overall utilization as discussed previously. Before a
task is executed, we will first check the available slack. If there is
enough slack to slow down the task execution to the next lower
speed (i.e. WJ(Wi + slack) :s; Sid[i]-l) and the slowdown will not
cause any energy overflow, then the task will be executed at speed
Sid[i]-l (Step 3-5 in Algorithm 3). The remaining slack will be
reclaimed by other tasks or it will be consumed as idle period as
late as possible. We reduce the execution speed of a task to the

next lower frequency instead of extra lower frequency because this
helps to distribute the slack to different tasks more evenly.
E. Overall Utilization-based Task Scheduling

The overall utilization-based task scheduling and DVFS
method is shown in Algorithm 4, which consists of four steps. Step
1 generates the initial schedule by sorting tasks based on their
deadlines, as shown in Line 3. Step 2 in Line 4 calls Algorithm 1 to
schedule tasks based on the summation of utilization of all tasks.
Step 3 in Line 6, is checking the energy availability of EH-RTES.
If the overflow energy is predicted, the scheduler speedups the
current task to eliminate the wasted energy; on the other hand, it
proactively drops a task to save more energy and CPU time for
other tasks, as shown in Algorithm 2. Step 3 in Line 7 is one of
four Task Slack Management (TSM) algorithms that utilizes the
task slack to achieve energy efficiency, once the scheduling is
done, the tasks in the task queue will be executed under selected
speed and removed from the queue afterward, as shown in Line 8
and 9. In general, because the new algorithm consumes less energy
comparing to AS-DVFS, this should result in lowering deadline
miss rate, which will be shown in experimental result section.

Algorithm 4: Overall Utilization Based Scheduling and DVFS

Require: maintain a ready task queue Q
1. while (true) {
2. if (incoming new task){
3. push new task into Q, sort all task based on their

deadlines;
4. schedule task in Q according Algorithm 1;
5. }
6. check energy availably according Algorithm 2;
7. manage the task slack according to Task Slack Management

Algorithm mentioned in section m.D
8. execute current task in the task queue;
9. remove finished task from Q;
10. }

IV. UTILIZATION BASED TASK MApPING FOR MULTI-CORE SYSTEM

According to Algorithm 1, all tasks in the task queue execute
at the same lowest speed S that is higher than or equal to the
summation of utilization. The task execution time is given by wIS,
thus it is easy to calculate that energy dissipation of all n tasks in
task queue at every hyper-period D, where D = LCM(D], . . . D,,),

Wi D y(Si) Wi y(s) E = Li o(S;) S:V; = D Li S; Di = D -s- Li Ui = DoCLi u;) (8)
where Wi is worst case execution time, Si denotes the execution
speed of task i. Because all tasks are executed at the same speed, Si,
1 :s; i :s; n, is also equal to S, where S = Li Ui' Equation (8)
indicates that the energy dissipation E is a convex function of
summation of utilization of all tasks in the queue and also is an
increasing function in any non-negative region.

In a homogenous multi-core system, if the execution speed and
the supply voltage of each core are selected according to algorithm
1, then their energy dissipation has the following relations. In
general, given 2 cores, core M; and core M.J, if Li Ui :s; Lj Uj, then
E(Mj) � E(M;). Because the energy dissipation of a core is a
convex function of its utilization, it can also be proved that
distributing the tasks to cores so that they have the same (or
similar) CPU utilization minimizes the overall system energy [9].

Based on the above analysis, we proposed the UTilization
Based (UTB) task mapping. All of the periodic tasks will be sorted
based on descending order of their utilization. Starting from the
first one (i.e. the one with the highest utilization), each task will be
assigned to a core that has the lowest utilization.

Algorithm 5: Multi-Core UTB Partitioned Scheduling

Require: maintain a ready task queue Q
I. sorted periodic tasks based on non-increasing order of their

utilization;
2. for i = I:P {
3. find the core Cj with the lowest utilization;
4. allocate the task T; to the core Cj;
5. }
6. execute Algorithm 2;

The key idea of this new algorithm is that it uses a simple and
mathematically proven method to allocate tasks in a multi-core
platform. This method not only reduces the system computation
complexity, but also achieves the best energy dissipation in multi
core system. The overall UTB scheduling algorithm is shown in
Algorithm 5. We assume that each core either executes Algorithm
4 by itself, or there is a centralized program that runs Algorithm 4
for each core.

