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Abstract— Existing optical character recognition (OCR) 
software tools can perform text image detection and pattern 
recognition with fairly high accuracy, however their 
performance will be significantly impaired when the image of 
the character is partially blocked or smudged. Such missing 
information does not hinder the human perception because we 
predict the missing part based on the word level and sentence 
level context of the character. In order to mimic the human 
cognitive behavior, we developed a hybrid cognitive 
architecture combining two neuromorphic computing models, 
i.e. brain-state-in-a-box (BSB) and cogent confabulation, to 
achieve context-aware text recognition. The BSB model 
performs the character recognition from input image while the 
confabulation models perform the context-aware prediction 
based on the word and sentence knowledge bases. The software 
tool is implemented on an 1824-core computing cluster. Its 
accuracy and performance are analyzed in the paper. 

I. INTRODUCTION 

Military planning, battlefield situation awareness, and 
strategic reasoning rely heavily on the knowledge of the 
local situation and the understanding of different cultures. A 
rich source of such knowledge is presented as natural-
language text. In 2009, DARPA launched the Machine 
Reading program to develop a universal text-to-knowledge 
engine that scavenges digitized text to generate knowledge 
that can be managed by the artificial intelligence reasoning 
systems. The Machine Reading program limits its scope to 
the texts available on the World Wide Web. In real life, text 
exists in many forms other than its ASCII representation. 
These include printed texts such as books, newspapers and 
bulletins or hand written texts. There are many occasions 
when only the scanned or photographed image of the texts is 
available for computer processing. While the machine 
reading system bridges the gap between natural language 
and artificial intelligence, another bridge has to be 
constructed to link the natural state of texts to its unique 
encoding that can be understood by computers. 

Conventional Optical Character Recognition (OCR) tools 

 
Manuscript received February 10, 2011.  

Qinru Qiu is with Binghamton University, State University of New York, 
Binghamton NY 13902 (phone: 607-777-4918, fax: 607-777-4464, email: 
qqiu@binghamton.edu).  

Qing Wu is with USAF AFMC AFRL/RITC, 525 Brooks Road Rome, 
NY 13441 (phone: 315-330-3219, fax: 315-330-2953, email: 
Qing.Wu@rl.af.mil). 

Richard Linderman is with USAF AFMC AFRL/RITC, 525 Brooks 
Road Rome, NY 13441 (phone: 315-330-4512, fax: 315-330-2953, email: 
Richard.Linderman@rl.af.mil). 

or pattern recognition techniques are not enough to meet the 
challenges in this task. Because the text images are usually 
captured under extreme circumstances, sometimes the 
images will be noisy, or incomplete due to the damages to 
the printing material, or obscured by marks or stamps. 
Pattern recognition is extremely difficult, if not impossible, 
when the image is partially shaded or partially missing. 
However, such tasks are not too difficult for humans as we 
predict the missing information based on its context. Most 
human cognitive processes involve two interleaved steps, 
perception and prediction. Together, they provide higher 
accuracy. 

Research work in cognitive computing has resulted in 
many computing models with different mathematical 
methods and application fields. In one category, computing 
models have been developed for performing cognitive 
functions on raw input signals such as image and audio. One 
representative area in this category is the associative neural 
network model, which is typically used for pattern 
recognition. We generally say that this kind of model 
performs the “perception” function. In the other category, 
models and algorithms are researched to operate on the 
concept-level objects, assuming that they have already been 
“recognized” or extracted from raw inputs. In a recent 
development, the cogent confabulation model was used for 
sentence completion [5][6]. Trained using a large amount of 
literatures, the confabulation algorithm has demonstrated the 
capability of completing a sentence (given a few starting 
words) based on conditional probabilities among the words 
and phrases. We refer these algorithms as the “prediction” 
models. 

In this paper, we present a unified perception-prediction 
framework that combines the algorithms of neural networks 
and confabulation. The framework uses neural network 
models for pattern recognition from raw input signal, and 
confabulation models for abstract-level recognition and 
prediction functionalities.  

