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Abstract—The problem of bridging the gap between image and
natural language has gained more and more attention in recent
years. This paper continues to push the study and improves the
bidirectional retrieval performance across the modalities. Unlike
previous works that target at single sentence densely describing
the image objects, we extend the focus to associating deep image
representations with noisy texts that are only loosely correlated.
Based on text-image fragment embedding, our model employs a
sequential configuration, connects two embedding stages together.
The first stage learns the relevancy of the text fragments, and
the second stage uses the filtered output from the first one to
improve the matching results. The model also integrates multiple
convolutional neural networks (CNN) to construct the image
fragments, in which rich context information such as human
faces can be extracted to increase the alignment accuracy. The
proposed method is evaluated with both synthetic dataset and
real-world dataset collected from picture news website. The
results show up to 50% ranking performance improvement over
the comparison models.

I. INTRODUCTION

Learning to associate images with loosely correlated texts
is an important feature for many retrieval applications. From
textual input, we can search for images with natural language,
or intelligently assign illustrations to news articles. Given an
image, it is possible to generate caption automatically, or to
locate relevant documents from a text database. In this paper,
we seek to improve the cross-modal matching performance
given that the text-image parallel datasets are not specially
constructed for query purposes.

There has been extensive researches on bidirectional map-
ping between images and words/sentences [9], [15]–[18],
[24]. Learning an embedding space of different modalities is
proved to be effective for high-quality datasets with descriptive
sentences. But the task becomes much more challenging when
tightly coupled text-image pairs are not available. The parallel
text may contain many contents that do not directly describe
the image, or conversely, the image could show objects that are
otherwise not discriminative without proper contexts. Compare
the example text-image pairs in Fig. 1, while most of the
words in the Flickr8k [12] sentence are densely corresponded
to the objects in the image, only a small portion of the
Reuters Picture News [32] paragraph is explicitly describing
the contents of its illustration. The rest of the paragraph is
co-occurring just for the news background and may even
cause overfitting to learning-based methods. Topic modeling
has been studied to summarize text corpus [3], [4], [8], but
they are mostly tuned for automatic annotation applications

Fig. 1. Comparison between descriptive text-image pair and picture news

and are difficult to associate with continuous image features
as embedding-based methods do. Even if the descriptive part
of the news is somehow extracted, it is still hard to accurately
map the words to the image components without recognizing
the person’s identity or the car model. Therefore, in order
to successfully match the noisy text-image pairs, we need to
extract the useful portion of the paragraphs and to enrich the
image representations.

The approach in this paper follows the method of learning
an embedding layer between texts and images. An image is
partitioned into multiple regions of objects and has the region
features extracted using convolutional neural networks (CNN)
[19], [21], [29]. For a text paragraph, its dependent word pairs
are used as the semantic fragments. Both image regions and
word pairs are treated as bags of fragments and matched in
the embedding space [15], [16]. To aid the mapping between
images and noisy paragraphs, we propose two improvements
to the fragment space. First, instead of learning a single level
of embedding, we cascade embedding optimizers. The result
from the upstream embedding is analyzed to determine the
relevancy and discriminative power of the text fragments. Then
the information is forwarded to the downstream embedding



to suppress the noisy text portion and improve the secondary
learning process. Second, we integrate multiple CNN’s that are
tuned for different contexts to construct the image fragments.
The new fragments help the embedding not just match for
the object-level image features, but also adopt diversified
information such as facial characteristics of persons.

The contributions of this work are as the followings. In sec-
tion III, we analyze the problem of matching noisy paragraph
and images, select the proper optimization objectives, and
also propose an equivalent implementation of the alignment
scores for accelerating the computation. In section IV we
design an cascade configuration of text-image matchers to
refine the discrimintive set of text. In section V, we integrate
multiple CNN’s to enrich the image representations and use
facial recognition network as the demonstration. Finally in
section VI, we evaluate the proposed methods with both
synthetic dataset and real datasets of picture news collected
from Reuters Picture News [32].

