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Abstract—Inference models such as the confabulation network
are particularly useful in anomaly detection applications because
they allow introspection to the decision process. However, building
such network model always requires expert knowledge. In this
paper, we present a self-structuring technique that learns the
structure of a confabulation network from unlabeled data. With-
out any assumption of the distribution of data, we leverage the
mutual information between features to learn a succinct network
configuration, and enable fast incremental learning to refine the
knowledge bases from continuous data streams. Compared to sev-
eral existing anomaly detection methods, the proposed approach
provides higher detection performance and excellent reasoning
capability. We also exploit the massive parallelism that is inherent
to the inference model and accelerate the detection process using
GPUs. Experimental results show significant speedups and the
potential to be applied to real-time applications with high-volume
data streams.

I. INTRODUCTION

Anomalous data stream detection is inherently hard. Firstly,
labeled data are expensive to obtain, and some abnormal
classes are not foreseeable by the time of modeling. Secondly,
the input streams are continuous and infinite, which requires
the model to learn new data by one pass and recall in a
real-time manner. Thirdly, users require more than just output
labels, so the algorithm should also provide insights into
the decision-making process. Such restrictions rule out many
traditional methods such as multi-class classifiers, off-line
analysis and obscure models.

Studies [8], [9] suggest that manually configured confabu-
lation networks [14] can effectively detect outliers and provide
reasoning in some well understood problems. However, build-
ing such networks might require expert knowledge. Thus the
neuron nodes (i.e. lexicons) and the synapses (i.e. knowledge
links) between them must be re-configured when applied to
new applications. This limitation makes the confabulation-
based approaches inflexible in handling different datasets. To
address the above problems, we present AnRAD (Autonomous
Anomaly Reasoning and Detection), a transparent framework
that provides real-time online detection using a self-structured
confabulation network.

To motivate the discussion about transparent network and
self-structuring, consider an example of detecting voice record-
ings spoken in foreign languages. An artificial neural network
can be used to identify a non-English clip. It encodes vocal
features into nodes through weighted links and the weight
adjustment is achieved by repeated practice of native tongues.

Although such detection is fast, it does not reveal why the clip
is not in English since the nodes lose the original meanings. In
contrast, a confabulation network preserves the meaning of the
features, and therefore, it might reveal some inconsistencies
of tone combinations in the English context. Although the
recall process might be slightly slower than that of a neural
network, it provides valuable information about why a tested
subject is labeled as an anomaly. Unlike neural networks that
employs fixed numbers of nodes and links, which nodes to
select and how to connect them together in the confabulation
network is application specific, and hence usually requires
domain knowledge from the experts.

In this work, we present a self-structured confabulation
network model, whose configuration is learned from an initial
set of data. The proposed self-structuring technique concretely
learns from the data a succinct set of nodes that represent
original features or combinations of features. These nodes
are named lexicons because they record the symbolic repre-
sentations of the possible inputs. The links between nodes
are also learned from the initial data. Given the learned
network configuration, further incoming data streams are used
to incrementally refine the knowledge links to calculate the
conditional probability between the lexicon symbols. The
learned knowledge bases are accessed in the recall phase to
test the inconsistency of each node (Section III). A GPU-based
parallel implementation is adopted to achieve computation
acceleration. The proposed framework is generalized to a wide
range of applications. In this work, it is applied to road-traffic
monitoring, network intruder detection and program control
flow as case studies.

The key contribution of this work is an automatic procedure
that learns the structure of a confabulation network from the
incoming data (Section IV). The constructed model consists
of well-defined nodes that capture both spatial and temporal
relations among the features of the dataset. Also, a method of
incremental model refinement is proposed, which effectively
constructs the knowledge base on-the-fly using the incoming
data streams (Section IV-E). The detection performance is then
compared with those of classical methods in Section V. Last
but not least, the recall process is implemented on a GPU to
provide real-time detection capabilities (Section VI).