To demonstrate the effectiveness of this framework, we 
have designed a three-level optical text recognition 
application targeted at a 1824-core computing cluster (288 
6-core nodes and 12 8-core head-nodes) at Air Force 
Research Laboratory (AFRL). At the lower (character) level, 
we apply Brain-State-in-a-Box (BSB) neural network 
models for character recognition from raw image. At the 
middle (word) level, we have developed a new confabulation 
model for combining the character recognition results to 
form words and predict characters. At the higher (sentence) 
level, another confabulation model is developed to form 
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meaningful sentences and predict words. Experiments are 
designed to let this framework work on images of scanned 
text with missing information, i.e., texts with hard-to-
recognize or missing characters. Results show that, for texts 
with 20% distortions randomly distributed on 40% 
(randomly) of the characters, about 95% of the words are 
recognized (recovered) correctly and more than 65% of the 
sentences are recovered correctly.  

II. BACKGROUND 

A. Brain-state-in-a-box 

The BSB model is an auto-associative, nonlinear, energy 
minimizing neural network [1][3]. A common application of 
the BSB model is to recognize a pattern from a given noisy 
version. BSB model can also be used as a pattern recognizer 
that employs a smooth nearness measure and generates 
smooth decision boundaries. 

There are two main operations in a BSB model, Training 
and Recall. In this paper, we will focus on the BSB recall 
operation. The mathematical model of a BSB recall 
operation can be represented in the following form [4]: 

࢞ሺݐ ൅ 1ሻ ൌ ܵሺߙ · ࡭ · ࢞ሺݐሻ ൅ ߣ · ࢞ሺݐሻ ൅ ߛ · ࢞ሺ0ሻሻ 
where: 

 x is an N dimensional real vector 
 A is an NxN connection matrix 
 ࡭ · ࢞ሺ࢚ሻ is a matrix-vector multiplication operation 
 α is a scalar constant feedback factor 
 λ is an inhibition decay constant 
 γ is a nonzero constant if there is a need to maintain 

the input stimulation 
 S( ) is the “squash” function defined as follows: 

ሺ࢟ሻࡿ ൌ ቐ
૚                   ࢌ࢏ ࢟ ൒ ૚
ࢌ࢏      ࢟ െ ૚ ൏ ݕ ൏ 1
െ૚            ࢌ࢏ ࢟ ൑ െ૚

 

In [2], we implemented and optimized the recall operation of 
the BSB model on the Cell Broadband Engine processor. 
The runtime measure shows that, we have been able to 
achieve about 70% of the theoretical peak performance of 
the processor. 

B. Cogent Confabulation 

Cogent confabulation [5] is an emerging computation 
model that mimics Hebbian learning, the information storage 
and interrelation of symbolic concepts, and the recall 
operations of the brain. Based on the theory, the cognitive 
information process consists of two steps: learning and 
recall. During learning, the knowledge links are established 
and strengthened as symbols are co-activated. During recall, 
a neuron receives excitations from other activated neurons. 
A “winner-takes-all” strategy takes place within each 
lexicon. Only the neurons (in a lexicon) that represent the 
winning symbol will be activated and the winner neurons 
will activate other neurons through knowledge links. At the 
same time, those neurons that did not win in this procedure 
will be suppressed. 

Figure 1 shows an example of lexicons, symbols and 
knowledge links. The three columns in Figure 1 represent 
three lexicons for the concept of shape, object and color with 
each box representing a neuron. Different combinations of 
neurons represent different symbols. For example, as shown 
in Figure 1, the pink neurons in lexicon I represent the 
cylinder shape, the orange and yellow neurons in lexicon II 
represent a fire extinguisher and a cup, while the red neurons 
in lexicon III represent the red color. When a cylinder 
shaped object is perceived, the neurons that represent the 
concepts “fire extinguisher” and “cup” will be excited. 
However, if a cylinder shape and a red color are both 
perceived, the neurons associated with “fire extinguisher” 
receives more excitation and become activated while the 
neurons associated with the concept “cup” will be 
suppressed. At the same time, the neurons associated with 
“fire extinguisher” will further excite the neurons associated 
with its corresponding shape and color and eventually make 
those symbols stand out from other symbols in lexicon I and 
III. 

 

 

 

 

 

 

 

 

 

 

Figure 1. A simple example of lexicons, symbols and 
knowledge links. 