II. RELATED WORK

It is an emerging topic of learning to bridge the gap between
image and natural languages. Some works [20], [26], [35] have
focused on generating novel captions from query images. A
typical pipeline in Vinyals et al. [34] was that the image was
first passed to the CNN [33] and had its compact representation
extracted. Then the image representation was treated as the
initial word input to the semantic space and used to generate
a sentence label using a long-short term memory (LSTM) [11]
predictor. Other works [15], [17], [18], [24] have focused on
learning an embedding space for bidirectional mapping. Frome
et al. [9] converted the whole images and the word labels into
a common embedding space and defined a hinge rank loss to
align the correct pairs. Instead of using a common embedding
space, Karpathy et al. [16] broke the images into multiple
objects using regional CNN [10] and the sentences into
dependent word pairs using Stanford CoreNLP toolkit [25],
and then learned to compute the similarity scores based on
the visual-semantic fragment embedding. Most of the existing
works have been focused on query-like text-image datasets
such as Flickr8k [12] and Pascal1k [31], and achieved state-
of-the-art accuracy. Only a small body of studies considered
loosely correlated pairs, such as picture news.

To obtain neural descriptors of images, many studies have
been conducted for different applications. For instance, the
networks in Krizhevsky et al. [19] and Szegedy et al. [33]
were dedicated to object classification for ImageNet challenge
[7]. The VGG Face Descriptor [29] was tuned for celebrity
identifications. Zhou et al. [36] specialized for scene classifi-
cation. For the text representation, works have been conducted
to convert words or sentences into vector space [1], [13], [28].

Topic modeling such as Latent Dirichlet Allocation (LDA)
[3] has been an effective way to extract the essential part
of large text bodies. There has been studies based on LDA
for word sense disambiguation [22] and semantic category
classification [5]. As for news media, Cano et al. [4] explored
different methods in finding keywords from Twitter messages.

Feng et al. [8] connected the image and text modalities by
clustering the SIFT features [23] of image regions into discrete
words, and building a mixed LDA model with both visual and
semantic words. They performed image annotation on BBC
news dataset. The discretization of images may impose infor-
mation loss compared to the embedding-based methods, but
the key idea of extracting essential texts could be beneficial.

III. VISUAL-SEMANTIC EMBEDDING

The bidirectional retrieval task is essentially a ranking
problem. For each text-image pair, an alignment score is
calculated to indicate how closely correlated a text sample and
an image sample are. The scores of all pairs in the searching
space are ranked among the image peers or the text peers. The
top-ranked images are the search result of a text query, or vice
versa. For the datasets which are targeted by this paper, the
text queries are not short descriptive sentences that frequently
refer to the image contents. They could be long paragraphs
with only parts of them strongly connected to the images.

A. Text and Image Representations

Following the deep embedding approach [15], [16], both
the texts and images are broken into fine fragments. For
images, RCNN [10] and Caffe [14] are used to detect the
object regions. Each region forms an image fragments. The
network is pre-trained with ImageNet [7] data and fine-tuned
towards 200 object classes. Every image is represented by
a bag of regions containing the whole image and up to
19 RCNN detections. The detection regions are selected by
highest classification probabilities. The embedding of the ith

image fragment vi is calculated as in equation (1).

vi = Wv[CNN(Ri)] + bv (1)

where Ri is the pixels in region i and CNN(.) outputs the
4096-dimensional features of the fully-connected hidden layer
(fc7) immediately before the RCNN classifier. Wv and bv are
learnt parameters. When the size of the embedding space is
d, Wv is a d× 4096 matrix.

The text paragraphs are analyzed using Stanford CoreNLP
[25] and have their word dependencies extracted. Each pair
of dependent words is grouped as a text fragment and the
paragraph is represented by a bag of such fragments. The
embedding of the tth fragment st is computed by equation
(2).

st = f(Ws

[
wt

p

wt
c

]
+ bs) (2)

where wt
p and wt

c are the 200-dimensional vectors of the
parent and child words of the dependent pair. The vector
representations are learned by unsupervised objective [13]. Ws

is a d×400 matrix that transforms the lumped word pairs to the
embedding space. The activation function f is the Rectifying
Linear Unit (ReLU ).



B. Selection of Objectives

The correlation between text fragment t and image fragment
i is computed as the dot product of their embedding vectors,
vist

T . One way of defining the alignment score [15] between
the jth image and kth text sample is in equation (3), and
the global alignment objective in equation (4) drives the
optimization.