II. RELATED WORK

Extensive studies on anomaly detection [7] have been car-
ried out. In principle, they can be divided into four categories:
classification-based, nearest-neighbor-based, cluster-based and



statistical methods. The classification-based methods learn a
classifier from labeled training data and classify a test subject
into one of the classes. Examples include SVM, rule-based and
neural networks. However, the classification-based detector
requires labeled data as the training set, which limits their
applicability in unsupervised scenarios. Self-organized map
(SOM) [6] and replicator neural networks [13] were studied
to remedy the dependency on training labels. However, they
still cannot avoid the obscurity of neural network models. The
nearest-neighbor-based detector assumes normal data occurs
in dense neighborhoods while anomalies are far from their
neighbors. The relative density has been defined in local
distance (LOF) [4] or rank [15]. To remove the off-line
limitation and reduce the complexity, an incremental variation
of LOF was developed [20]. But the recall complexity of
the method scales with training sample size, which makes it
unable to handle large data sets or streams. The cluster-based
techniques are unsupervised, and assume normal instances
belong to a cluster in the data while anomalous ones do
not [12]. However, it also suffers from high complexity and
does not support on-line training. The statistical models fit the
data with parametric distributions and considerable anomalies
occur in the low probability regions [1]. But they cannot
handle streams with varying distributions. Finally, all of the
above methods consider testing the subjects as single data
points. When applied to detecting abnormal data streams,
they all require moving-window-based or segmentation-based
preprocessing on the data stream.

Cogent confabulation [14] has been applied to sentence
completion [2], [21] and document image recognition in pre-
vious studies. The theory exploits the concept of distributed
and symbolic information representations of the brain [22],
and is applied to inference-based cognition. One previous
work extends the theory to abnormal road traffic detection
[8]. But the manually configured model lacks the flexibility
to be extended to other data sets. To our best knowledge,
there is no prior study in self-structured confabulation network
dedicated for anomalous stream detections. Also, there is a
challenge to provide real-time detection with a transparent net-
work. Although the combination of machine learning and high
performance computing (HPC) has received wide attentions
[3], [23], this has not been explored for confabulation-based
anomaly detection applications.

III. CONFABULATION-BASED ANOMALY DETECTION

AnRAD is a confabulation-based anomaly detection frame-
work. Given an input, test is carried on each key node.
Each test calculates an anomaly score reflecting how much
the observed input deviates from general experiences. The
anomaly score is determined by the excitation levels of lexicon
symbols computed based on the cogent confabulation princi-
ple, hence symbolic level parallelism can be achieved. This
section explains how the single test nodes work together to
obtain a network anomaly score.

Cogent confabulation is a connection-based cognitive
model that captures correlations between features at the sym-
bolic level. In this model, the observed attributes (e.g. black
color, 30mph speed) are referred to as symbols, and their
pairwise conditional probabilities are referred to as knowledge
links. Symbols are analogous to neurons in biological nervous

system, and knowledge links are analogous to synapse plas-
ticity between neurons. For better organizing the knowledge,
neurons that represent the same features (e.g. colors, speeds)
are grouped into lexicons, and links between lexicons are real-
ized as probability matrices. Lexicons and the knowledge links
between lexicons form a knowledge graph; therefore, we also
refer to lexicons as nodes. During learning, these knowledge
links are established and strengthened as symbols being co-
activated. Given new observations, familiar information with
high relevancy will be recalled from the knowledge base. This
relevancy measure, called excitation level, is calculated by the
following function (1).

el(t) =
X

k2Fl

{
X

s2Sk

[I(s)ln
p(s|t)
p0

] +B}, t 2 S
l

(1)

In this function, t is one of the symbols of node S
l

to
recall; F

l

denotes the set of nodes that have connections to
l, and S

k

is the symbol set of lexicon k; I(s) is the firing
strength of source symbol s; p0 is the minimum probability
that considered informative; B is a constant band gap to favor
symbols receiving more activation from distinct lexicons. The
excitation level is essentially the log likelihood of symbol s
given the rest of the observations.