A computational model for cogent confabulation is 
proposed in [5]. Based on this model, a lexicon is a 
collection of symbols. A knowledge link (KL) from lexicon 
A to B is a matrix with the row representing a source symbol 
in A and the column representing a target symbol in B. The 
ijth entry of the matrix represents the strength of the synapse 
between the source symbol si and the target symbol tj. It is 
quantified as the conditional probability P(si | tj). The 
collection of all knowledge links is called a knowledge base 
(KB). The knowledge bases are obtained during the learning 
procedure. During recall, the excitation level of all symbols 
in each lexicon is evaluated. Let l denote a lexicon, Fl denote 
the set of lexicons that have knowledge links going into 
lexicon l, and Sl denote the set of symbols that belong to 
lexicon l. The excitation level of a symbol t in lexicon l can 
be calculated as: 

ሻݐሺܫ         ൌ ∑ ∑ ሻݏሺܫ ቂln ቀ
௉ሺ௦|௧ሻ

௣బ
ቁ ൅ ி೗אௌೖ௞אቃ  ௦ܤ

ݐ , א ௟ܵ.  

The function I(s) is the excitation level of the source 
symbol s. Due to the “winner-takes-all” policy, the value of 
I(s) is either “1” or “0”. The parameter p0 is the smallest 
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meaningful value of P(si | tj). The parameter B is a positive 
global constant called the bandgap. The purpose of 
introducing B in the function is to ensure that a symbol 
receiving N active knowledge links will always have a 
higher excitation level than a symbol receiving (N-1) active 
knowledge links, regardless of the strength of the knowledge 
links. 

III. SYSTEM ARCHITECTURE 

A. Overview of the ITRS 

In this project, we developed the prototype of a context 
aware Intelligence Text Recognition System (ITRS) that 
mimics the human information processing procedure. The 
ITRS system learns from what has been read and, based on 
the obtained knowledge, it forms anticipations and predicts 
the next input image (or the missing part of the current 
image). Such anticipation helps the system to deal with all 
kinds of noise that may occur during recognition.  

The ITRS is divided into 3 layers as shown in Figure 2. 
The input of the system is the text image. The first layer is 
character recognition software based on BSB models. It tries 
to recall the input image with stored image of the English 
alphabet. In this work, a race model is adopted. The model 
assumes that the convergence speed of the BSB indicates the 
similarity between patterns. For a given input image, we 
consider all patterns that converge within 50 iterations as 
potential candidates that may match the input image. All 
potential candidates will be reported as the BSB results. 

Using the racing model, if there is noise in the image or the 
image is partially damaged, multiple matching patterns will 
be found. For example, a horizontal scratch will make the 
letter “T” look like the letter “F”. In this case we have 
ambiguous information. 

The ambiguity can be removed by considering the word 
level and sentence level context, which is achieved in the 
second and third layer where word and sentence recognitions 
are performed using cogent confabulation models. The 
models fill in the missing characters in a word and missing 
words in a sentence. The three layers works cooperatively. 
The BSB layer performs the word recognition and it sends 
the potential letter candidates to the word level 
confabulation. The word recognition layer forms possible 
word candidates based on those letter candidates and sends 
this information to the sentence recognition layer. There 
could be feedback paths that send the sentence level 
confabulation results back to word level or send word 
confabulation results back to character level. We believe that 
the feedback information can speed up the recognition 
process and its implementation will be our future task. 
Figure 2 shows an example of using the ITRS to read texts 
that has been smudged. The BSB algorithm recognizes text 
images with its best effort. The word level confabulation 
provides all possible words that associate with the 
recognized characters while the sentence level confabulation 
finds the combination among those words that gives the 
most meaningful sentence. 

 
 

Figure 2. Overall architecture of the models and algorithmic flow. 



 
 

 

 
 

Figure 3. An input image is recalled by BSB models remembering different characters or symbols. Candidates are 
selected based on speed of convergence. 

 

B. Font End Image Processing 

At top level of the ITRS is the image processing function 
that reads in the image of the text and separates it into blocks 
of smaller images that contains only one character. The 
image processing function distinguishes punctuations from 
texts and uses them to separate sentences. It also separate 
words based on white spaces. The output of the image 
processing function is a set of character images labeled by a 
triplet (i, j, k), where k is the position of the character in a 
word, j is the position of this word in a sentence, and i is the 
index of the sentence that the character belongs to.  

