
`

Towards Memristor based Accelerator for Sparse
Matrix Vector Multiplication

Jianwei Cui, Qinru Qiu
Dept. of Electrical Engineering & Computer Science

Syracuse University, Syracuse, NY, 13244, USA
{jcui, qiqiu}@syr.edu

Abstract — In the last few years, memristor crossbar array is

drawing increasing attention from the research community as a
promising neuromorphic computing accelerator. In this work, we
investigate the hardware acceleration of a sparse matrix vector
(SpMV) multiplication engine based on memristor crossbar array.
We demonstrate that naive matrix coefficient mapping is
infeasible and unpractical if the matrix has large dimensions. To
combat this problem, we extend the traditional Cuthill-McKee
algorithm used for matrix restructuring, and propose a
generalized sparse matrix reordering (GSMR) technique, which
leverages linear transformation to effectively break down any
rectangular unsymmetrical matrices into minimum number of
sub-blocks that fit into the reasonably sized crossbar array.
Simulated results show that our proposed design achieves
appealing performances in terms of speed and energy efficiency
compared to both CPU and GPU platforms. In addition, a
memristor crossbar array utilizing GSMR outperforms its
counterpart with no-GSMR by 90% performance improvements
and 44% energy reduction.

I. INTRODUCTION
In recent years, great progresses have been made in fabricating

high-speed memristors with appealing physical features [14][15][16].
In [1], crossbar array was proposed as a leading candidate for future
memory and logic applications. Because of memristor crossbar’s
analog nature and small footprint on silicon, it can be configured as
highly parallel and low power matrix vector multiplication computing
engine [2][3][4]. Many researchers have proposed using memristor
crossbar as computing accelerator, especially in applications such as
neuromorphic computing [5][6][17].

Naive mapping from a matrix to a memristor crossbar array is
usually wasteful and sometimes not feasible. First of all, the
dimension of matrices and vectors varies from application to
application. For many scientific computing and big data applications,
matrices of interest can be extremely large. Design for the worst-case
scenario would yield a huge crossbar. Although the memristor device
allows high-density integration, the auxiliary circuit of the memristor
crossbar array (e.g. D/A and A/D converters, op-amp circuits, etc.)
grows with the crossbar size, it is apparent that a crossbar array with
extremely large number of rows and columns would be impractical to
fabricate [7]. Furthermore, in applications where matrices are sparse,
direct mapping of a sparse matrix leads to very low hardware
utilization. Finally, memristor has bounded maximum resistance, it is
difficult to program them to zero conductance which corresponds to
infinitely large resistance. Hence a sparse matrix that has large number
of zero entries may lead to large approximation error when
implemented using memristor crossbar.

To address the aforementioned issues, in this work, we propose
to decompose the matrix into sub-blocks, which can be mapped to a
set of fixed sized crossbar arrays, and the partial results are combined
in the end. Those sub-blocks that contain all zeros will be omitted and

not consume any computing resources. For example, a 1024×1024
sparse matrix can be decomposed into 1024 32×32 sub-blocks. Only
those sub-blocks that have non-zero entries need to be mapped to
memristor crossbar. The actual number of sub-blocks needed may be
much less than 1024 due to the sparsity.

A question naturally arising is how to manipulate the sparse matrix
to maximize the number of all-zero sub-blocks; which consequently
minimizes the number of required memristor crossbar arrays. There
has been a variety of literature devoted to sparse matrix partition for
parallel computing using multicore CPU or GPGPU [8][9]. However,
the main objective of these methods is to minimize inter-core
communication, as the bandwidth and performance of bus and
memory subsystem are the bottleneck of high performance computing.
In a memristor crossbar based SpMV multiplication engine, reducing
communication volume is no longer the goal. Instead, we propose to
“group” the sparse matrix’s non-zero entries as aggressively as
possible. The contribution of this paper can be summarized as the
following:
1. The hardware optimization of memristor based sparse matrix vector

multiplication is formulated as to find the minimum non-zero
block cover of a permutation of the given sparse matrix. To the
best of our knowledge, this is the first work that associates
minimum non-zero block cover with the matrix bandwidth, and
applies matrix bandwidth reduction technique to optimize the
memristor based hardware accelerator.

