
Profile-Based Low Power Scheduling for Conditional Task Graph: A
Communication Aware Approach
Parth Malani, Prakash Mukre and Qinru Qiu

Department of Electrical and Computer Engineering, Binghamton University
Binghamton, NY 13902

{parth, pmukre1, qqiu}@binghamton.edu

Abstract — This work focuses on power optimization of real-
time applications with conditional execution running on a
dynamic voltage scaling (DVS) enabled multiprocessor system.
A novel algorithm is proposed that performs simultaneous task
mapping and ordering followed by task stretching of a
conditional task graph (CTG). The algorithm minimizes the
mathematical expectation of energy dissipation of non-
deterministic applications with random branch selection by
utilizing the task execution profile. Compared with existing
scheduling algorithm, the experimental results show that our
algorithm has 32% energy reduction in average.

I. INTRODUCTION
Multiprocessor System-on-Chip (MPSoC) is becoming a

major system design platform for general purpose and real-
time applications, due to its advantages in low design cost and
high performance. Minimizing the power consumption is one
of the major issues in designing battery operated MPSoC. One
of the widely used power reduction technique is Dynamic
Voltage Scaling (DVS), which allows the processor to
dynamically alter its speed and voltage at run time to trade
power for performance.

In a multiprocessor system, the mapping and ordering of
tasks changes the task slack time, i.e. the intervals when a
processing element (PE) is idle, and hence has a significant
impact on the efficiency of DVS. As the system complexity
grows, the latency and energy of inter-processor
communication increases. A holistic technique must be
developed for task mapping, ordering and stretching to reduce
both communication and computation energy.

Many of the real-time applications are non-deterministic.
The application is divided into several tasks. Some tasks are
activated only if certain conditions evaluated by previously
executed tasks are true. A conditional task graph (CTG)
[4]~[7] captures such relation and hence enables us to model
more general application.

In this work, we consider off-line task scheduling for CTG
on a multiprocessor system with non-negligible
communication cost. The system has a set of heterogeneous
PEs, such as DSPs, FPGAs or ASICs, that are connected by an
interconnect network. Each PE is DVS enabled. The
application is distributed to different PEs. A set of algorithms
are proposed that provide a complete solution for task
mapping, task ordering and task stretching. The task mapping

and task ordering are performed simultaneously and their goal
is to minimize the inter-processor communication and
maximize the task slack. The task stretching algorithm finds
the best speed and starting time for each task so that the
computing energy is minimized. Because the execution flow is
unknown at the time when the scheduling is performed, we
consider the application as a random procedure with
probabilistic branch selection. The algorithm utilizes the task
execution-profile to minimize the expected energy dissipation
and also satisfy the performance constraint.

Many techniques have been proposed that consider the
task mapping and ordering for DVS [1]~[3]. However, these
algorithms only consider traditional data-flow graph without
conditional execution. One of the major characteristic of CTG
is that some tasks are mutually exclusive. These tasks can be
mapped to the same PE at the same time. Reference [4] and
[5] consider scheduling and mapping for CTG, however, they
do not minimize energy dissipation. Wu et al. [6] proposed an
algorithm for task ordering and stretching of CTGs running on
a DVS enabled system. They search for the optimal task
mapping using genetic algorithm (GA). The proposed
algorithm provides a complete solution for power optimization
for the scheduling of CTGs. However, it assumes that all the
conditional branches are equally important. Furthermore, the
GA based task mapping algorithm has high complexity
because the inner loop of this algorithm needs to perform the
task ordering and stretching of the entire CTG. Shin et al. [7]
proposed an algorithm for task ordering and stretching of CTG
which considers the run-time behavior. The profile
information of the CTG is considered during task stretching.
But this algorithm takes task mapping as a fixed input so that
the communication overhead cannot be considered.

In this work, we propose a communication aware profile-
based scheduling (CAP) algorithm. The characteristics of
algorithm are described as follows.

1. The proposed algorithm provides a complete solution
which includes task mapping, ordering and task stretching.
The scheduling procedure can be divided into two steps. The
first step performs simultaneous task mapping and ordering
and the second step performs task stretching.

