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Abstract — In the last few years, memristor crossbar array is 

drawing increasing attention from the research community as a 
promising neuromorphic computing accelerator. In this work, we 
investigate the hardware acceleration of a sparse matrix vector 
(SpMV) multiplication engine based on memristor crossbar array. 
We demonstrate that naive matrix coefficient mapping is 
infeasible and unpractical if the matrix has large dimensions. To 
combat this problem, we extend the traditional Cuthill-McKee 
algorithm used for matrix restructuring, and propose a 
generalized sparse matrix reordering (GSMR) technique, which 
leverages linear transformation to effectively break down any 
rectangular unsymmetrical matrices into minimum number of 
sub-blocks that fit into the reasonably sized crossbar array. 
Simulated results show that our proposed design achieves 
appealing performances in terms of speed and energy efficiency 
compared to both CPU and GPU platforms. In addition, a 
memristor crossbar array utilizing GSMR outperforms its 
counterpart with no-GSMR by 90% performance improvements 
and 44% energy reduction. 

I.  INTRODUCTION 
In recent years, great progresses have been made in fabricating 

high-speed memristors with appealing physical features [14][15][16]. 
In [1], crossbar array was proposed as a leading candidate for future 
memory and logic applications. Because of memristor crossbar’s 
analog nature and small footprint on silicon, it can be configured as 
highly parallel and low power matrix vector multiplication computing 
engine [2][3][4]. Many researchers have proposed using memristor 
crossbar as computing accelerator, especially in applications such as 
neuromorphic computing [5][6][17]. 

Naive mapping from a matrix to a memristor crossbar array is 
usually wasteful and sometimes not feasible. First of all, the 
dimension of matrices and vectors varies from application to 
application. For many scientific computing and big data applications, 
matrices of interest can be extremely large. Design for the worst-case 
scenario would yield a huge crossbar. Although the memristor device 
allows high-density integration, the auxiliary circuit of the memristor 
crossbar array (e.g. D/A and A/D converters, op-amp circuits, etc.) 
grows with the crossbar size, it is apparent that a crossbar array with 
extremely large number of rows and columns would be impractical to 
fabricate [7]. Furthermore, in applications where matrices are sparse, 
direct mapping of a sparse matrix leads to very low hardware 
utilization. Finally, memristor has bounded maximum resistance, it is 
difficult to program them to zero conductance which corresponds to 
infinitely large resistance. Hence a sparse matrix that has large number 
of zero entries may lead to large approximation error when 
implemented using memristor crossbar. 

To address the aforementioned issues, in this work, we propose 
to decompose the matrix into sub-blocks, which can be mapped to a 
set of fixed sized crossbar arrays, and the partial results are combined 
in the end. Those sub-blocks that contain all zeros will be omitted and 

not consume any computing resources. For example, a 1024×1024 
sparse matrix can be decomposed into 1024 32×32 sub-blocks. Only 
those sub-blocks that have non-zero entries need to be mapped to 
memristor crossbar. The actual number of sub-blocks needed may be 
much less than 1024 due to the sparsity.  

A question naturally arising is how to manipulate the sparse matrix 
to maximize the number of all-zero sub-blocks; which consequently 
minimizes the number of required memristor crossbar arrays. There 
has been a variety of literature devoted to sparse matrix partition for 
parallel computing using multicore CPU or GPGPU [8][9]. However, 
the main objective of these methods is to minimize inter-core 
communication, as the bandwidth and performance of bus and 
memory subsystem are the bottleneck of high performance computing. 
In a memristor crossbar based SpMV multiplication engine, reducing 
communication volume is no longer the goal. Instead, we propose to 
“group” the sparse matrix’s non-zero entries as aggressively as 
possible. The contribution of this paper can be summarized as the 
following: 
1. The hardware optimization of memristor based sparse matrix vector 

multiplication is formulated as to find the minimum non-zero 
block cover of a permutation of the given sparse matrix. To the 
best of our knowledge, this is the first work that associates 
minimum non-zero block cover with the matrix bandwidth, and 
applies matrix bandwidth reduction technique to optimize the 
memristor based hardware accelerator. 