Originally, the confabulation model is used to infer the
most likely symbols. This work, however, applies the theory
in a reverse way. To start with the model, application’s di-
mensional features are defined as lexicons, within which those
having incoming connections are called “key lexicons” and
serve as the basic testing units. The other lexicons without
incoming connections will not be tested, and are named
“supporting lexicons”. The excitation levels of all possible
symbols in a key lexicon is calculated according to function
(1). The symbol with the highest excitation (i.e. the highest
likelihood) is considered the reference symbol. An anomaly
score is calculated for the observed input symbol using the
following function (2).

as
l

(v) =
ref

t2Sl(t)� el(v)

ref
t2Sl(t)

, v 2 S
l

(2)

The score is the normalized excitation difference between
observation el(v) and reference symbol ref

t2Sl . It reflects how
low the observed symbol’s cogency is compare to its context.
In this way, all key lexicons have their individual anomaly
score calculated and accumulated to a network anomaly score.
If the input is truly abnormal, the score is expected to be high,
as many nodes would show deviations. The network anomaly
score (nas) is computed by averaging the prior-modified node
scores as⇤

l

. In equation (3), L is the number of key lexicons,
and the output score is ranged in [0, 1].

nas(v
l=1...L) =

P
L

l=1 as
⇤
l

(v
l

)

L
(3)

as⇤
l

(v 2 S
l

) =
(ref

t2Sl(t) + lp(t))� (el(v) + lp(v))

ref
t2Sl(t) + lp(t)

(4)

where lp(v) = ln(pr(v)/p0) is the logarithic prior probability
of symbol v. The workflow reveals a promising approach to
fulfill the requirements for anomalous stream detection, but
its performance essentially depends on the selection of key
lexicons and their incoming links. To construct the confabula-
tion network requires application specific knowledge. Expert



Fig. 1. AnRAD workflow

knowledge may not always be available, and it does not always
ensure optimal network structure. Self-structuring then plays
an important role to improve the framework’s generality and
applicability.

IV. MODEL-LEARNING ALGORITHMS

In the AnRAD framework, inputs can be represented as
data stream {x1, x2, ..., xt, ...}, generated from some distribu-
tion D. Here xt represents a record tuple at time frame t, and
consists of Q features denoted by xt(q). As shown in Fig. 1,
in the structuring stage, a span of the data at frame [0, T

g

] is
sampled and used to construct the hierarchical confabulation
network G that best describes the application. The strucuring
procedure has three components: combination pooling, node
reduction and link selection. After the network is constructed,
new streams at (T

g

, T0] are used to train the initial knowledge
bases KB

Tg :T0

G

. The knowledge bases are applied to streams at
(T0, ...) to generate network anomaly scores for each frame. At
the same time, the new incoming data continuously refine the
knowledge bases KB

Tg :t
G

. Typically, a moving window with
size W , {xt�W , ..., xt�1, xt} is applied to the input stream at
frame t to select the data for processing. This section addresses
the generation of network G and refinement of knowledge base
KB

Tg :t
G

.

A. Key Node Hierarchy

The confabulation model can only capture the first order
relation between features. A higher order relation has to be
considered by adding new lexicons corresponding to feature
combinations. The final structure of confabulation network
consists of hierarchical lexicons where higher-level nodes are
formed as the compositions of lower-level nodes as shown in
Fig. 2. Lexicons at the bottom layer represent single primary
features. These primary features provide a basic description
of the input data. The higher-level lexicons assemble multiple
primary features; they represent more abstract meanings and
combinational patterns. The layered structure provides direct
mapping from the feature space to nodes in the knowledge
graph, but its complexity may increase exponentially if im-
plemented naively. Since the confabulation network works at
the symbolic level, continuous features are discretized before
mapping to symbols in lexicons. Given the composition of fea-
tures, higher-level lexicons have coarser discretization intervals
than lower level lexicons. For the study cases in this work,
the equal-width bins are used for the primary features. The
higher-level lexicons have each of their component features
discretized with bins two times wider than in the previous

Fig. 2. Hierarchical Structure Example

lower orders. More sophisticated method may be developed to
further improve the performances.

Note that each input data point is a segment of the data
stream within a time span. The primary features may also
have a timestamp. The composition of features does not
only happen spatially but also temporally. For example, there
may be a feature composition hxt

n

(q), xt

n

(q0)i, q, q0 2 Q, or
hxt

n

(q), xt��t

n

(q)i,�t < W . Hence, temporal relations among
them are also learned and checked.