2. We consider the application with conditional execution
as a random procedure. The algorithm explores the fact that
the conditional branches will be selected with different
probabilities. The algorithm utilizes the information from task

execution profile. Its objective is to minimize the
mathematical expectation of energy dissipation.

3. The algorithm for simultaneous task mapping and
ordering has very low complexity. The algorithm is based on
the dynamic level scheduling (DLS) algorithm given in
reference [8]. It has the potential to be streamlined and be used
for on-line scheduling.

4. The task stretching problem is solved using integer
linear programming. Only computational tasks are stretched.

The experimental results show that, comparing with the
scheduling algorithms presented in [7], our algorithm provides
an average of 32% energy reduction.

The rest of this paper is organized as follows. Section II
introduces the application and hardware architecture models.
Section III provides detailed introduction of our scheduling
algorithm. Sections IV and V present the experimental results
and conclusions.

II. APPLICATION AND ARCHITECTURE MODELING
The CTG that we are using is similar as the one specified

in [7]. A CTG is an acyclic graph <V, E>. Each vertex τ∈V
represents a task. An edge (τi, τj) in the graph represents that
the task τi must complete before τj can start. A conditional
edge e is associated with a condition C(e) and a probability
Prob(e). A node can be either and-node or or-node. An and-
node is activated when all its predecessors are completed. On
the other hand, an or-node is activated as soon as one of its
predecessors is completed.

The condition that the task τ is activated is denoted as
X(τ). The condition of an and-node τi can be written as

())(),(kik XCk ττττ ∧∧ , where τk is the predecessor of τi.
The condition of an or-node τj can be written
as ())(),(kjk XCk ττττ ∧∨ , where τk is the predecessor of τj.
A minterm m is a possible combination of all conditions of the
CTG. A task τ is associated with a minterm m if m is one of
the minterms of X(τ). In another word, a task τ is associated
with a minterm m if X(τ) will be true when m is evaluated to
be 1. The set of minterms with which τ is associated is
denoted as Γ(τ).

The volume of data that passes from one task to another is
also captured by the CTG. Each edge (τi, τj) in the CTG
associates with a value Comm(τi, τj) which gives the
communication volume in the unit of Kbytes.

Figure 1 An example of CTG
Figure 1 shows an example of a CTG. All nodes except

node τ4 are and-nodes. The edges coming out from τ3 and τ5
are conditional edges. The symbol marked beside a

conditional edge gives the condition under which the edge will
be activated. For example C(τ3, τ4) = a1. There are total of 3
minterms in the CTG. They are {a1, a2b1, a2b2}. We have

},,{)(Γ 221214 babaa=τ and }{)(126 ba=Γ τ . The execution
profile and communication volume are given beside the CTG.

The following models the architecture of an MPSoC:

• The set of PEs, },...,,{ 21 npppP =
• The energy E(τi, pj) and latency D(τi, pj), ∀τi∈V and

∀pj∈P. These values give the energy and delay of each task
when it is running on different PEs at the nominal VDD.

• The bandwidth B(pi, pj), ∀pi, pj∈P. These values specify the
bandwidth of the communication link between pi and pj.

III. PROPOSED SCHEDULING ALGORITHM
This section provides an insight into our communication

aware profile-based (CAP) scheduling algorithm. The
algorithm is based on Dynamic Level based Scheduling
(DLS) proposed by [8]. The DLS algorithm is a list
scheduling algorithm. The candidate list is a list of tasks
whose predecessors have been scheduled and mapped. For
each task τi in the candidate list, the dynamic level DL(τi, pj)
between the task τi and a processing element pj is calculated
using the following formula:

[])(),,(max)(),(jjiiji pTFpDASLpDL τττ −= , (1)

where SL(τi) is the static level of task τi, it is equal to the
longest distance from node τi to any of the end nodes in the
task graph, DA(τi, pj) is the earliest time that all data required
by node τi is available at the jth PE with the consideration of
both computation and communication delay, and TF(pj) is the
time that the last task assigned to the jth PE finishes its
execution. The task and PE pair which gives the maximum
dynamic level will be selected and the mapping is performed
accordingly. After that, the candidate list is updated and the
dynamic level of each task in the candidate list is re-
calculated.