V. PERFORMANCE EVALUATION

This section provides the experimental setup, and the
performance evaluation of the proposed algorithm. A discrete
event-driven simulator in C++ is developed in this experiment. We
also implemented AS-DVFS for single-core processor [4] and Task
Movement Algorithm (TMA) for multi-core processor [13] for
comparison purpose.

A. Experiment Setup
As mentioned in 2.1, we consider solar energy as the source of

energy harvesting in this paper. We use four different daytime
solar radiation profiles collected in [5][6]. As it is pointed out in
reference [6], the moving average based predictor has better
accuracy in predicting solar energy, comparing to other techniques.
Here we adopt moving average as our prediction method to
forecast the near future harvested energy.

Experiments are conducted on both single-core and
homogenous multi-core processors. We evaluated our algorithm
using two types of cores with different DVFS capabilities. The first
one is an Intel XScale processor and while the second one is a
PowerPC405PL [10]. Their frequency levels and corresponding
power consumptions are given in Table 1 (section 3.1) and Table 2.
The multi-core processor consists of 2 to 4 identical cores.

TABLE II. POWERPC405PL POWER AND FREQUENCY LEVELS.

Frequency(MHz) 33 100 266 333

Voltage(V) 1.0 1.0 1.8 1.9

Power(mW) 19 72 600 750

Normalized Speed 0.1 0.3 0.8 1.0

The workload on the single or multi-core processors are
randomly generated task sets with different utilizations. To design
different workload, we introduce the notation of average core
utilization Val'" which can be calculated as:

L�
U =

Utat
=

...:..£.i. < 1 (9) ave M M -

where W; and D; are the worst case execution time and the period of
task i respectively, Li � is the total utilization VIOl of all tasks in Di
the system, and M is the number of cores. Simply speaking,
average processor utilization VaI'e is the total utilization divide by
the number of cores. It is important to note that to have a feasible
schedule is to have Uave :s; 1.

In the experiments, task sets with Vave from 0.1 to 0.9 have
been generated with a step of 0.1. The energy storage is assumed to
be half full at the beginning of the simulation. Without loss of

generality, the charging/discharging efficiency of ES Module of is
fixed to be 0.9, and the efficiency of CM circuitry is 0.9. For each
combination of solar profile and utilization setting, we simulate the
system behavior from 7 AM to 7PM. Each simulation is repeated
for 1000 times, each time with a new random task set. Experiments
with different architectures have also been conducted, due to the
space limitation, only the results for PowerPC405PL are presented.
However, the results for XScale have very similar trends.
B. Simulation result of Single Core Processor

For real-time embedded systems, deadline miss rate (DMR) is
one of the most important performance metrics, which is the ratio
of the number of tasks missing their deadline to the total number of
tasks. First, we examine the DMR of EH-RTES with single-core
processor. We conducted experiments with 4 different solar power
profiles in [5][6], and recorded the correspondent DMR in Figure 4.

From Figure 4, we can see that, our utilization-based algorithm
achieves lower DMR than AS-DVFS, thus improve the system
performance. We can see that, our approach provides the most
improvement at workloads with medium utilization (Le. 0.4-0.6)
and our algorithm performs consistently well all four profiles.