Aj,k =
∑
t∈Tk

maxi∈Ijvist
T (3)

lossG =
∑
j

[
∑
k

max(0, Aj,k −Aj,j + ∆)

+
∑
k

max(0, Ak,j −Aj,j + ∆)]
(4)

Here, Tk is the set of dependent word pairs of the kth text sam-
ple and Ij denotes the regions of the jth image. ∆ is a constant
margin that valued 40 in our experiments. The loss function
essentially maximizes the correct alignment against the other
images and texts. Compared with their former objective [16],
the formulation simplifies the model and improves the ranking
performance. However, such formulation assumes that each
text fragment can only align to one image region with the
highest dot product as in equation (3). This assumption works
well for descriptive sentences because they are always directly
referring to image regions. However, noisy paragraphs do not
hold the same property. From our observation, it is possible for
a word in the news article to align with multiple image regions.
Therefore, we choose to use the original formulation [16] that
combines the local objective and the global objective. The loss
is defined by equation (7) with the alignment calculation (5).

Aj,k =
∑
t∈Tk

∑
i∈Ij

vist
T (5)

lossL =
∑
i

∑
t

max(0, 1− yi,tvistT ) (6)

loss = αlossG + βlossL (7)

This formulation of alignment score allows a text fragment to
align with multiple regions. In the early training epochs, yi,t is
defined as +1 when vi and st occur together in a correct image-
text pair (i.e. j = k for i ∈ Ij , t ∈ Tk), and -1 otherwise. In
the later epochs, yi,t is adjusted by Multi-Instance Learning
(MIL) [6]. yi,t is +1 only if in a correct pair, vistT > 0
or i = argmaxi′∈Ij

(vi′st
T ). The overall loss function is a

weighted linear combination of the local loss (6) and the global
loss (4) with biases α = 0.5 and β = 1.0.

For testing, the alignment scores Aj,k are calculated using
the trained parameters (Wv, bv,Ws and bs). The image search
(i.e. use a text sample to query the most likely image) is done
by fixing a text sample k and ranking the alignment scores of
all candidate images. And the text search is similar by ranking
the text candidates with a fixed image j.

Fig. 2. Computation of Alignment Matrix

C. Speed-up with Fragment Padding

For an optimization mini-batch H , the inner products of
all image and text fragments (vistT , i ∈ Ij , t ∈ Tk and
j, k ∈ H) form the visual-semantic matrix. We call the stacked
Aj,k of all text-image pairs the alignment matrix, from which
the global loss can be quickly obtained with a few matrix
operations. Essentially, an entry in the alignment matrix (Aj,k)
is computed as the sum of all elements in its corresponding
visual-semantic sub-matrix (a patch). Since images may have
different number of regions and paragraphs are also diversified
in the number of words, the sizes of the patches differ from
each other. To calculate these alignments using theano [2], a
straightforward implementation is to use a scan node to loop
over the dimensions. However, it results in slow computation.

To improve the performance, we insert padding fragments
(Fig. 2) to both the images and the texts. The jth image
fragment bag Bj

v and the kth text fragment bag Bk
s are

padded with zero fragments as in equation (8), in which all
the texts and images will have the same number of fragments.
The resultant patches in the visual-semantic matrix are of size
(Nv ×Ns).

Bj
v = {Ri|i ∈ Ij}+ {0} ×Nj

v, s.t. |Bj
v| = Nv

Bk
s = {

[
wt

p

wt
c

]
|t ∈ Tk}+ {0} ×Nk

s, s.t. |Bk
s| = Ns (8)

These padding fragments produce inner products of zeros, and
thus will not contribute to the local loss or the global loss. But
with the equally sized patches, we can use a standard sum-
pooling process supported by theano to obtain the alignment
matrix. The pooling operations are optimized in software
implementations and better for vectorization than the loops
do. Therefore, the padding helps accelerate the computation
by removing the need of handling differently sized patches.

IV. TEXT FRAGMENT FILTERING

A single stage of match embedding works well for short
sentences that densely correlate with the images. However,



Fig. 3. Configuration of fragment filtering and fragment enrichment

loosely coupled texts such as picture news pose new challenges
to the model. Since a lot of words in the news articles are not
explicitly describing the images, they may cause overfitting
and divert the optimization from those text fragments that
really differentiate. In order to filter out the interfering frag-
ments, we propose a fragment importance measure, and use a
sequential architecture to improve the text-image association.