A question raised here is which feature combinations
should be included. If the model simply considers all possibil-
ities, it would quickly scale to an intractable lexicon size as Q
and W increase. This is both unnecessary and computationally
wasteful. Another option is to rely on traditional feature
reduction techniques. Although these techniques have long
been studied, they either require supervised learning [17],
or destroy the direct relation (one-to-one mapping) between
feature space and lexicon space (principal component analysis
[16]). None of the previous techniques have been applied to
feature combinations. To solve the problem, we propose a
pool-reduction procedure that is applied in both spatial and
temporal domains to construct the key lexicon’s hierarchy.
Furthermore, a link selection algorithm is also presented to
find the connections between the nodes and their supports.

B. Feature Combination Pooling

As mentioned previously, we complement the primary
features with a set of composite features to capture higher
order associations. We refer this step as feature pooling. The
pooling stage generates a set of lexicon candidates, which will
be reduced as discussed in the next section.

Take a simple two-feature combination for instance, the
first question to ask is whether such combination provides
more information for anomaly detection than the individual
feature components. Consider the example scatter plot in Fig.
3, where the X and Y axes represent the dimensions of
the two primary features. If the two features are distributed
independently in their feature space as those blue dots in Fig.
3a, a potential outlier (the red dot) in this subspace can be
detected by considering only one of the components. Therefore
combinations of non-correlated features do not offer additional
information. However, if the two features are sufficiently
relevant as shown in Fig. 3b, the red dot, which is originally
indistinguishable from any single axis, will be detected by their
combination. Based on this observation, the pooling procedure
is design to keep the combination of highly correlated features.



(a) Uncorrelated Components (b) Correlated Components

Fig. 3. Relevant Feature Example

To extend this concept to more general cases, we define the
feature distance d(q

i

, q
j

) = [1 �MI(q
i

, q
j

)] 2 [0, 1], where
MI(.) calculates the normalized mutual information between
the two vectors. The smaller the distance is, the more relevant
the two features q

i

and q
j

are. For combination Q
l

consisting
of two or more features, a simple relevancy test is performed
to determine whether it is included in the lexicon candidate
set:

RT (Q
l

) =
Y

qi,qj2Ql

I[d(q
i

, q
j

) < d
prox

] (5)

This test requires all the component pairs in Q
l

to be suffi-
ciently close to each other. And d

prox

is a constant proximity
distance that defines the largest distance that is considered
relevant. Algorithm 1 is used to pool the features for lexicon
generation. The algorithm first adds all the single features into
the candidate set. Then in the second for-loop, each subset of
Q whose cardinality is less than max order is inspected. If the
subset passes the relevancy test, a new lexicon candidate will
be added for it. Not all candidates will be key lexicons whose
anomaly score will be calculated. A reduction stage is used to
select the key lexicons from the candidate set.

Algorithm 1 Feature Combination Pooling
1: procedure pool(Q, max order): # Q: the com-

plete feature set; max order: the maximum combination
order

2: CS  empty set
3: for each feature q 2 Q:
4: add {q} to CS
5: for each Q

l

⇢ Q and |Q
l

| < max order:
6: if all Q

l

0 ⇢ Q
l

was accepted and RT (Q
l

) passed:
7: add Q

l

to CS
8: return CS # feature combination candidate set

C. k-NN Node Reduction

Although the pooling process excludes most of the irrel-
evant combinations, the number of possible candidates may
still be large if Q has many features. Therefore, a reduction
procedure is used to further compress the candidate set to
generate key lexicons. The redundancy among candidates
selected in the pooling stage should be removed during the
reduction. Because labels are not available in the training set,
a similarity-based method [19] is modified to preserve the most
representative combinations.