2. A generalized sparse matrix reordering (GSMR) technique is 
proposed to facilitate sparse matrix partition. Its benefit is twofold. 
First, it creates more all-zero sub-blocks, which do not require 
hardware resource; second, by removing as many zeros from the 
matrix as possible, it reduces the accumulated error. 

3. The GSMR algorithm is applied to sparse matrices both from real 
life applications and random generation. Significant performance 
and energy improvements are achieved. 

II.  GENERALIZED SPARSE MATRIX REORDERING FOR 
CROSSBAR HARDWARE REDUCTION 

A. Background  
Fig. 1 [7] shows a memristor crossbar used as matrix vector 

multiplication engine, which computes	𝒚 = 𝑨𝒙 in the analog domain, 
where A is an M by N matrix. It is made of two layers of metal wires, 
with 𝑁 wires on the top, each corresponding to an entry in the input 
vector, and 𝑀 wires at the bottom, each corresponding to an entry in 
the output vector. Between each overlap of a top wire and a bottom 
wire there is a memristor as the connector. It is easy to see that if the 
conductance of the memristor at coordinate i at the bottom and j on 
the top is programmed to have value 𝑨(,*, and 𝒙 is applied as input 
voltage vector, 𝒚 will be produced as the output current vector on the 
bottom wires. To incorporate the memristor crossbar into digital 
computing framework, extra circuitry is required. For example, A/D 
and D/A converters are needed at the input and output as the 
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communication interface. The bottom wires must be held at ground 
potential in order to make the crossbar function correctly. In addition, 
to support negative entries in 𝑨, another crossbars and subtraction 
circuit is needed [10].  

 
Fig. 1. Memristor crossbar for matrix vector multiplication. 

B. Motivations 
Consider a matrix vector multiplication kernel,	𝒚 = 𝑨𝒙, where 𝑨 

is a large sparse matrix with 𝑚 rows and 𝑛 columns, 𝒙 is a column 
vector of length 𝑛, and 𝒚 is a column vector of length 𝑚. Given a set 
of square sized memristor crossbar arrays, whose dimension is 𝑘×𝑘, 
where 𝑘 is much smaller than 𝑚 and 𝑛. We divide the matrix A into 
/
0
× 1

0
 equal sized grids and map each grid block to a memristor 

crossbar. We use I and J to represent index of a grid and i and j to the 
index of a matrix element. A direct mapping decomposes the large 
matrix vector multiplication into /

0
× 1

0
 smaller matrix vector 

multiplications, represented as 𝒚2,3 = 𝑨2,3𝒙3. Here 𝒙3, 0 ≤ 𝐽 ≤ 1
0

, is 
a partition of vector x, i.e. 𝒙 = 𝒙33 , and all grids 𝑨2,3 , 0 ≤ 𝐽 ≤
1
0
, 0 ≤ 𝐼 ≤ /

0
 form a partition of matrix 𝑨, i.e. 𝑨 = 𝑨2,32,3 . The 

sub-vector 𝒙3 contains 𝑘 elements copied from the original vector x 
as 𝑥3∙0, 𝑥3∙0:;, … , 𝑥3∙0:0=; . The sub-matrix 𝑨2,3  contains matrix 
elements 	 𝑎(,*  where 𝑎(,* ∈ 𝑨  and 𝐼 ∙ 𝑘 ≤ 𝑖 ≤ 𝐼 ∙ 𝑘 + 𝑘 − 1, 𝐽 ∙ 𝑘 ≤
𝑗 ≤ 𝐽 ∙ 𝑘 + 𝑘 − 1. The final result y is partitioned into /

0
 sub-vectors, 

𝒚 = 𝒚EF, 𝒚;F, … 𝒚 G
H

F
F

, and its I-th entry is calculated as 𝒚2 =

𝒚23
I
H
3J; .  