2. A generalized sparse matrix reordering (GSMR) technique is
proposed to facilitate sparse matrix partition. Its benefit is twofold.
First, it creates more all-zero sub-blocks, which do not require
hardware resource; second, by removing as many zeros from the
matrix as possible, it reduces the accumulated error.

3. The GSMR algorithm is applied to sparse matrices both from real
life applications and random generation. Significant performance
and energy improvements are achieved.

II. GENERALIZED SPARSE MATRIX REORDERING FOR
CROSSBAR HARDWARE REDUCTION

A. Background
Fig. 1 [7] shows a memristor crossbar used as matrix vector

multiplication engine, which computes	𝒚 = 𝑨𝒙 in the analog domain,
where A is an M by N matrix. It is made of two layers of metal wires,
with 𝑁 wires on the top, each corresponding to an entry in the input
vector, and 𝑀 wires at the bottom, each corresponding to an entry in
the output vector. Between each overlap of a top wire and a bottom
wire there is a memristor as the connector. It is easy to see that if the
conductance of the memristor at coordinate i at the bottom and j on
the top is programmed to have value 𝑨(,*, and 𝒙 is applied as input
voltage vector, 𝒚 will be produced as the output current vector on the
bottom wires. To incorporate the memristor crossbar into digital
computing framework, extra circuitry is required. For example, A/D
and D/A converters are needed at the input and output as the

`

communication interface. The bottom wires must be held at ground
potential in order to make the crossbar function correctly. In addition,
to support negative entries in 𝑨, another crossbars and subtraction
circuit is needed [10].

Fig. 1. Memristor crossbar for matrix vector multiplication.

B. Motivations
Consider a matrix vector multiplication kernel,	𝒚 = 𝑨𝒙, where 𝑨

is a large sparse matrix with 𝑚 rows and 𝑛 columns, 𝒙 is a column
vector of length 𝑛, and 𝒚 is a column vector of length 𝑚. Given a set
of square sized memristor crossbar arrays, whose dimension is 𝑘×𝑘,
where 𝑘 is much smaller than 𝑚 and 𝑛. We divide the matrix A into
/
0
× 1

0
 equal sized grids and map each grid block to a memristor

crossbar. We use I and J to represent index of a grid and i and j to the
index of a matrix element. A direct mapping decomposes the large
matrix vector multiplication into /

0
× 1

0
 smaller matrix vector

multiplications, represented as 𝒚2,3 = 𝑨2,3𝒙3. Here 𝒙3, 0 ≤ 𝐽 ≤ 1
0

, is
a partition of vector x, i.e. 𝒙 = 𝒙33 , and all grids 𝑨2,3 , 0 ≤ 𝐽 ≤
1
0
, 0 ≤ 𝐼 ≤ /

0
 form a partition of matrix 𝑨, i.e. 𝑨 = 𝑨2,32,3 . The

sub-vector 𝒙3 contains 𝑘 elements copied from the original vector x
as 𝑥3∙0, 𝑥3∙0:;, … , 𝑥3∙0:0=; . The sub-matrix 𝑨2,3 contains matrix
elements 	 𝑎(,* where 𝑎(,* ∈ 𝑨 and 𝐼 ∙ 𝑘 ≤ 𝑖 ≤ 𝐼 ∙ 𝑘 + 𝑘 − 1, 𝐽 ∙ 𝑘 ≤
𝑗 ≤ 𝐽 ∙ 𝑘 + 𝑘 − 1. The final result y is partitioned into /

0
 sub-vectors,

𝒚 = 𝒚EF, 𝒚;F, … 𝒚 G
H

F
F

, and its I-th entry is calculated as 𝒚2 =

𝒚23
I
H
3J; .