A. Fragment Importance Measure

The i, tth entry in the visual-semantic matrix indicates how
well the image fragment i correlate with the text fragment t.
When the text body contains noises, the dot products (vistT )
may not produce the optimal matching, but they are still valid
indicators of whether a fragment is useful for the association
optimization. We define pt in equation (9) the importance
measure of the tth text fragments.

pt = gj∈Imgs(
∑
i∈Ij

vist
T ) (9)

Here, gj∈Imgs is a Reduction Function (e.g.
∑

j) that applies
to the image population. The idea is that the larger the
score is, the more likely the text fragment receives diversified
matching results over different image regions. If we can make
these informative fragments contribute more to the association
optimizer, then we have a better chance to achieve an accurate
text-image matching.

B. Cascade Embedding Stages

By equation (9), we know which text fragments are more
useful in the association. Now a model is needed to integrate
the importance measure to the optimizer. We propose to
connect two fragment embedding stages as the yellow path in
Fig. 3. The text-image fragments are passed to the first stage to
train the Filter Embedding. The first stage does not produce
the ranking, but outputs the fragment importance measures
for the texts. The measures are converted to text weights
that are applied to the fragments at the second embedding
stage. The second stage, Match Embedding is trained with the
filtered text fragments with weighted contributions to the loss.
Match embedding produces the improved alignment matrix
that generates the final ranking results.

Filter embedding is trained to identify the fragment impor-
tance. The importance measures are converted to text weights
using equation (10).

mt =
|Tk|∑
t′∈Tk

pt′
pt,∀t ∈ Tk (10)

Here, the weight is essentially the normalized fragment im-
portance measure with respect to the number of the fragments
in the belonging text. While favoring those informative words,
the normalization keeps the total “energy” of the text samples
the same (i.e.

∑
t∈Tk

mt = |Tk|) to prevent large swings of
the training loss.

The text weights are applied to the original text fragments.
The second stage is then trained with the weighted text
fragments defined in equation (11). Activation f is ReLU.

st = f [Ws(mt

[
wt

p

wt
c

]
) + bs) (11)

In this configuration, the word vectors are multiplied by the
weight values mt so that the important fragments are given
higher weights and vice versa. The idea is that the non-
informative fragments contribute less to the loss function in
equation (7), so that the parameters Ws and bs are able
to “focus” on the important word fragments that are not
discriminated optimally during the first stage. The dot products
related to the noisy text fragments are forced to be near zero
by the weights. Thus no matter how the parameters interact
with the noisy words, they do not affect the final text-image
ranking much.

V. IMAGE FRAGMENT ENRICHMENT

The image features extracted by RCNN are tuned for object
recognition. For text-image datasets with descriptive sentences,
the level of knowledge is sufficient since the sentences are
directly describing the objects in the images. However, in
picture news, the images may contain different levels of
meanings that cannot be captured by the object features. For
example, the identities of the persons appeared in the news
picture may help differentiate events, and thus improve the
association learning, but simply recognizing the person objects
doesn’t provide such information. Therefore we use image



fragments extracted by different CNN’s to enrich the image
understandings. Specifically, we extract the face features from
the images.

Fig. 3 red path shows the workflow of extracting face
fragments. The regions classified as “person” by RCNN are
passed to the DPM face detector [27] to find the accurate face
area. Then using VGG Face Descriptor [29], we extract the
face features. The face features are then converted into the
embedding space by equation (12).

vl = Wf [CNNF (Rl)] + bf (12)

The deep network CNNF (.) converts the pixels of the lth

detected face, Rl into a 4096-dimensional feature vector.
Parameter Wf and bf turns the face features into the image
embedding vl. The face fragments are placed along with
the other image fragments to compute the alignment matrix.
Because the number of faces detected in each image is small
(usually less than 3), the face alignment score resembles
equation (3). The final alignment score with face feature
integrated is redefined in equation (13).

Aj,k =
∑
t∈Tk

(
∑
i∈Ij

vist
T + maxl∈Fj

vlst
T ) (13)

where Fj is the set of faces detected in the jth image.

VI. EVALUATION

A. Datasets

Pascal1k with noises. Pascal1k [31] dataset contains 1000
images, each of which is annotated by 5 independent sen-
tences. We append to the sentences random texts grabbed from
news articles, and the 5 sentences of each image have the
same random text added. With this setup, we know that the
first sentence of each text sample always contains the most
information. This setup serves as a synthetic baseline for text
filtering.