When 𝑨 is sparse, some grids contain all zeros, hence do not need 
to map to any crossbar. In contrast to “direct mapping”, a “compact 
mapping” finds the minimum set of grids 𝑪 ⊆ {𝑨2,3} that is a cover of 
all non-zero entries in 𝑨. The goal of the proposed generalized sparse 
matrix reordering technique is to re-arrange the rows and columns of 
the matrix 𝑨 to cluster the zeros and non-zeros, such that 𝑪  (i.e. size 
of 𝑪) is minimized. It aims at finding a row-wise permutation matrix 
𝑷  and a column-wise permutation matrix 𝑸 , to obtain 𝑨Q = 𝑷𝑨𝑸 
where 𝑨Q  is essentially a reorganized version of 𝑨  with the same 
number of non-zero entries, but different sparsity distribution. The 
non-zero entries in 𝑨Q are clustered so that a minimum set of non-zero 
grid blocks can be found. For simplicity, in the rest of the paper, we 
refer to a “grid block” simply as a “block”. 

In order to apply compact mapping with generalized matrix 
reordering, the similar permutation needs to be applied on the input 
vector as well. The transformed input vector is denoted as 𝒙′, 𝒙′ =
𝑸𝑻𝒙 , which is realized by reordering 𝒙  according to 𝑸𝑻 . And the 
transformed output vector is denoted as 𝒚Q, 𝒚′ = 𝑨′𝒙′. The expected 
output y can be obtained from 𝒚′ by permutation: 𝒚 = 𝑷𝑻𝒚Q. 

P = 

 

Q = 

 

(1) 

     

 
 
 
 
 
 

 
Fig. 2. A motivational example. (a) The original matrix A. (b) Permuted 
matrix AQ. 

 
Fig. 3. Applying GSMR on sparse matrix qh882. Blue dots represent non-
zero entries, and black squares represent non-zero sub-blocks. (a) Original 
matrix. (b) GSMR reordered matrix. (c) and (d) 32x32 non-zero block cover 
of original and reduced matrices. (e) and (f) 64x64 non-zero block cover of 
original and reduced matrices. 

As an example that demonstrates how permutation can affect the 
non-zero entry distributions in a matrix, Fig. 2(a) gives the original 
6×5 matrix denoted as 𝑨, with each “×” denoting a non-zero entry. 
Notice that in the original matrix the non-zeros are scattered across 
the matrix. By applying 𝑷 as the row permutation and 𝑸 as column 
permutation, shown in Eq. 1, we obtain a new matrix 𝑨Q = 𝑷𝑨𝑸 
which has its non-zeros located closer to each other, as shown in Fig. 
2(b). The permutated column and row indices are labeled in the figure. 
The solid green boxes in the figure are 2×2 blocks used to cover the 
non-zero entries. As we can see, the minimum size non-zero block 
cover is 7 and 4 for matrices 𝑨 and 𝑨Q respectively. 

In the above procedure, the key is to find effective permutation 
matrix 𝑷  and 𝑸  to map the original matrix 𝑨  to 𝑨Q , which has 
minimum non-zero block cover. Traditionally there are a variety of 
algorithms that transforms sparse matrices into other forms to improve 
computation efficiency [8][9]. However, all of these algorithms aim 
at CPU or GPU based parallel computing platforms. Their objective 
is to reduce the communication between computing cores that work in 
parallel. We refer to such partition method as communication optimal. 
Two computing cores need to communicate with each other only when 
they are processing entries located in the same row. Hence the goal of 
“communication optimal” matrix reordering and partition is not to 
minimize the number of non-zero blocks, but to minimize the number 
of non-zero blocks located in the same row. Another method that is 
recently proposed to group non-zeros in a matrix is spectral clustering. 
Spectral clustering also seeks to group non-zeros entries in a sparse 
matrix by calculating eigenvalues of matrix derived from a similarity 
graph [7]. However, our experiments show that its performance is not 
as promising as our proposed GSMR technique. 
C. Generalized Sparse Matrix Reordering 