When 𝑨 is sparse, some grids contain all zeros, hence do not need
to map to any crossbar. In contrast to “direct mapping”, a “compact
mapping” finds the minimum set of grids 𝑪 ⊆ {𝑨2,3} that is a cover of
all non-zero entries in 𝑨. The goal of the proposed generalized sparse
matrix reordering technique is to re-arrange the rows and columns of
the matrix 𝑨 to cluster the zeros and non-zeros, such that 𝑪 (i.e. size
of 𝑪) is minimized. It aims at finding a row-wise permutation matrix
𝑷 and a column-wise permutation matrix 𝑸 , to obtain 𝑨Q = 𝑷𝑨𝑸
where 𝑨Q is essentially a reorganized version of 𝑨 with the same
number of non-zero entries, but different sparsity distribution. The
non-zero entries in 𝑨Q are clustered so that a minimum set of non-zero
grid blocks can be found. For simplicity, in the rest of the paper, we
refer to a “grid block” simply as a “block”.

In order to apply compact mapping with generalized matrix
reordering, the similar permutation needs to be applied on the input
vector as well. The transformed input vector is denoted as 𝒙′, 𝒙′ =
𝑸𝑻𝒙 , which is realized by reordering 𝒙 according to 𝑸𝑻 . And the
transformed output vector is denoted as 𝒚Q, 𝒚′ = 𝑨′𝒙′. The expected
output y can be obtained from 𝒚′ by permutation: 𝒚 = 𝑷𝑻𝒚Q.

P =

Q =

(1)

Fig. 2. A motivational example. (a) The original matrix A. (b) Permuted
matrix AQ.

Fig. 3. Applying GSMR on sparse matrix qh882. Blue dots represent non-
zero entries, and black squares represent non-zero sub-blocks. (a) Original
matrix. (b) GSMR reordered matrix. (c) and (d) 32x32 non-zero block cover
of original and reduced matrices. (e) and (f) 64x64 non-zero block cover of
original and reduced matrices.

As an example that demonstrates how permutation can affect the
non-zero entry distributions in a matrix, Fig. 2(a) gives the original
6×5 matrix denoted as 𝑨, with each “×” denoting a non-zero entry.
Notice that in the original matrix the non-zeros are scattered across
the matrix. By applying 𝑷 as the row permutation and 𝑸 as column
permutation, shown in Eq. 1, we obtain a new matrix 𝑨Q = 𝑷𝑨𝑸
which has its non-zeros located closer to each other, as shown in Fig.
2(b). The permutated column and row indices are labeled in the figure.
The solid green boxes in the figure are 2×2 blocks used to cover the
non-zero entries. As we can see, the minimum size non-zero block
cover is 7 and 4 for matrices 𝑨 and 𝑨Q respectively.

In the above procedure, the key is to find effective permutation
matrix 𝑷 and 𝑸 to map the original matrix 𝑨 to 𝑨Q , which has
minimum non-zero block cover. Traditionally there are a variety of
algorithms that transforms sparse matrices into other forms to improve
computation efficiency [8][9]. However, all of these algorithms aim
at CPU or GPU based parallel computing platforms. Their objective
is to reduce the communication between computing cores that work in
parallel. We refer to such partition method as communication optimal.
Two computing cores need to communicate with each other only when
they are processing entries located in the same row. Hence the goal of
“communication optimal” matrix reordering and partition is not to
minimize the number of non-zero blocks, but to minimize the number
of non-zero blocks located in the same row. Another method that is
recently proposed to group non-zeros in a matrix is spectral clustering.
Spectral clustering also seeks to group non-zeros entries in a sparse
matrix by calculating eigenvalues of matrix derived from a similarity
graph [7]. However, our experiments show that its performance is not
as promising as our proposed GSMR technique.
C. Generalized Sparse Matrix Reordering