We used a dynamic program to calculate the static level of
each task processor pair. Since we assume heterogeneous
processor environment, we take the average WCET (denoted
by *WCET) for each task to account for variability in
execution time on different processor. Let S(τi) be the set of
successor nodes of τi, i.e. for any node τj∈S(τi), there exist an
edge (τi, τj). Let cij denote the condition of edge (τi, τj) if it is a
conditional edge. Then the SL in our algorithm is defined as,

)(),(max)(*)(ijjii SSLWCETSL τττττ ∈+= (2)

)(,)(*)()(*)(ij
j

jijii SSLcprobWCETSL τττττ ∈+= ∑ (3)

Equation (2) formulates the SL for non-branching node
while equation (3) provides the SL for branching node.
Incorporating the branch probabilities in the calculation of SL
for branching nodes reflects our consideration of the
probabilistic behavior of entire graph. The algorithm starts
calculating SL of end nodes first and traversing whole graph
upwards by updating SL of each node. The probability of
condition selection changes the task static level. Our

τ1

τ4

τ3

τ6

τ5

τ2

τ7

a1

a2

b1
b2

prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
comm(τ1, τ2)=1kB
comm(τ2, τ4)=2kB
comm(τ3, τ4)=0.1kB
comm(τ3, τ5)=10kB
comm(τ5, τ6)=0.5kB
comm(τ5, τ7)=0.5kB

Communication
Volume

τ1

τ4

τ3

τ6

τ5

τ2

τ7

a1

a2

b1
b2

τ1

τ4τ4

τ3

τ6τ6

τ5τ5

τ2

τ7τ7

a1

a2

b1
b2

prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
comm(τ1, τ2)=1kB
comm(τ2, τ4)=2kB
comm(τ3, τ4)=0.1kB
comm(τ3, τ5)=10kB
comm(τ5, τ6)=0.5kB
comm(τ5, τ7)=0.5kB

Communication
Volume

comm(τ1, τ2)=1kB
comm(τ2, τ4)=2kB
comm(τ3, τ4)=0.1kB
comm(τ3, τ5)=10kB
comm(τ5, τ6)=0.5kB
comm(τ5, τ7)=0.5kB

Communication
Volume

algorithm considers various condition probabilities to provide
more efficient task schedule with lower expected energy.

The main idea of our mapping and ordering algorithm is to
find the most critical path in terms of execution cycles for
each node while considering probability of execution for each
path. The SL remains constant for each node once calculated.
Table 1 shows the SL calculation for example CTG given in
Figure 1. Here a system consisting of 3 processors is assumed
and *WCET for each task indicates the average of all WCETs
on each feasible processor that can run it.

Table 1 Static level calculation for CTG in Figure 1
Task τ1 τ2 τ3 τ4 τ5 τ6 τ7
*WCET 7 8 6 10 5 12 8
SL 25 18 17 10 15 12 8

Many factors affect task scheduling on heterogeneous
processor environment. Apart from varying execution times,
there is a communication overhead between a node and its
successor node if they are mapped on different processor. We
assume zero communication between nodes on same
processor. It is always not advantageous to map the task on a
processor that could run it fastest. Also there can be a
processor that does not have resources required to run the task.
The algorithm proposed here intelligently makes mapping
decisions considering both computation and communication.
The goal is to achieve minimum length for whole schedule to
provide maximum slack for task stretching.

The task can not start execution until the processor on
which it is mapped is busy executing some other task
(computation). Each task is activated to be ready to execute
once all its predecessor tasks are finished and the data passed
from these tasks has been received (communication). Both
these constraints are modeled by Dynamic Level (DL) defined
for each task-processor pair shown below.

),)(),,(max)(),(jpipjTFjpiDAiSLjpiDL τδτττ (+⎥⎦
⎥

⎢⎣
⎢−= (4)

The term δ(τi, pj) models the difference between
*WCET(τi) and WCET(τi, pj) accounting for heterogeneous
processor architecture. This term is necessary to offset the
average WCET considered in SL calculation.