C. Character Level Image Perception 

The output of the image processing function is the input of 
the BSB based character recognition function. The Brain-
State-in-a-Box model is a simple, non-linear, auto-
associative neural network. Human memory is said to be 
associative; that is, one event is linked to another event. 
Given a vague, partially formed idea or input, an associative 
memory will compare it against all other stored content until 
a match is found. In this context, a match refers to the 
resolution, completion, or connection of the full version, 
result, or 'answer' based upon the partial input located within 
memory. The BSB algorithm mimics this auto-associative 
behavior in that prototype patterns are stored as vectors in 
the neural network and are recalled when a ‘noisy' or 
incomplete version of the pattern is presented to the system. 

As mentioned in the system overview, BSB is used for 
character recognition within the ITRS. Characters in the 
system are represented by 15x15 pixel patterns. The system 
is trained with a character set and when a letter image is 
presented to the BSB algorithm, it is compared against all 
models in the system. This comparison is called the 'recall' 
stage. The 'winning' candidate characters are those that 
converge, or match, the closest to the images trained in the 
system. More than one character can be sent to the word-
level confabulation algorithm as a candidate, if multiple 
letters have the same degree of similarity to the input 

pattern. For particularly damaged characters, all letters in the 
alphabet can be considered candidates. An illustration of the 
BSB recall procedures is shown in Figure 3. 

D. Confabulation-Based Word Level Prediction 

The inputs of word confabulation are characters with 
ambiguities referred as candidates. For each input image, 
one or multiple character level candidates will be generated 
by the BSB model. In this work, we assume that each word 
has less than 20 characters. Any word that is longer than this 
will be truncated. If a word has less than 20 characters, it 
will be padded with white spaces. 

The work level confabulation model consists of three 
levels of lexicon units (LUs). There are 20 LUs in the first 
level and the ith LU in the first level represents the ith 
character in the word. There are 19 LUs in the second level 
and the ith LU in the second level represents a pair of 
adjacent characters at location i and i+1. Finally, there are 18 
LUs in the third level and the ith LU in the third level 
represents a pair of characters located at i and i+1. 

A knowledge link (KL) from lexicon A to B is an ܯ ൈ ܰ 
matrix, where M and N are the cardinalities of symbol sets 
SA and SB. The ijth entry of the knowledge link gives the 
conditional probability ܲሺ݅|݆ሻ, where ݅ א ஺ܵ, and  ݆ א ܵ஻. 
Symbols i and j are referred to as source symbol and target 
symbol. Between any two LUs, there is a knowledge link 
(KL). If we consider the lexicons as vertices and knowledge 
links as directed edges between the vertices, then they form 
a complete graph. 

Confabulation-based word level and sentence level 
prediction heavily relies on the quality of the knowledge 
base (KB). The training of the KB is the procedure to 
construct the probability matrix between source symbols and 
target symbols. Figure 4 gives a simple algorithm for the 
construction of the knowledge base. First the program scans 
through the training corpus and counts the number of co-
occurrences of symbols in different lexicons. Then for each 
symbol pair it calculates their posterior probability.  



 
 

 

 
 
 

 

 

 

 

 

Figure 4. A simple algorithm of knowledge base 
construction. 

The word level recall algorithm finds all words from 
possible combinations of input character candidates. For 
example, if the input candidates of a 3-letter word are: (w t s 
r p o k e c a ) for the first letter, (h ) for the second letter, and 
(y t s r o m i h e a) for the third letter, then the word level 
confabulation program will find 24 words, including “why”, 
“who”, “wha”, “thy”, “thi”, “the”, “tha”, “shy”, “sho”, 
“she”, “rho”, “phr”, “ohs”, “oho”, “ohm”, “kho”, “eht”, 
“cha”, “aht”, “ahs”, “ahr”, “ahm”, “ahh”, and “aha”. Note 
that some of these words are not dictionary words, as it is the 
nature of a confabulation model to “make up” some new 
combinations that seem to be reasonable according to its 
knowledge base. 

Figure 5 gives the recall algorithm. For each input 
candidate in each lexicon, the algorithm sets the 
corresponding symbols to be active. A lexicon that has 
multiple symbols activated is referred to as a ambiguious 
lexicon and the goal of the word level confabulation is to 
eliminate such character level ambiguity as much as possible 
or to transform it into word level ambiguity which can be 
further eliminated by sentence level confabulation.  