The general idea of the reduction procedure is to cluster
the candidate feature combinations by their similarity, and then

select one representative from each of the clusters. Again,
normalized mutual information is employed to measure the
distance d(Q

l1, Ql2) between the combinations. The cluster-
ing process is accomplished by k-NN (k nearest neighbor)
principle. While the most compact candidate is selected from
a cluster, its neighbors will be discarded. This operation
repeats until the remaining candidates cannot form any cluster.
The reduction procedure is described in Algorithm 2. The
algorithm first initializes the set KEY with all candidates.
Then it calculates the distances from each combination to its
nearest neighbors. The center of the compact cluster has its k-
distance selected as the upper limit of cluster radius. Then in
the following while-loop, the combination with minimum k-
distance is selected and has its K neighbors removed from
the KEY set. Then the K value is reduced until the next
cluster would have a smaller radius than the radius limit. The
neighbor-removing process repeats until K reaches 1. The
remaining candidates in KEY set are the final nodes selected.

Algorithm 2 Node Selection
1: procedure knn(CS, K): # CS: pooled candidate

set; K: the initial K
2: KEY  CS
3: for each combination Q

l

2 CS:
4: for Q

k

2 K nearest neighbor of Q
l

:
5: Q

l

.dist[k]  d(Q
l

, Q
k

)
6: find Q0 who has the smallest k-distance
7: max err  Q0.dist[K-1]
8: while K > 1:
9: find Q

r

who has the smallest k-distance
10: remove Q

r

’s K nearest neighbor from KEY
11: radius  min(Q

x

.dist[K � 1]) for Q
x

2 KEY
12: while radius > max err:
13: K  K � 1
14: radius  min(Q

x

.dist[K � 1]) for Q
x

2 KEY
15: return KEY # key node set

Although we use the features in Q as an example to
explain the pooling-reduction procedure, the concept in
Section IV-B and IV-C can be applied to temporal domain
as well. When the data inputs are not just single points in
the feature space but multi-variant time series, the definition
of anomalies may extends to historical patterns. To capture
such potential outliers, the key lexicons must include not only
different features, but also feature projections in different
frames. This can be accomplished by performing feature-wise
selection followed by temporal selection. If multiple frames
are considered after the key lexicons being built, each lexicon
along with its historical readings form a new temporal feature
set QW

l

= {Q0
l

, Q�1
l

, ..., Q�W

l

}. The same pooling-reduction
algorithms can then be applied directly on these feature sets
to generate informative and succinct key lexicons. A key
lexicon is represented as a two-dimensional pattern R

l

⇠
[(q

l1 , ql2 , ..., qli , ...)
�t1 , (..., q

li , ...)
�t2 , ...(..., q

li , ...)
�tj , ...].

Furthermore, the number of correlated frames W is usually
much smaller than the feature number in Q, so the reduction
process may sometimes be omitted in temporal selection.

D. Link Selection

Now that the key lexicons are identified, the next step is
to find the supporting lexicons that can be used to infer the



key lexicon symbols. To do so we follow a max-similarity,
min-redundancy principle. For instance, to infer the shape of
an object, touching is preferable compared to color (max-
similarity). But if touching is already selected, weighting
might not be necessary as they share some information (min-
redundancy). Generally, we want to maximize the correlation
between key lexicons and their supporting lexicons, and mean-
while, minimize the correlation among the supporting lexicons
that are connected to the same key lexicon. The supporting
lexicons are chosen from the primary features since the key
lexicons have already handled the combinational patterns.

Algorithm 3 Link Selection
1: procedure select links(R, F ): # R: target node;

F : set of single features
2: SUPP  empty set
3: ranks  F .sort(key=d(R, q 2 F ))
4: for feature q 2 ranks:
5: if q 2 R or d(R, q) > (1� d

prox

):
6: continue # low similarity
7: if any p 2 SUPP has d(p, q) < d

prox

:
8: continue # high redundancy
9: add q to SUPP

10: return SUPP # support nodes for R

Heuristic Algorithm 3 finds a group of features at certain
time offset, {q�t, q 2 Q, t < W} which infer the observation
at key lexicon R

l

. The algorithm first sorts the supporting
features by their distances to the target key lexicon. Then it
traverses the sorted features, adds a primary feature to the
supporter set only if: (1) it is not one of the components of
the key lexicon; (2) it is highly correlated with the key lexicon;
and (3) it has low correlation with supporting features that has
already been selected for the same key lexicon.

At this point, the confabulation model is properly config-
ured, and the training streams can be processed to build the
knowledge base.