Figure 2 shows the flow diagram of our task ordering
algorithm. The algorithm begins with the generation of initial
ready list which has all start nodes. Each node could be
executed on a set of processors. For each such possible node-
processor pairs, the algorithm then finds the best pair (τi, pj)
that has the highest amount of DL given by (4). Task τi is then
scheduled on pj using FindAvailableTime() function from [7].

 If two tasks in a graph belong to different conditional
execution paths, they will be never executed at the same time.
If we consider a periodic graph, these tasks will never execute
together in a given period. Such tasks are called mutually
exclusive tasks. They can be scheduled at the same time on
same processor since at run time only one of them will
execute, thus making the schedule more efficient. Our mutual
exclusion detection procedure for each task is based on branch
labeling method discussed in [5]. Considering example CTG
of Figure 1 our algorithm detects tasks τ6 and τ7 to be mutually
exclusive. All other combinations are not mutually exclusive.

For example, even if condition a2 is evaluated to be true, τ4
and τ5 can start executing at the same time, and thus are not
mutually exclusive.

Figure 2 Task ordering algorithm flow

The FindAvailableTime() routine finds the best schedule
for the node-processor pair selected having best DL. The
variable TF(pj) in (3) relies on the latest task τk scheduled on pj
to finish and ignores the mutual exclusiveness among different
tasks scheduled before τk. The FindAvailableTime() further
searches the scheduled task queue of processor to find the
timeslot which could be of best fit to current task. It can end
up scheduling task in a time slot overlapping with some other
task in case they are mutually exclusive. Thus it builds on
DLS algorithm to further improve the schedule.

Once the ready node list is empty, the algorithm reports
the schedule to task stretching routine. Our task stretching
routine consists of numerical method based model discussed
in [7] which work towards the objective of minimizing the
total energy consumption by stretching each task and
maintaining performance requirements in terms of task
deadline. We also added communication model to account for
communication energy. We assume that communication tasks
can not be stretched and treat them as fix overhead. To report
the total energy, the model takes different graphs as an input
corresponding to different minterms described in section II.
The task ordering algorithm generates these different graphs
pertaining to minterms by removing invalid nodes and
associated edges and inserting additional edges to maintain
valid execution and performance requirements. For example,
if minterm a2b1 in CTG of Figure 1 is true, τ4 can not start until
τ3 is finished and thus the graph for this minterm preserves this
edge. Same way node τ7 and edge (τ5 , τ7) are removed from
this graph. The stretching algorithm processes all minterms
simultaneously and reports the final energy based on
execution probability of each minterm.

IV. EXPERIMENTAL RESULTS
Simulations have been carried out to evaluate the

efficiency of the proposed algorithm. Five test cases are
randomly created with different CTGs and different MPSoC
architecture. The CTGs are modified from the random task
graphs generated by TGFF [9]. The MPSoC architecture
consists of either 3 or 4 PEs. In the rest of the paper, we use a
triplet (a/b/c) to characterize a test case where a represents the
number nodes in the CTG, b represents the number of PEs in
the MPSoC and c represents the number of conditional
branching nodes in the CTG.

Besides the CAP algorithm that is presented in section III,
three other scheduling algorithms are evaluated in the
experiments. The first and second algorithms are similar as the
CAP algorithm. However, one of them does not consider the
profile information in task mapping and the other does not
consider the profile information in task stretching. They are
denoted as CAP w/o PM (CAP without profile-based
mapping) and CAP w/o PS (CAP without profile-based
stretching). We also implemented the ordering and stretching
algorithm presented in [7], which is denoted as Reference
scheduling in the rest of the paper. The Reference scheduling
does not consider profile information in task ordering and it
assumes fixed task mapping. For all the experiments, we
consider the execution of the CTG as a random process and
we report the mathematical expectation of energy dissipation.

The first experiment focuses on demonstrating the
effectiveness of our task ordering algorithm. The same fixed
task mapping is used in both Reference and CAP algorithms.
The communication cost is also set to be 0. Table 2 shows the
energy dissipation of 5 test cases under different scheduling
algorithms. In average, the CAP has 5% energy reduction over
the reference scheduling.