Reuters Picture News. We develop a crawler to download
the thumbnail images along with their news articles from
Reuters Picture News [32]. For each of the news categories
(Scitech5k, Business5k and Politics5k), 5000 images with their
associated articles longer than 70 words are collected. We also
build a dataset of 15000 samples (Mixed15k) with news from
all three categories. For face fragment evaluation, we construct
a dataset of 1000 samples (People1k) with faces detected by
RCNN [10] and DPM face detector [27].

B. Comparison Methods

For comparative study in image-text retrievals, we reproduce
4 baseline models.

Joint topics. We use K-means to cluster the RCNN [10]
image regions into 1000 discrete visual words, and train an
LDA [3] model with the joint corpus of both visual words and
semantic words (similar to MixedLDA [8]). The LDA model
is trained with 800 latent topics. Using LDA, the probability
of each visual (semantic) word can be inferred from the latent
topic distribution, which is inferred from the query bag of
semantic (visual) words. We use the sum of the logarithm

likelihoods of the visual (semantic) words as the alignment
score.

DeViSE [9]. The work connects the modalities by mini-
mizing the alignment loss between single words and images.
It does not handle image or text as bag of fragments, but it
can be treated as a special case for the fragment embedding.
The word vectors in a paragraph are averaged (L2-normalized)
to one word fragment, and the regions detected in the same
image are summed up to one image fragment. Only the global
loss in equation (4) is applied during the optimization.

DeFrag [16]. The approach improves the performance by
breaking the text and image into fragments. The fragment
embedding is optimized by a mixed objective (global loss
+ local loss + MIL). We implement DeFrag with theano [2]
for our customized configurations, and use it as the building
blocks for our cascade configuration described in Section IV.

DepTree edges [15]. This method is the simplified ex-
tension of DeFrag. It removes the local loss, and uses the
alternative alignment calculation defined by Equation (3).

C. Experiment Setup

For embedding optimization, we use stochastic gradient
descent with momentum of 0.9. For Pascal1k and the noisy
version, the dimension of embedding space (i.e. vi and st)
is 700, the mini-batch contains 35 text-image pairs and the
reduction function gj for equation (9) is variance varj . For the
picture news datasets, we use 1000-dimensional embedding,
mini-batch size of 100 and the sum reduction function

∑
j .

For all datasets, 80% of the samples are used for training
and the rest two populations of 10% samples are used for
validation and testing respectively. Take Pascal1k for example,
we use 800 samples for training, 100 for validation and 100
for testing. Both DeFrag and our model use MIL [6] for the
local losses.

For retrieval tests, we follow the description in section III-B.
The performance metrics are R@K and Med (Table I II).
R@K is the percentage of the correct alignments that are
ranked among the top K retrieval results (higher is better). Med
is the medium rank of the correct samples (lower is better).

D. Improvement in Computation Speed

In this experiment, we evaluate the computation perfor-
mance boost brought by padding the fragments to equal
patches. The implementation without padding uses a scan
node [2] to loop over patches of different sizes. For equal
patches with padding fragments, a sum-pooling operation
based on images2neibs [2] is used. We test the per-batch time
consumptions for the optimization of loss equation (7).

Two platforms are tested with the datasets. On a laptop with
Intel Core i5 4250U at 1.3GHz, the padding-based implemen-
tation (*:Padding) outperforms the loop-based implementation
(*-Non-pad) on both Pascal1k dataset (P:*) and Scitech5k
news dataset (S:*), and provides 10X to 100X speed-up (Fig.
4a). The sum-pooling operation is more suitable for vectoriza-
tion than the scan node does. On our server with Intel Xeon
W5580 at 3.2GHz and NVIDIA Tesla C2075 with 448 CUDA



TABLE I
TEXT-IMAGE RETRIEVAL RESULTS ON PASCAL1K

Image Retrieval Text Retrieval
Implementation R@1 R@5 R@10 Med R@1 R@5 R@10 Med
Non-padding 27.2 62.2 82.2 3.0 25.0 67.0 80.0 2.0
Padding 25.6 66.6 84.0 2.0 27.0 60.0 74.0 3.0
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Fig. 4. Computation Speed Comparisons

cores at 1.15GHz, our fragment padding also accelerates
the optimization process (Fig. 4b). At 100 batch size, the
per-batch runtime on Scitech5k dataset is around 2 seconds
with fragment padding, while the loop-based implementation
consumes more than 50 seconds. The pooling operation can
better utilize the GPU resources. Although fragment padding
produces slightly larger visual-semantic matrix, the removal
of scan nodes provides substantial improvement in training
speed.