For each lexicon that has multiple symbols activated, we 
calculate the excitation level of each activated symbol. The 
excitation level of a symbol i in lexicon B is defined as: 

஻ሾ݅ሿܮܧ          ൌ ∑ ∑ ݈݇஺஻ሾ݆ሿሾ݅ሿ௝אሼ௔௖௧௜௩௘ ௦௬௠௕௢௟௦ ௜௡ ஺ሽ஺ஷ஻ ,  

where ݈݇஺஻ሾ݆ሿሾ݅ሿ is the knowledge value from symbol j in 
lexicon A to symbol i in lexicon B. The N highest excited 
symbols in this lexicon are kept active. These symbols will 
further excite the symbols in other ambiguous lexicons. This 
procedure will continue until the activated symbols in all 
lexicons do not change anymore. If convergence cannot be 
reached after a given number of iterations, then we will force 
the procedure to converge.  

E. Confabulation-Based Sentence Level Prediction 

For each word in a test sentence, the word level 
confabulation model generates one or multiple word 
candidates. They will be the input to the sentence level 
confabulation model.  

The sentence level confabulation model is very similar to 
its word level counterpart except that there are only two 
levels of LUs. The first level LUs represent single words 
while the second level LUs represent adjacent word pairs. 
The training and recall functions of sentence level 

confabulation have the same principle as these functions at 
word level. However, it is important to point out that for 
each word level lexicon there are at most 26 candidates 
while the number of possible candidates for a sentence level 
lexicon is countless. This makes the sentence level 
knowledge base extremely large and to locate an entry in the 
knowledge base is very time consuming. Two level hash 
functions are used to speed up the training and recall of the 
sentence level confabulation model. More details of sentence 
level confabulation can be found in our recent work [6]. 

 

 
Figure 5. Sentence completion: recall. 

IV. EXPERIMENTAL RESULTS 

A. Experiment Setup 

Experiments have been carried out to evaluate the speed 
and accuracy of proposed ITRS. Four different types of 
documents, each with different content, lengths, word and 
sentence-complexities are utilized to obtain a complete 
understanding of system performance. The first document is 
an extraction from the novel “Great Expectations” by 
Charles Dickens; the second document is a piece of business 
news; the third document is a children’s story and the last 
document is an extraction from a technical paper about 
speech recognition. As shown in Table 1, among those four 
documents, the Business and Tech documents have the 
longest words and the longest sentences in average. This 
observation justifies some performance trends that will be 
presented later in this section. 

In order to test the robustness of the ITRS, random noises 
are added to the input text image. We randomly select 
characters in the test document with probability p and 
modify its image by adding a horizontal scratch that is s 
pixels wide. In our experiment, p is varied from 20%, 40% 
to 60% while s is varied from 1, 2, 3, 5 to 9. Because each 
character image is 15x15 pixels large, increasing thickness 
of the scratch from 1 to 9 pixels is equivalent to increase the 
level of distortions from 6.7% (i.e. 1/15) to 60% (i.e. 9/15). 
A document with 20% of 1-pixel wide scratches is 
considered “lightly” damaged and a document with 60% of 

For each lexicon and each input candidate of this  lexicon

set the corresponding symbol to be active;

converged = FALSE;

iter = 0;

Set N = MAX_AMBIGUITY;

while(!converged) {

for each lexicon that has multiple candidates{

for each candidate  i{

calculate the excitation  level of i;

}

keep the N highest excited symbols  and set the others to be inactive;

}

iter ++;

if (the activation set does not change since the  last   iteration)

then converged = TRUE;

if (iter >= MAX_ITERATION)

then converged = TRUE;

}

Reset the co-occurrence matrix ۰ۯܗ܋ to 0, where 0 ൑ ,ܣ ܤ ൑ 58 
//count the co-occurrence of symbols 
For each sentence in training corpus { 
For each lexicon A, 0 ൑ ܣ ൑൏ 58 { 
    For each lexicon B, 0 ൑ ܤ ൑ 58 { 
        If  ܣ ്  ;++஻ሿݏ஺ሿሾݏ஺஻ሾ݋ܿ ,ܤ

        } 
} 

} 
//calculate the posterior probability (i.e. knowledge link) 

 ݈݇஺஻ሾ݅ሿሾ݆ሿ ൌ
௖௢ಲಳሾ௜ሿሾ௝ሿ

∑ ௖௢ಲಳሾ௜ሿሾ௝ሿ೔
, ݅׊ א ஺ܵ, ݆׊ א ܵ஻, 0 ൑ ,ܣ ܤ ൑ 39  



 
 

 

9-pixel scratches is considered “heavily” damaged. Figure 6 
shows some examples of a normal text image and damaged 
text images.  