Given a 𝑚×𝑛 matrix 𝑨 and its block partition Π, which
partitions 𝑨 into equal sized submatrices with dimension 𝑘×𝑘. The
set of all submatrices that contains non-zero entries is referred to as
the non-zero block cover of 𝑨. We also define the bandwidth (BA) of
matrix 𝑨 as 𝐵𝑨 = max(,* 𝑖 − 𝑗 + 1 , ∀𝑖, 𝑗 , where 𝑎(* is a non-zero

Input
vector x
(voltage)

Output vector y (current)

x1
x2

xN

y1 y2 yM

AM,N
(conductance
of memristor)

（a）

（b）

（c）

（d）

（e）

（f）

(a) (b)

`

entry in matrix 𝑨. It is easy to see that a diagonal matrix has bandwidth
1, and a matrix with small bandwidth is a matrix whose non-zero
entries are clustered near the diagonal.

Without loss of generality, we constrain matrix 𝑨 so that none of
its rows or columns are all zeros. Otherwise, we simply remove that
row or column. We refer to this type of matrices as weakly irreducible
matrices, since they are a super-set of irreducible matrices. Intuitively
we can see that, for the weakly irreducible matrix 𝑨, its permutation
𝑨Q will have smaller non-zero block coverage, if it has smaller
bandwidth. For the extreme case when 𝑨 is a square matrix that has
only one non-zero entry in each row and column, this property can be
strictly proved as in Theorem 1. The proof of the theorem is omitted
due to space limitation.
Theorem 1. If 𝑨 is a square matrix that has only one non-zero entry
in each row and column, the minimum non-zero block cover occurs
when 𝑨 is permutated to a diagonal matrix.

The Cuthill-McKee algorithm is traditionally used to permute a
symmetric sparse matrix into a band matrix [11]. Such permutation
usually reduces the matrix bandwidth. However, the algorithm can
only be applied to square symmetric matrix. To overcome the
limitation, for a general matrix A, we construct matrix 𝑩 as the
following:

 𝑩 = 𝟎 𝑨𝐓
𝑨 𝟎

 (2)

Obviously when 𝑨 is a matrix with 𝑚 rows and 𝑛 columns, 𝑩
will be a symmetric matrix with 𝑚 + 𝑛 rows and 𝑚 + 𝑛 columns. If
we deem 𝑨 as a representation of a bipartite graph 𝐺𝑨 in which there
are 𝑚 “row bank” vertices and 𝑛 “column bank” vertices, 𝑩 can be
deemed as a representation of ordinary undirected graph 𝐺𝑩, which
has the same topological structure of 𝑨. The relationship between 𝐺𝑨
and 𝐺𝑩 is vertices labeled 1 to n in 𝐺𝑩 correspond to the “column bank”
vertices in 𝐺𝑨, and vertices labelled 𝑛 + 1 to 𝑚 + 𝑛 in 𝐺𝑩 correspond
to the “row bank” vertices in 𝐺𝑨 . By applying Cuthill-McKee
algorithm to 𝑩, we obtain a permutation matrix 𝑽 such that 𝑽𝑩𝑽𝑻 is
a band matrix. If we denote 𝝅 as the permutation corresponding to 𝑽,
then we can obtain a row permutation 𝜶 by extracting entries that
represents “row bank” vertices in 𝝅 and maintain their order.
Likewise, we can obtain column permutation 𝜷 by extracting entries
that represents “column bank” vertices in 𝝅 and maintain their order.
By applying 𝜶 as the row permutation and 𝜷 as the column
permutation on 𝑨, a bandwidth reduced 𝑨Q can be obtained. We refer
to this extended Cuthill-McKee method as generalized sparse matrix
reordering (GSMR) as it can be applied to general matrix that is
rectangular and non-symmetrical. The GSMR procedure is
summarized in Algorithm 1.