Given a 𝑚×𝑛  matrix 𝑨  and its block partition Π, which 
partitions 𝑨 into equal sized submatrices with dimension 𝑘×𝑘. The 
set of all submatrices that contains non-zero entries is referred to as 
the non-zero block cover of 𝑨. We also define the bandwidth (BA) of 
matrix 𝑨  as 𝐵𝑨 = max(,* 𝑖 − 𝑗 + 1 , ∀𝑖, 𝑗 , where 𝑎(*  is a non-zero 
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entry in matrix 𝑨. It is easy to see that a diagonal matrix has bandwidth 
1, and a matrix with small bandwidth is a matrix whose non-zero 
entries are clustered near the diagonal. 

Without loss of generality, we constrain matrix 𝑨 so that none of 
its rows or columns are all zeros. Otherwise, we simply remove that 
row or column. We refer to this type of matrices as weakly irreducible 
matrices, since they are a super-set of irreducible matrices. Intuitively 
we can see that, for the weakly irreducible matrix 𝑨, its permutation 
𝑨Q  will have smaller non-zero block coverage, if it has smaller 
bandwidth. For the extreme case when 𝑨 is a square matrix that has 
only one non-zero entry in each row and column, this property can be 
strictly proved as in Theorem 1. The proof of the theorem is omitted 
due to space limitation. 
Theorem 1. If 𝑨 is a square matrix that has only one non-zero entry 
in each row and column, the minimum non-zero block cover occurs 
when 𝑨 is permutated to a diagonal matrix. 

The Cuthill-McKee algorithm is traditionally used to permute a 
symmetric sparse matrix into a band matrix [11]. Such permutation 
usually reduces the matrix bandwidth. However, the algorithm can 
only be applied to square symmetric matrix. To overcome the 
limitation, for a general matrix A, we construct matrix 𝑩  as the 
following: 

 𝑩 = 𝟎 𝑨𝐓
𝑨 𝟎

 (2) 

Obviously when 𝑨 is a matrix with 𝑚 rows and 𝑛 columns, 𝑩 
will be a symmetric matrix with 𝑚 + 𝑛 rows and 𝑚 + 𝑛 columns. If 
we deem 𝑨 as a representation of a bipartite graph 𝐺𝑨 in which there 
are 𝑚 “row bank” vertices and 𝑛 “column bank” vertices, 𝑩 can be 
deemed as a representation of ordinary undirected graph 𝐺𝑩, which 
has the same topological structure of 𝑨. The relationship between 𝐺𝑨 
and 𝐺𝑩 is vertices labeled 1 to n in 𝐺𝑩 correspond to the “column bank” 
vertices in 𝐺𝑨, and vertices labelled 𝑛 + 1 to 𝑚 + 𝑛 in 𝐺𝑩 correspond 
to the “row bank” vertices in 𝐺𝑨 . By applying Cuthill-McKee 
algorithm to 𝑩, we obtain a permutation matrix 𝑽 such that 𝑽𝑩𝑽𝑻 is 
a band matrix. If we denote 𝝅 as the permutation corresponding to 𝑽, 
then we can obtain a row permutation 𝜶 by extracting entries that 
represents “row bank” vertices in 𝝅  and maintain their order. 
Likewise, we can obtain column permutation 𝜷 by extracting entries 
that represents “column bank” vertices in 𝝅 and maintain their order. 
By applying 𝜶  as the row permutation and 𝜷  as the column 
permutation on 𝑨, a bandwidth reduced 𝑨Q can be obtained. We refer 
to this extended Cuthill-McKee method as generalized sparse matrix 
reordering (GSMR) as it can be applied to general matrix that is 
rectangular and non-symmetrical. The GSMR procedure is 
summarized in Algorithm 1. 