E. Incremental Training

Given the configured confabulation network, AnRAD then
constructs the knowledge base from the input data streams.
Basically, the learning process is to find out the weight of the
knowledge links, i.e. the p(s|t) values in Equation 1. This can
be achieved by collecting the statistics of co-occurrences of
linked lexicon symbols. The probability then is calculated as
p(s|t) = cnt(s, t)/cnt(t), where cnt(s, t) is the number of
co-occurrence of the source and target symbols s and t, while
cnt(t) is the occurrence of target symbol t.

For inferencing tasks, above method works fine because
more data samples generally give better accuracy regarding
the most likely candidates. However, anomaly detection is
different, in that the most unlikely candidate is not necessarily
more distinguishable as the sample size increases. Actually,
some studies [25] even suggest smaller datasets outperform
larger ones. Constantly incrementing the co-activation counters
may even degrade the detection performance. Therefore, our
framework uses a mechanism named “episodic training”, in
which the co-activation counters reset after every time period
T
ep

. Then the excitation stored in the knowledge base is

updated by merging the new one into previous episodes.

exE+1(s, t) =
exE(s, t) ⇤ E + ln[p(s|t)/p0]

E + 1
(6)

ex0(s, t) = ln(
p(s|t)
p0

) (7)

exE is the stored excitation at episode E. It can be substituted
into equation (1) as el(t) =

P
k2Fl

{
P

s2Sk
[I(s)ex(s, t)]+B}.

In the case before first reset, i.e. ex0, the result is the same
as equation (1). Essentially, this updating function works as
ensemble of temporal sub-samples.

V. EVALUATIONS

To evaluate the effectiveness of the framework, we investi-
gate three different datasets. The first dataset contains vehicle
traces. The second one is composed of extracted package
streams from DARPA 1998 intrusion detection dataset [18].
The last case contains system call sequences of benign and
malicious programs on Linux workstations [10], [11]. Since the
AnRAD framework and the baseline methods generate scores
for each input frame, we used a same leaky bucket algorithm
[24] with capacity 2.0 and leak rate 0.5 as the decision stage for
the data streams. Whenever the score generated by a method
exceeds its threshold, it fills 1 unit into the bucket. The stream
is reported anomalous when the water overflows the bucket.

A. Abnormal Vehicle Behavior Detection

In this application, vehicle traces are obtained from an area
road network. The preprocessor extract 10 primary features
of which 5 are vehicle features (latitude, longitude, speed,
direction, and vehicle type) and 5 are interactive features (the
neighbor vehicle’s distance, speed, relative position, direction
difference and type). The self-structuring procedure picks 44
key lexicons out of 2548 possibilities given max order = 5
(feature-wise pooling) and = 3 (temporal pooling). The traffic
records are generated at one-second sampling intervals and
in four randomly picked zones. The training stage consumed
240 minutes of traces and another 10-minute trace is used
as the test set. Among the test data, there are 179 vehicles
without intentional modification used as negative cases, and
22 manually created anomalies of different categories are used
as positive cases.

Fig. 4 shows the detection results of anomaly classes. The
Y-axis is the alarm rate and the X-axis is the network anomaly
score threshold. It is observed that the normal vehicles generate
a much lower alarm rate compared to abnormal ones. When
threshold is 0.14, all abnormal vehicles are labeled positive by
AnRAD while the false positive rate is at the order of 10e-2.
Therefore, for vehicle anomaly detection tasks, the framework
leaves a wide margin to trade between detection and false
alarm.

AnRAD provides the reasoning ability, in that the positive
labelings can be explained by introspecting the anomaly scores
of the key lexicons. For instance, Table I shows the relationship
between the key lexicon scores and the manually annotated
anomaly classes. In this example, key lexicons generating an
anomaly score higher than 0.8 are defined as “outstanding”.
We count the outstanding occurrences and sort the top three
lexicons for each annotated class. For speeding and sudden