We also test the retrieval performance for padding-based
implementation on Pascal1k dataset [31]. As shown in Table
I, fragment padding (Padding) does not degrade the accuracy.
It achieves equivalent performance as compared to the scan-
based (Non-padding) approach, while significantly improves
the computation speed.

E. Results of Text-Image Retrievals

In this section, we evaluate the accuracy of comparison
models on both synthetic dataset and picture news (Table II).

We first perform retrieval tests on Pascal1k with noises.
Fig. 5 shows the output weights of the filtering embedding
obtained from an example piece of text. It is observed that
the filter is able to capture the informative text fragments,
i.e. the original description, and suppress the noises that we
appended. The method correctly identifies the first part of
the text as the most important, and assigns it high weights.
The retrieval performances for both texts and images are
improved significantly compared to the baseline methods. The
R@1 measures are about 40% better than the second best
model, DeFrag. This validates our assumption of using the
filter embedding to extract the useful part of the texts.

Secondly, evaluations are done on the real picture news of
different categories. Generally, Joint topics do not perform
well because clustering regions into words causes loss of
visual information. It has relatively better results on People1k
as the images usually contain less types of objects. Also,

Fig. 5. Weight output from filter embedding on Pascal1k with noises

Fig. 6. Top 10 fragments with the highest dot products to the detected face

DeViSE does not associate the text-image pairs as good
as those fragment-based approaches, because using only the
whole picture and averaged word vectors loses the details of
the images and texts. The DepTree edges method uses the
simplified alignment formulation and only considers the global
objective [15]. This assumes that each text fragment aligns to
one image region. When many of the text fragments align to
none or multiple regions, this assumption reduces accuracy.
The ranking results (R@K) are worse than its more complete
peer [16] with both local and global objectives.

The proposed method of text fragment filtering achieves
substantial performance boost on the picture news mapping.
On Scitech5k dataset, fragment filtering outperforms the sec-
ond best method by around 10% in the ranking metrics. For
Business5k dataset, our method produces better image ranking
than those of the comparison methods, and competitive text
ranking with DeFrag. On Politics5k dataset, fragment filtering
still generates around 10% R@K improvement over the best
baseline results. For Mixed15k, all approaches perform worse
than they do on the smaller datasets, because Mixed15k is
larger and more difficult. Our method adapts to the mixed
news categories and produces the best ranking results among
the comparison methods.

On People1k dataset, fragment filtering (F1) generates better
ranking results over the first three methods. By integrating
the deep face representations (F2), we outperform the best
baseline approach DeFrag by 50% in the R@10 score. The
face fragments provide another layer of context matching. The
example in Fig. 6 highlights the child words of the dependent



TABLE II
TEXT-IMAGE RETRIEVAL RESULTS ON NOISY DATASETS

Image Retrieval Text Retrieval
Model R@1 R@5 R@10 Med R@1 R@5 R@10 Med

Pascal1k with noises
Joint topics 3.0 15.6 23.6 36.0 4.0 11.0 15.0 85.5
DeViSE 6.2 17.8 31.0 22.0 6.0 7.0 14.0 70.5
DepTree edges 4.8 20.0 36.2 16.5 6.0 20.0 23.0 38.0
DeFrag 12.6 42.2 63.6 6.0 11.0 31.0 43.0 14.5
Fragment filtering 17.6 51.2 68.8 4.0 16.0 43.0 55.0 8.0

Scitech5k
Joint topics 4.6 12.0 15.8 119.5 4.2 8.8 12.2 183.0
DeViSE 3.2 14.0 24.0 38.5 5.0 18.4 30.4 30.0
DepTree edges 9.0 22.0 32.0 26.5 7.6 26.4 36.2 23.0
DeFrag 12.0 29.8 39.4 18.0 11.2 30.6 41.6 15.0
Fragment filtering 14.0 31.8 42.8 15.0 13.4 32.8 46.2 12.0

Business5k
Joint topics 4.8 10.8 17.0 88.5 2.2 6.2 8.0 177.5
DeViSE 4.4 17.2 28.0 30.5 6.2 22.6 32.6 23.0
DepTree edges 6.4 22.6 33.4 23.5 7.2 26.8 37.0 17.0
DeFrag 11.6 31.2 41.2 14.0 12.8 36.2 48.4 10.5
Fragment filtering 11.2 33.0 45.8 12.5 13.0 36.2 47.2 12.0