ALGORITHM 1. GENERALIZED SPARSE MATRIX REORDERING 
 Input: rectangular, unsymmetrical matrix 𝑨 
 Output: matrix 𝑨Q   (𝑨  after reordering), row permutation 𝜶  and 

column permutation 𝜷 
1 Construct matrix B from 𝑨 as in Eq. 2 
2 View B as a connection graph 𝐺d  
3 Choose in 𝐺d  a vertex x with the lowest degree and let R := ({x}); 

permutation vector 𝝅 = ø 
4 while |R| < the number of all vertices in 𝐺d  
5 Construct the adjacency set Pi of Ri (Ri denoting i-th 

component of R) and exclude the vertices already in R 
6     Sort Pi ascendingly according to vertex degree 
7     Append Pi to the result set R 
8     Append index of Ri to the end of  𝝅 
9 endwhile 
10 Extract 𝜶 and 𝜷 from 𝝅 respectively 
11 Obtain 𝑨Q by apply 𝜶 on rows of 𝑨 and 𝜷 on columns of 𝑨 

An example of how GSMR help to reduce the non-zero block 
cover is given in Fig. 3. Here GSMR is applied on a sparse matrix 
called qh882. Using 32×32 sub-blocks, the size of non-zero block 
cover goes down from 199 to 134 after GSMR, which corresponds to 
a 33% reduction, as shown in Fig. 3(c) and Fig. 3(d). Using 64×64 
sub-blocks, the number goes down from 82 to 46, or a 44% reduction, 
as shown in Fig. 3(e) and Fig. 3(f). 

III. EXPERIMENTAL RESULTS AND EVALUATION 
To evaluate the performance of the proposed framework 

employing generalized sparse matrix reordering (GSMR) algorithm, 
we compare its performance with three other baseline platforms: CPU 
platform, GPU platform, and memristor crossbar based platform with 
naïve “compact mapping” (i.e. without GSMR but omit all-zero sub-
blocks). The CPU based baseline uses Intel i7-3770K CPU running at 
3.5GHz with power consumption of 70W. On this platform, SpMV 
multiplication is realized with compiled code written in C++, and 
takes matrices in coordinate list (COO) format as input. Also we use 
CUSP, a C++ sparse matrix library running with an Nvidia Tesla 
C2070 GPU to test its SpMV multiplication performances. The GPU 
has a peak power of 215W. 

The parameters of the memristor crossbar and details of its 
associated circuitry [12] are illustrated in Table I. The clock speed is 
set to 1GHz and the power is estimated with Design Compiler. The 
memristor crossbar size we use in the experiment is set to 32×32 and 
64×64 respectively. A portion of sparse matrix data that we use is 
obtained from [13], which contains examples from a variety of 
research realms. We also randomly generated sparse matrices of 
different sizes and sparsities (rand1 to rand4). Details of these sparse 
matrices can be found in Table II. The input vectors are dense and 
randomly generated. Each sparse matrix is multiplied with 100 
randomly generated vectors and the average performance is reported. 

TABLE I. PARAMETERS USED BY THE SIMULATION 

Data 
Converter 

ADC Power ADC latency DAC Power DAC latency 

290.59mW/GHz 1ns 7.32mW/GHz 1ns 
Sensing 
Circuit 

Op Amp Power Op Amp Delay 
100µW 0.6ns 

Control 
 

Program Pulse (𝑇fghi) Evaluation Pulse (𝑇klmn) 
10ns 1ns 

Other 
 

𝑉pp MCC power (𝑃rss) 
1.0V 15.7mW 

TABLE II. SPARSE MATRICES USED IN THE EXPERIMENT  

Matrix Name # of Rows # of Columns # of Non-zeros Sparsity 

illc1033 1033 320 4732 0.0143 
illc1850 1850 712 8758 0.0066 
qh1484 1484 1484 6110 0.0028 
qh882 882 882 3354 0.0043 
rand1 1000 1100 110000 0.1000 
rand2 1100 1000 110000 0.1000 
rand3 1000 1100 500 0.0010 
rand4 1100 1000 500 0.0010 
zenios 2873 2873 15032 0.0018 