Table 2 Energy dissipation for test cases with fixed
mapping and zero communication cost

ID a/b/c Reference CAP w/o PM CAP w/o PS CAP
1 25/3/3 507 483 647 483
2 16/3/1 756 774 1490 774
3 15/4/2 579 579 917 579
4 15/4/1 958 809 954 809
5 25/4/3 678 635 826 635

Table 3 Energy dissipation for test cases with flexible
mapping and zero communication cost

ID a/b/c Reference CAP w/o PM CAP w/o PS CAP
1 25/3/3 507 436 526 374
2 16/3/1 756 469 983 538
3 15/4/2 579 354 463 317
4 15/4/1 958 484 485 413
5 25/4/3 678 201 187 147

The second experiment focuses on demonstrating the
effectiveness of our task mapping algorithm. In this
experiment, the CAP based algorithms perform task mapping
together with task ordering. The communication cost is again
set to 0. As we can see, with flexible task mapping, the CAP
based algorithms give more energy reduction than the
Reference algorithm. The average energy reduction is 47%.
We can also see that the CAP algorithm outperforms both
CAP w/o PM and CAP w/o PS. This shows that it is necessary

to consider the profile information in both task mapping and
task stretching steps.

The third experiment focuses on demonstrating the
communication aware capability of our algorithm. In this
experiment, we randomly generate the communication delay
and energy between PEs, and run the scheduling algorithm.
Since the communication cost is non-zero, we can see that the
energy dissipation for all test cases increases. The average
energy reduction is now 46%.

Table 4 Energy dissipation for test cases with flexible
mapping and non-zero communication cost

ID a/b/c Reference CAP w/o PM CAP w/o PS CAP
1 25/3/3 521 603 639 465
2 16/3/1 843 487 1004 552
3 15/4/2 663 378 472 320
4 15/4/1 1085 541 499 427
5 25/4/3 765 251 229 177

V. CONCLUSION

We propose a novel algorithm that performs simultaneous
task mapping and ordering followed by task stretching of a
conditional task graph (CTG). The algorithm minimizes the
mathematical expectation of energy dissipation of non-
deterministic applications with random branch selection by
utilizing the task execution profile. Both communication and
computation energy are reduced in the scheduled result. The
experimental results show that, comparing with the previous
scheduling algorithm, our algorithm gives more than 32%
energy reduction in average.

REFERENCES
[1] J. Luo and N. K. Jha, “Static and Dynamic Variable Voltage

Scheduling Algorithms for Real-time Heterogeneous Distributed
Embedded Systems,” Proceeding Of International Conference on VLSI
Design, pp.719-726, 2002.

[2] Y. Zhang, X. Hu, and D. Z. Chen, “Task Scheduling and Voltage
Selection for Energy Minimization,” In Proc. Of Design Automation
Conference, pp.183-188, 2002.

[3] J. Hu and R. Marculescu, “Energy-Aware Communication and Task
Scheduling for Network-on-Chip Architectures under Real-Time
Constraints,” Proceeding of Conference and Exhibition on Design,
Automation and Test in Europe, 2004.

[4] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of
Conditional Process graphs for the Synthesis of Embedded Systems,”
Proceedings of Design, Automation and Test in Europe, 1998.

[5] Y. Xie and W. Wolf, “Allocation and Scheduling of Conditional Task
Graph in Hardware/Software Co-synthesis,” Proceedings of
Conference and Exhibition on Design, Automation and Test in Europe,
2001.

[6] D. Wu, B.M. Al-Hashimi and P. Eles, “Scheduling and Mapping of
Conditional Task Graph for the Synthesis of Low Power embedded
Systems,” IEE Proceedings of Computers and Digital Techniques,
Volume 150, Issue 5, pp. 262-273, Sept. 2003.

[7] D. Shin and J. Kim, “Power-Aware Scheduling of Conditional Task
Graphs in Real-Time Multiprocessor Systems,” Proceedings of
International Symposium on Low Power Electronics and Design, 2003.

[8] G.C. Sih and E.A. Lee. “A Compile Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architecture,”
IEEE Transactions on Parallel and Distributed Systems, Volume 4,
Issue 2, Page(s):175 – 187, Feb. 1993.

[9] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”
Proc. of Int. Workshop Hardware/Software Codesign, pp. 97-101, Mar.
1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