ALGORITHM 1. GENERALIZED SPARSE MATRIX REORDERING
 Input: rectangular, unsymmetrical matrix 𝑨
 Output: matrix 𝑨Q (𝑨 after reordering), row permutation 𝜶 and

column permutation 𝜷
1 Construct matrix B from 𝑨 as in Eq. 2
2 View B as a connection graph 𝐺d
3 Choose in 𝐺d a vertex x with the lowest degree and let R := ({x});

permutation vector 𝝅 = ø
4 while |R| < the number of all vertices in 𝐺d
5 Construct the adjacency set Pi of Ri (Ri denoting i-th

component of R) and exclude the vertices already in R
6 Sort Pi ascendingly according to vertex degree
7 Append Pi to the result set R
8 Append index of Ri to the end of 𝝅
9 endwhile
10 Extract 𝜶 and 𝜷 from 𝝅 respectively
11 Obtain 𝑨Q by apply 𝜶 on rows of 𝑨 and 𝜷 on columns of 𝑨

An example of how GSMR help to reduce the non-zero block
cover is given in Fig. 3. Here GSMR is applied on a sparse matrix
called qh882. Using 32×32 sub-blocks, the size of non-zero block
cover goes down from 199 to 134 after GSMR, which corresponds to
a 33% reduction, as shown in Fig. 3(c) and Fig. 3(d). Using 64×64
sub-blocks, the number goes down from 82 to 46, or a 44% reduction,
as shown in Fig. 3(e) and Fig. 3(f).

III. EXPERIMENTAL RESULTS AND EVALUATION
To evaluate the performance of the proposed framework

employing generalized sparse matrix reordering (GSMR) algorithm,
we compare its performance with three other baseline platforms: CPU
platform, GPU platform, and memristor crossbar based platform with
naïve “compact mapping” (i.e. without GSMR but omit all-zero sub-
blocks). The CPU based baseline uses Intel i7-3770K CPU running at
3.5GHz with power consumption of 70W. On this platform, SpMV
multiplication is realized with compiled code written in C++, and
takes matrices in coordinate list (COO) format as input. Also we use
CUSP, a C++ sparse matrix library running with an Nvidia Tesla
C2070 GPU to test its SpMV multiplication performances. The GPU
has a peak power of 215W.

The parameters of the memristor crossbar and details of its
associated circuitry [12] are illustrated in Table I. The clock speed is
set to 1GHz and the power is estimated with Design Compiler. The
memristor crossbar size we use in the experiment is set to 32×32 and
64×64 respectively. A portion of sparse matrix data that we use is
obtained from [13], which contains examples from a variety of
research realms. We also randomly generated sparse matrices of
different sizes and sparsities (rand1 to rand4). Details of these sparse
matrices can be found in Table II. The input vectors are dense and
randomly generated. Each sparse matrix is multiplied with 100
randomly generated vectors and the average performance is reported.

TABLE I. PARAMETERS USED BY THE SIMULATION

Data
Converter

ADC Power ADC latency DAC Power DAC latency

290.59mW/GHz 1ns 7.32mW/GHz 1ns
Sensing
Circuit

Op Amp Power Op Amp Delay
100µW 0.6ns

Control

Program Pulse (𝑇fghi) Evaluation Pulse (𝑇klmn)
10ns 1ns

Other

𝑉pp MCC power (𝑃rss)
1.0V 15.7mW

TABLE II. SPARSE MATRICES USED IN THE EXPERIMENT

Matrix Name # of Rows # of Columns # of Non-zeros Sparsity

illc1033 1033 320 4732 0.0143
illc1850 1850 712 8758 0.0066
qh1484 1484 1484 6110 0.0028
qh882 882 882 3354 0.0043
rand1 1000 1100 110000 0.1000
rand2 1100 1000 110000 0.1000
rand3 1000 1100 500 0.0010
rand4 1100 1000 500 0.0010
zenios 2873 2873 15032 0.0018