 
Table III shows the reduction of non-zero block cover size of 

those sparse matrices after GSMR reordering. The block dimension is 
set to either 32 or 64. We can observe that for matrices that are 
relatively sparser (rand3, rand4 and zenios), the reduction in the size 
of non-zero block cover is more significant than relatively denser ones 
(rand1 and rand2). This indicates that better performance can be 
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obtained for sparser matrices. On average using GSMR reduces the 
number of sub-blocks by 45.9% and 45.7% respectively. The 
percentage reduction after using spectral clustering is also given. Note 
that spectral clustering performs worse than GSMR in all cases, and 
in some cases it even increases the size of non-zero block cover. This 
is because for those sparse matrices, the non-zero entries are already 
moderately grouped toward the diagonal line, spectral clustering tends 
to break them apart and make them scatter around. We also tested the 
“communication optimal” partition traditionally used by SpMV in 
multicore systems. Since they target at different objective, our 
experiment shows a unified deterioration compared to the original 
matrix in terms of number of non-zero blocks. Due to the space 
limitation, their results are not listed here. 

TABLE III. PERCENTAGE REDUCTION IN THE SIZE OF NON-ZERO 
BLOCK COVER 

Matrix Name k = 32 k = 64 
GSMR (%) SC (%) GSMR (%) SC (%) 

illc1033 43.9 20.6 31.1 2.7 
illc1850 37.0 -0.9 42.9 -2.5 
qh1484 47.3 31.3 59.1 28.2 
qh882 32.7 15.1 43.9 1.2 
rand1 2.7 0.0 2.1 0.0 
rand2 1.6 1.0 3.5 0.0 
rand3 91.4 -56.2 89.3 -1.8 
rand4 91.9 -64.5 89.5 61.7 
zenios 66.5 18.2 64.8 24.6 
Ave. 45.9 -2.1 45.7 11.4 

Table IV summarizes the performance and energy performance 
of different platforms. For the CPU based implementation, the 
performance is measured as the application CPU time that is used only 
to calculate the matrix vector operation with exclusion of the I/O time. 
The energy consumption is the accumulated CPU power consumption 
during that time. It is worth to note that for relatively small sized 
matrices, GPU is even slower than CPU, which is caused by the 
overhead of transferring data from host memory to device memory. 
TABLE IV. PERFORMANCE AND ENERGY IMPACT OF USING GSMR 

Reference 
Implementation 

GSMR (k = 32) GSMR (k = 64) 

Speed Energy Speed Energy 
CPU based 2.7× 171.8× 3.3× 121.3× 
GPU based 2.6× 514.7× 3.0× 398.9× 

Crossbar w/o GSMR 1.9× 1.8× 1.9× 2.0× 

For memristor crossbar based framework, the performance is 
measured as the time spent on memristor programming, crossbar 
results evaluation and partial results merging. The energy is measured 
as total energy dissipation on controller, data converters, op-amps and 
other auxiliary components. For crossbar size of 32, we can see that 
compared to calculating the sparse matrix operation on CPU (GPU) 
platforms, the crossbar based hardware platform with GSMR 
optimization achieves on average 2.7× (2.6×) improvement in 
computation time and 171.8× (514.7×) improvement in energy 
consumption. Compared to the crossbar based hardware platform with 
without GSMR optimization, the one with GSMR optimization gives 
1.9× improvements in computation time and 1.8× improvements in 
energy consumption. Using a larger (64×64) crossbar, the 
improvements in performance is even more significant, but the energy 
improvement is reduced. The results indicate that 𝑘 is a parameter that 
controls the trade-off in performance and energy dissipation. 
Exploring the impact of 𝑘 will be one of the directions of our future 
work.  

IV. CONCLUSIONS 
In this paper, we present a highly efficient sparse matrix vector 

(SpMV) multiplication framework featuring memristor crossbar 
accelerator. We develop a technique called Generalized Sparse Matrix 
Reordering (GSMR) by leveraging linear transformation to break 
down rectangular matrices into sub-blocks to make them fit into 
reasonably sized crossbar, and reduce the number of sub-blocks. 
Experimental results show that compared to CPU, GPU and no-
GSMR platforms, our GSMR based platform achieves great reduction 
in both computation time and energy consumption. 
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