Fig. 4. Vehicle Detection Result

TABLE I. CORRELATION BETWEEN ANOMALY TYPES AND
OUTSTANDING NODES

Anomaly Top 3 Outstanding Nodes

sudden stop 1. hspeedi; 2. hneighbor(1).speedi;
3. hneighbor(1).distancei

speeding
sedan

1. hspeedi; 2. hneighbor(1).speedi;
3. hneighbor(1).distancei

tailgating
1. hspeed, neighbor(1).distancei;
2. hlongitude, latitude, speed, directioni;
3. hlongitude, speed, directioni

deviating from
driveway

1. hlongitudei;
2. hlongitude, latitude, neighbor(1).directioni;
3. hlongitude, latitude, directioni

speeding truck
1. hvehicle size, longitude, longitude�2i;
2. hlatitude, speed, neighbor(1).distance,

neighbor(1).speedi;
3. hvehicle size, longitude, longitude�1i

stops, such anomalies are closely related to vehicle speed;
our analysis also shows that the most outstanding lexicon for
this type of anomaly is hspeedi. Tailgating happens when one
vehicle fast approaching another, so it can be explained by
that the composite lexicon of speed and distance to the first
neighbor has an increase in its anomaly score. Anomalies such
as deviating from the road are usually coupled by high anomaly
scores in coordinates-related lexicons. Finally, trucks may be
caught speeding even if this speed was normal for a sedan.
Such behavior causes high scores at the composite lexicons
of vehicle size and the displacement in consecutive frames.
The example shows that the AnRAD framework can provide
explanation to its positive results without training labels or
domain knowledge.

B. Comparative Evaluations

The proposed framework (AnRAD) is tested by fully
labeled datasets and compared with other baseline methods.
The baseline algorithms considered are: density-based method,
incremental local outlier factor [20] (LOF); classification-
based method, replicator neural network [13] (RNN); and rule-
based method, cross-feature analysis [5] with CART decision
trees (CFA). Although the baselines do not have all functions
that AnRAD provides, such as reasoning and incremental

Fig. 5. DARPA dataset evaluation

training, here only the detection performances are considered.

The first dataset is processed from DARPA 1998 tcpdump
files. For each IP address pairs, traffic statistics are recorded
per 300ms-frame. In total, 21 primary features are extracted
from the raw dump files. Some examples of the features are
bytes from client (or server) to server (or client), service ports
and number of clients connected with a server. We do not
use the session-oriented KDD 99 dataset [26] because we
would like to investigate concurrent data streams rather than
session-oriented data points, and our processing also leverages
less attack specific domain knowledge. The self-structuring
network picks 123 key lexicons out of 446320 possibilities
given max order = 5 for both feature-wise and temporal
pooling. For training, normal streams from the seven weeks of
training data are randomly sampled and about 20000 frames
are selected. The negative class for test has another 7000
streams, and all the attacks (422 streams, 24 categories) in
the seven weeks form the positive class. The moving window
size is five frames for all methods.

The receiver operation curves (ROC) for comparing meth-
ods are plotted in Fig. 5 with X-axis representing the false
alarm rate and Y-axis representing the true detection rate.
Note that the true positive rates are averaged across anomaly
categories to prevent the result from being biased by some
large classes. The proposed method obtains the best area under
curve (AUC) comparing to Incremental LOF, neural network
and decision tree methods. So AnRAD has the advantage in the
tradeoff between false alarm and detection rate. This is because
the model construction is able to capture implicit patterns while
the general baseline methods cannot. In this example, LOF and
neural network methods outperform the decision tree approach
because they work better with continuous features.

The second dataset is the system call sequences from the
ADFA-LD dataset, which has discrete features. The training
data consist of less than 20000 system calls. The testing
data have about 6000 sequences from the validation set and
746 sequences from the attack set. To enable LOF, we use
Levenshtein Editing Distance; for the neural network method,
100 frequent and orthogonal system calls are sampled from
the training set as template points, and the input layer of the



Fig. 6. ADFA-LD dataset evaluation

network receives the calls’ distances to these templates. The
moving window size is set to six consecutive calls.

In Fig. 6, the AnRAD and the decision tree methods
outperform the other two. This is because the latter two
approaches cannot adapt to pure categorical features well. The
decision tree has marginally better AUC score, but it suffers
from the overfitting problem: it cannot reach a false positive
rate lower than 19%, although the performance is good at high-
detection-rate regions.