0.2

0.2

Profile 1 Profile 2

0.4 0.6 0.8
Utilization

Profile 3

0.4 0.6 0.8
Utilization

�
" "§
'"
'" E
.�
'6
'"

c3

�
�
'"
'" E
"

.�
'6
'"
" 0

0.2 0.4 0.6 0.8
Utilization
Profile 4

0.2 0.4 0.6 0.8
Utilization

Figure 4. Deadline miss rate for system based on PowerPC core

The performance gain of our algorithm slightly reduces in
systems with extremely low or high CPU utilization. This is
because when the utilization is extremely low (i.e. U<0.2), in both
algorithms, all tasks in the task queue are able to be executed at the
lowest speed, which diminishes their difference in DMR. When the
utilization is extremely high (i.e. U>0.8), all tasks in the task queue
must be execute at the highest speed, this again will blur the
different between two algorithms. When V is at medium level,
comparing to our utilization-based algorithm, AS-DVFS may over
stretch certain tasks, which results in consuming more energy; it
further causes more DMR especially when system is at low energy
availability.
C. Task Slack Management Algorithms

In the next experiment, we compare the performance of 4
different task slack management (TSM) policies. Figure 5(a) gives
the 12-hour profiled sun intensity for this experiment. As we can
see, in general, the sun radiation intensity increases from morning
to noon and decreases from noon to evening. It has large variation
in the morning due to weather condition. Figure 5(b) gives the
recorded DMR during the day for those 4 TSM policies. The
TSMI-4 represent the ASAP-TSM, ALAP-TSM, MSTF-TSM and
the slack reclamation policy as described in Section III.D. Each
data point in the figure shows the average DMR of 15 minutes. In
this experiment, the utilization is set to be 0.5.

As we can see from Figure 5(b), for all the TSM algorithms,
the DMR is zero at first because the initial battery is 50% full. The

DMR increases later because the sunlight intensity is too small to
provide enough energy for tasks execution at the beginning of the
day and extra energy will be drawn from the ES Module. As the
battery becomes depleted, the DMR starts increasing. Then, the
DMR remains stable although sunlight intensity varies
significantly. As sunlight intensity continuous increasing, it soon
becomes sufficient to power all tasks and the DMR gradually drops
to O. When sunlight intensity starts decreasing, the DMR begins to
increase again. The results show that TSM-4 and TSM-3 provides
up to 10.91% and 8.86% improvement compared to TSM-I and
TSM-2 respectively.

Deadline Miss Rate

Figure 5. (a) Sun intensity and (b) DMR for four TSM algorithms

D. Simulation result 0/ Multi-core Processor with different
partition algorithm

In this set of experiments, we focus on comparing our
proposed UTilization Based (UTB) multi-core partition algorithm
with the random partition algorithm and task movement algorithm
[13]. We test these three algorithms using harvesting power from
Profile I [5][6] with 3 and 4 processor cores.

Profile 1, 3 Cores Profile 1, 4 Cores

A..erage Utilization

__ "m

°OL-� O�. 2--�O�4--�O.�6--�O�. 8--�
A-.erage utilization

Figure 6. Deadline miss rate with different cores

Figure 6 shows that the DMR of an EH-RTES with 3 and 4
cores running random partition algorithm, TMA and our UTB
partition algorithm. As shown from both Figure 6(a) and 6(b), the
proposed UTB partition algorithm achieves lowest deadline miss
rate, comparing to the other two algorithms. This is because the
proposed UTB multi-core algorithm always assigns tasks to the
core which results in lowest overall power consumption, therefore
UTB algorithm achieves lowest deadline miss rate among three
partition algorithms. The absolute deadline miss rate reduction
increases when the utilization decreases. At lower utilization
settings, the UTB algorithm achieves slightly reduction in deadline
miss rate over the random algorithm and TMA, however at higher
utilization settings, the UTB algorithm achieves significant
reduction, about 25.33% and 10.21 % in deadline miss rate over the
random partition and TMA on 4 cores with Uaw is set to be 0.9.
E. Simulation result o/Single-core and Multi-core Processor

Finally, we compare the proposed UTB algorithm with
different core while setting the total utilization UIOI equally. Table 3
shows the average utilization Uave, average DMR, normalized
consumed energy consumption and normalized overflow energy
when the UIOI total utilization is set to be 60%. As we can see in
Table 3, the amount of works that the each core performs decreases

with increasing core numbers, thus the multi-core system is able to
execute more tasks under the same solar panel and energy storage;
on the other hand, multi-core system is able to utilize the
overflowed energy that is wasted due to the limited energy storage
capacity, therefore the consumed energy is increasing and the
average DMR and overflowed energy is decreasing.