Table 1. Statistics of Testing Documents. 

Each test document with different scratch severity levels 
and different levels of scratch probability will be measured 
for its processing time and accuracy. Time, unless otherwise 
noted, is the average confabulation time per word or 
sentence. Accuracy is defined as the percentage of correct 
character or word identification which results in a correct 
confabulation. If one character within a letter, or one word 
within a sentence, is confabulated incorrectly, the entire 
word or sentence is considered to be inaccurate. 

 
 
 
 
 
 

Figure 6. An example of a normal text image and 
scratched text images. 

The training corpus for the word level knowledge base is 
an English dictionary and the training corpus for the 
sentence level knowledge base consists of more than 70 
classics, including works from Aesop, Louisa May Alcott, 
James Matthew Barrie, the Bronte sisters, et al.  

B. Performance and Accuracy of Word Confabulation 
(WC) 

The first set of measurements shows the average word 
confabulation (WC) time versus the scratch severity (s) with 
increasing of scratch probability (p). The results are given in 
Figure 7 through Figure 10.  

A quick glance at the figures will yield three initial 
observations. The first is that the “Tech” or “Business” 
documents consistently have the longest average WC times 
across the entire range of different scratch probabilities for 
each plot. This is because, as we mentioned before, these 
two documents has the longest words and sentences. The 
second observation is that the WC time increases almost 
exponentially as the scratch probability increases. The third 
observation is that the difference of the WC time between 
different documents also increases super-linearly as the 
scratch probability increases. This means that, as the noise in 
the image increases, it gets more difficult to read a document 
that has long words and long sentences. 

 
Figure 7. WC time for input files with 1-pixel scratch. 

 
Figure 8. WC time for input files with 2-pixel scratch. 

 
Figure 9. WC time for input files with 3-pixel scratch. 

 
Figure 10. WC time for input files with 5-pixel scratch. 

One of the most important performance parameters is the 
accuracy of the system. Before examining the number of 
incorrectly confabulated words, it is useful to investigate the 
number of words that require confabulation as a percentage 
of the total number of words in a document. Figure 11 shows 
this information for the test document “Novel” for all scratch 
probabilities and severities. As we can see, about 4% more 
words need to be confabulated when the scratch severity 
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increases from 1 pixel to 9 pixels. This value remains almost 
constant for all scratch probabilities. This means that when 
the scratch severity increases, the BSB model can no longer 
recognize some characters with high confidence as it used to 
be able to. We also note that, when the scratch probability is 
20% document damage, about 57% to 63% of words need to 
be confabulated; when the scratch probability is 40%, about 
74~76% of the words need to be confabulated; and when the 
scratch probability is 60%, about 81~84% of words need to 
be confabulated. The percentage of words to be confabulated 
(i.e. the percentage of ambiguous words) is much larger than 
the percentage of characters that is scratched out (i.e. the 
percentage of ambiguous characters). This is because as long 
as one character in a word is scratched, the meaning of the 
word cannot be precisely determined. 

 
Figure 11. Percentage of words confabulated vs. scratch 

probability. 

Figure 12 shows the number of incorrect word 
confabulations as a percentage of total word confabulations 
performed. This is measured for each document at 20% 
scratch probability for all scratch severities. For scratches 
sized 1, 2, or 3 pixels wide, the system performs relatively 
well in terms of accuracy and there is no drastic performance 
decline until 5-pixel scratches are introduced. At that point, 
the accuracy of the word confabulations produced by the 
system begins to degrade rapidly. This trend is present 
throughout all experiments at any levels of the system. 

 
Figure 12.  Percentage of incorrect WC at 20% scratch 

probability. 

Figure 13 presents similar results as the previous plot for 
the input with 40% probability of damage. The amount of 
inaccurate confabulations produced by WC is still under 
10% for scratches under 5 pixels and degrades significantly 
after that.  