The comparisons in this section demonstrate the AnRAD
framework’s detection performance is competitive or superior
to classical methods. Besides, AnRAD is the only method that
provides incremental training, transparency and adaption to
both continuous and categorical data.

C. Knowledge Base Refinement

Training in Section V-B uses clean samples, i.e. no anoma-
lies are intentionally inserted. However in real unsupervised
case, there is no guarantee of the training set quality. So it
is important that the framework can incrementally improve
the knowledge base quality. In this experiment, we firstly
train confabulation networks with anomalous data. Then clean
training sets are segmented into 10 episodes and fed into the
knowledge base one by one. At each stage, the model tests the
same evaluation set, and have the AUC scores collected.

In Fig. 7, for both DARPA and ADFA datasets, the score
starts low because the anomalous training samples result in
poor knowledge base quality. As more data stream received,
the AnRAD framework is able to correct the erroneous
knowledge continuously. We can observe that the detection
performance being continuously optimized by new and better
training samples. Therefore, the proposed episodic training
method is effective.

VI. GPU ACCELERATION OF RECALL

Section V demonstrates the detection quality of AnRAD.
However, deploying it for real-time detection requires com-
puting performance optimization. Since the network struc-
turing can be achieved offline and the training is already

Fig. 7. AUC score change with training stream

fast (less than 5ms/frame on the DARPA dataset) without
optimization efforts, the bottleneck is the score calculation (>
200ms/frame on the DARPA dataset) described in Section
III. Fortunately, the confabulation network has inherent layered
and massively parallel structure. And this can be exploited to
improve the runtime performance of the recall process.

According to anomaly score equations (1) and (2), the
AnRAD detection process must calculate the excitation level
of each symbol in each key lexicon. The serial complexity of
detecting one instance is O(LDF ), where L is the number
of key lexicons, D is the average number of symbols in one
key lexicon, and F is the average number of knowledge links
connected to one key symbol. For parallel implementation at
the node level, each key lexicon works as an independent test,
so they can be distributed to multiple computing elements
(i.e. CUDA blocks). In the symbol level, knowledge links can
be distributed to different CUDA threads to enable parallel
processing.

We propose to re-map the workload to the GPU as shown in
Fig. 8. We assign a CUDA block for each key lexicon, or part
of a large lexicon that consists of many candidate symbols.
During the system initialization, the trained confabulation
model is flattened and loaded to the GPU as an in-memory
knowledge base. The input streams are organized into lexicon
symbols and dynamically sent to the devices at each frame. A
CUDA block computes the anomaly score of its key lexicon
by accessing different portions of the knowledge base. Threads
within a block utilize the shared memory to compute the
anomaly score Equation (2) cooperatively.

The GPU recall implementation is evaluated by the three
datasets in Table II. For serial implementation, programs run
on Intel Xeon W5580 with 3.20GHz frequency; for GPU
implementation, the device used is NVIDIA Tesla C2075 with
448 CUDA cores at 1.15GHz. Compared with the single-
threaded CPU baseline, the parallel version reduces the runtime
substantially. It is observed that at least a 200X speedup is
achieved. The design fully exploits the concurrent structure of
the confabulation model. Also, breaking down large lexicons
alleviates the block resource requirement and helps the kernel
achieve 100% theoretical occupancy.



Fig. 8. Workload mapping on GPU

TABLE II. ACCELERATION OF GPU IMPLEMENTATION

Dataset Serial time GPU time Speedup
DARPA 200.5ms 0.375ms 535X

ADFA-LD 10.8ms 0.0402ms 269X
Vehicle 78.6ms 0.247ms 318X

VII. CONCLUSION

We have presented a self-structured confabulation frame-
work that provides real-time anomaly detection for data
streams. The framework learns the application-specific con-
figuration of network hierarchy from the data. Results show
competitive detection accuracy and reasoning ability without
the aid of training labels. Furthermore, the recall algorithm
is significantly accelerated by GPUs with fine-grained paral-
lelization. In the future work, we will improve the workload
distribution so that testing instance can be dynamically as-
signed to multiple heterogeneous devices.
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