TABLE III. UTB ALGORITHM WITH DIFFERENT CORES
Core Number I 2 3 4

U.,. (Averae;e Utilization %) 60 30 20 15

Averae;e DMR (%) 8.61 6.52 5.21 4.19

Normalized Consumed Enen�y I 1.06 1.09 1.13

Normalized Overflowed Ener2Y I 0.94 0.89 0.84

VI. CONCLUSION

In this paper we proposed a low-complexity and effective task
scheduling algorithm for EH-RTES based on task utilization, then
we proposed the UTilization Based (UTB) partitioned methods to
schedule periodic tasks on multi-core scheduling. Experimental
results show that, the proposed algorithm has better performance
on single-core processor in terms of task deadline miss rate
comparing to existing methods, and UTB algorithm on multi-core
scheduling is able to achieve less deadline miss rate than random
and TMA multi-core scheduling. We have also illustrated the trend
of DMR with different TSM algorithms, and compared the DMR,
consumed energy and overflowed energy of single-core and multi
core processor.

REFERENCES

[I] J. Rabaey, F. Burghardt, D. Steingart, M. Seeman and P. Wright,
"Energy Harvesting A Systems Perspective," IEEE International
Electron Devices Meeting, 2007, December, 2007, pp. 363-366

[2] C. Moser, D. Brunelli, L. Thiele, and L Benini, "Lazy Scheduling for
Energy-Harvesting Sensor Nodes," Proc. of Fifth Working
Conference on Distributed and Parallel Embedded Systems, 2006.

[3] S. Liu, Q. Qiu, and Q. WU, "Energy Aware Dynamic Voltage and
Frequency Selection for Real-Time Systems with Energy
Harvesting", Proc. of Design, Automation, and Test in Europe, 2008.

[4] S. Liu, Q. Qiu, and Q. WU, "An Adaptive Scheduling and
Voltage/Frequency Selection Algorithm for Real-time Energy
Harvesting Systems", Proc. of Design Automation Cotiference, 2009.

[5] S. Liu, J. Lu, Q. WU and Q. Qiu, "Load-matching adaptive task
scheduling for energy efficiency in energy harvesting real-time
embedded systems", Proc. of International Symposium on Low
Power Electronics and DeSign, August 2010.

[6] J. Lu, S. Liu, Q. WU, and Q. Qiu, "Accurate Modeling and
Prediction of Energy Availability in Energy Harvesting Real-Time
Embedded Systems", The First International Green Computing
Cotiference, August 2010.

[7] J. Recas, C. Bergonzini, D. Atienza, and T. S. Rosing, "Prediction
andmanagement in energy harvested wireless sensor nodes," Proc.
VITAE '09, May 2009.

[8] A. Ravinagarajan, D. Dondi and T. S. Rosing, "DVFS based task
scheduling in a harvesting WSN for structural health monitoring,"
Proc. of DeSign, Automation and Test in Europe, 2010.

[9] H. Aydin and Q. Yang, "Energy-Aware Partitioning for
Multiprocessor Real-Time Systems", Proc. of International Parallel
and Distributed Processing Symposium, 2003

[10] G. Zeng, T. Yokoyama, H. Tomiyama and H. Takada, "Practical
Energy-Aware Scheduling for Real-Time Multiprocessor Systems,"
IEEE International Cotiference on Embedded and Real-Time
Computing Systems and Applications, 2009.

[11) J.-J Chen and L. Thiele, "Energy-Efficient Scheduling on
Homogeneous Multiprocessor Platforms," the 25th ACM Symposium
on Applied Computing, Switzerland, March 22-26, 2010.

[12] P. Koch, "How to Interface Energy Harvesting Models with
Multiprocessor Scheduling Paradigms," the 1st International
Cotiference on Wireless VITAE 2009.

[13] T. Wei, Y. Guo, X. Chen and S.Hu, "Adaptive Task Allocation for
Multiprocessor SoCs in Energy Harvesting Systems," the 11th
International Symposium on Quality Electronic DeSign, March 2010.