In both plots, it is apparent that the test files “Business” 
and “Tech” cause the system to perform worse than “Novel” 
and “Children”. It is interesting to note that although the 
average word length of “Tech” is less than that of 
“Business”, the word level inaccuracy of the “Tech” is 
slightly higher than that of the “Business”. This is probably 
because our sentence level knowledge base is training based 
a set of classics which are least similar to a science and 
technical paper. 

 
Figure 13.  Percentage of incorrect WC at 40% scratch 

probability. 

C. Accuracy of Sentence Confabulation (SC) 

Figure 14, Figure 15 and Figure 16 show the sentence 
recognition accuracy versus the scratch severity for each 
document type for 20%, 40%, and 60% damage. It is 
apparent that at 5 pixels, there is an extreme decrease in 
system accuracy from 1, 2 and 3 pixel scratches. This trend 
was seen in WC and is certainly present in SC. Again, the 
children’s story book has highest accuracy (i.e. the easiest to 
read) and the technical paper has lowest accuracy (i.e. the 
most difficult to read.)  

 
Figure 14. Sentence level accuracy (p = 20%). 

At 20% scratch probability, the accuracies for input files 
that have 1, 2 and 3 pixels scratches are almost constant at 
81%, 84%, and 83%, respectively. However, at 5 pixels the 
accuracy drops to 35%, and at 9 pixels the accuracy is at 
13%. That is almost a 50% drop in performance. The gap 
between a 1, 2, and 3 pixel scratch and a 5 pixel scratch 
increases slightly when the scratch probability increases. At 
40% probability, the difference between 3 and 5 pixel wide 
scratches is 59%. We cannot get any result for inputs with 5 
or more than 5 pixel scratches at 60% scratch probability. 
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Because there is too much ambiguity and too many 
candidates, the word and sentence confabulation processes 
are extremely slow. 

 
Figure 15. Sentence level accuracy (p = 40%). 

 
Figure 16. Sentence level accuracy (p = 60%). 

Table 2 gives the average sentence level accuracy of all 
four test documents. It highlights an important observation: 
the width of the scratch is more damaging to performance 
than the probability of scratches on a document. That is, the 
amount of damage to a document is not as destructive as the 
severity of the damages. As shown by the table, when 
increasing the scratch probability from 20% to 60%, there is 
only 9% drop in accuracy if the scratch is 1 pixel wide. 
Since a 3-pixel scratch represents 20% distortion and a 5-
pixel scratch represents 33% distortion in a 15x15 pixel 
image, increasing the scratch severity from 20% to 33% 
leads to a 48% accuracy drop at 20% scratch probability.  

Table 2. Average sentence level accuracy. 

Accuracy 1 2 3 5 9 

20% 81% 84% 83% 35% 13% 

40% 72% 69% 67% 8% 5% 

60% 72% 66% 54% X X 

D. Overall Runtime 

Figure 17 through Figure 19 show the total runtime time to 
read each test document under different scratch probability 
and severity conditions. This includes the time for character 
level, word level and sentence level processing. Note that the 
overall runtime is proportional to the length of the 

document. Therefore the overall time to read the test file 
“Novel” is the longest as it has the most number of words.  

In these figures, again, we can see a rapid runtime increase 
from 3-scratch input to 5-scratch input. This indicates that 
when the scratch severity increases from 20% to 33%, the 
ambiguity of the text significantly increases. This does not 
only impair the reading comprehension of the file and also 
tremendously increases the reading time.  

 
Figure 17. Overall runtime to read test file “Novel”. 

 
Figure 18. Overall runtime to read test file “Business”. 

 
Figure 19. Overall runtime to read test file “Tech”. 

V. CONCLUSION 

In this paper we present a hybrid cognitive architecture 
combining two neuromorphic computing models, i.e. brain-
state-in-a-box (BSB) and cogent confabulation, for context 
aware text recognition. The BSB model performs the 
character image recognition while the confabulation models 
perform the situation-aware prediction based on word and 
sentence knowledge bases. Its accuracy and performance are 
analyzed. Our experimental results show that the severity of 
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the distortion instead of the frequency of occurrence of the 
distortion has more impact on the accuracy of the software 
tool. 
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