Politics5k
Joint topics 1.2 7.2 10.2 159.0 1.4 5.6 8.0 209.5
DeViSE 2.0 9.4 19.2 50.5 4.2 11.8 22.0 43.0
DepTree edges 4.2 15.4 21.4 46.0 7.0 19.8 31.6 35.0
DeFrag 8.0 22.2 31.0 25.0 1.8 22.8 33.2 22.0
Fragment filtering 9.0 25.6 35.2 19.5 8.2 26.8 36.2 19.5

Mixed15k
Joint topics 1.7 4.7 6.6 426.0 1.4 2.7 3.7 579.5
DeViSE 2.0 8.7 14.1 88.5 2.5 10.4 17.3 69.5
DepTree edges 4.4 14.9 21.0 59.5 4.0 13.4 22.7 50.0
DeFrag 6.2 19.7 28.8 34.0 2.4 20.4 31.9 29.0
Fragment filtering 8.8 24.9 34.0 31.0 3.6 24.9 34.7 25.0

People1k
Joint topics 13.7 25.5 31.4 27.0 10.8 21.6 29.4 27.5
DeViSE 2.9 13.7 25.5 23.0 4.9 23.5 41.2 17.5
DepTree edges 7.8 27.5 37.3 18.0 5.9 24.5 38.2 13.0
DeFrag 12.7 30.4 35.3 16.5 5.9 28.4 37.3 15.0
Fragment filtering (F1) 14.7 33.3 44.1 11.5 16.7 33.3 38.2 16.5
Face fragments (F2) 22.5 46.1 58.8 5.0 15.7 45.1 54.9 5.5
F1 + F2 31.4 46.1 59.8 6.0 22.5 47.0 58.8 5.5

Fig. 7. Training time for 800 samples on People1k

word pairs whose fragments produce the highest dot products
vlst

T with the detected face. The face of IBM’s CEO is
strongly correlated with the company, her and her colleague’s
name, and “Watson”. Some images that are previously not
distinguishable can now be better identified by the person’s
facial characteristics. Finally, the combination of both text
fragment filtering and image fragment enrichment (F1 + F2)
obtains more accurate rankings compared to the two individual
enhancements. It reaches 31.4 of R@1 for image retrieval.

Finally, Fig. 7 shows the times for training 800 samples

on People1k data. DeViSE is fast because it does not handle
fragments. So for a sample pair with 10 regions and 10 words,
the size of the visual-semantic matrix is only 1/100 of the
other methods’. DeFrag is slower than Deptree edge since
the former optimizes both local and global costs. Fragment
filtering sequentially connect the embedding stages, so the
training complexity is about two times as that of DeFrag.
Adding the face fragments only add a small overhead to
the counterparts, because the number of faces in an image
is usually small. The retrieval is accomplished by doing the
forward pass with the network, so the time consumption is
proportional to the training.

F. Limitations

From the text side, the fragments rely on Stanford CoreNLP
[25] to extract the dependency edges. This process is computa-
tionally expensive and may lose semantic information. BRNN
[15] has used Recurrent Neural Networks to extract long-term
concepts expressed by each word. Since our enhancements
work in fragment level, it can be adapted to the BRNN
fragments without much difficulty. Also, the proposed work



only does reduction to the text fragments, but sometimes it is
helpful to create richer text fragments (addition). For example,
when seeing “Trump” and “Hilary” in the text, bringing
up a new fragment such as “election” could improve the
association learning. Therefore, inference-based model such
as ITRS [30] can be integrated into the configuration. Finally,
the improvement brought by the face descriptor is subject to
the face detection, a more elastic approach is needed when the
dataset lacks of facial information.

VII. CONCLUSION

This paper addresses the problem of associating images
with noisy texts. We first modify the implementation by
padding empty fragments to generate visual-semantic matrix
with equally sized patches, which accelerate the speed of
computation. Second, an embedding cascade configuration is
designed to suppress the noisy part of the texts, so that in the
second match embedding stage the optimization can be more
effective in distinguishing the correct alignments. Third, we
integrate face CNN to the image fragment generation in order
to interpret richer information from the images. We show the
improvements of our methods over the existing works on both
synthetic dataset and real datasets of picture news.
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