Table III shows the reduction of non-zero block cover size of

those sparse matrices after GSMR reordering. The block dimension is
set to either 32 or 64. We can observe that for matrices that are
relatively sparser (rand3, rand4 and zenios), the reduction in the size
of non-zero block cover is more significant than relatively denser ones
(rand1 and rand2). This indicates that better performance can be

`

obtained for sparser matrices. On average using GSMR reduces the
number of sub-blocks by 45.9% and 45.7% respectively. The
percentage reduction after using spectral clustering is also given. Note
that spectral clustering performs worse than GSMR in all cases, and
in some cases it even increases the size of non-zero block cover. This
is because for those sparse matrices, the non-zero entries are already
moderately grouped toward the diagonal line, spectral clustering tends
to break them apart and make them scatter around. We also tested the
“communication optimal” partition traditionally used by SpMV in
multicore systems. Since they target at different objective, our
experiment shows a unified deterioration compared to the original
matrix in terms of number of non-zero blocks. Due to the space
limitation, their results are not listed here.

TABLE III. PERCENTAGE REDUCTION IN THE SIZE OF NON-ZERO
BLOCK COVER

Matrix Name k = 32 k = 64
GSMR (%) SC (%) GSMR (%) SC (%)

illc1033 43.9 20.6 31.1 2.7
illc1850 37.0 -0.9 42.9 -2.5
qh1484 47.3 31.3 59.1 28.2
qh882 32.7 15.1 43.9 1.2
rand1 2.7 0.0 2.1 0.0
rand2 1.6 1.0 3.5 0.0
rand3 91.4 -56.2 89.3 -1.8
rand4 91.9 -64.5 89.5 61.7
zenios 66.5 18.2 64.8 24.6
Ave. 45.9 -2.1 45.7 11.4

Table IV summarizes the performance and energy performance
of different platforms. For the CPU based implementation, the
performance is measured as the application CPU time that is used only
to calculate the matrix vector operation with exclusion of the I/O time.
The energy consumption is the accumulated CPU power consumption
during that time. It is worth to note that for relatively small sized
matrices, GPU is even slower than CPU, which is caused by the
overhead of transferring data from host memory to device memory.
TABLE IV. PERFORMANCE AND ENERGY IMPACT OF USING GSMR

Reference
Implementation

GSMR (k = 32) GSMR (k = 64)

Speed Energy Speed Energy
CPU based 2.7× 171.8× 3.3× 121.3×
GPU based 2.6× 514.7× 3.0× 398.9×

Crossbar w/o GSMR 1.9× 1.8× 1.9× 2.0×

For memristor crossbar based framework, the performance is
measured as the time spent on memristor programming, crossbar
results evaluation and partial results merging. The energy is measured
as total energy dissipation on controller, data converters, op-amps and
other auxiliary components. For crossbar size of 32, we can see that
compared to calculating the sparse matrix operation on CPU (GPU)
platforms, the crossbar based hardware platform with GSMR
optimization achieves on average 2.7× (2.6×) improvement in
computation time and 171.8× (514.7×) improvement in energy
consumption. Compared to the crossbar based hardware platform with
without GSMR optimization, the one with GSMR optimization gives
1.9× improvements in computation time and 1.8× improvements in
energy consumption. Using a larger (64×64) crossbar, the
improvements in performance is even more significant, but the energy
improvement is reduced. The results indicate that 𝑘 is a parameter that
controls the trade-off in performance and energy dissipation.
Exploring the impact of 𝑘 will be one of the directions of our future
work.

IV. CONCLUSIONS
In this paper, we present a highly efficient sparse matrix vector

(SpMV) multiplication framework featuring memristor crossbar
accelerator. We develop a technique called Generalized Sparse Matrix
Reordering (GSMR) by leveraging linear transformation to break
down rectangular matrices into sub-blocks to make them fit into
reasonably sized crossbar, and reduce the number of sub-blocks.
Experimental results show that compared to CPU, GPU and no-
GSMR platforms, our GSMR based platform achieves great reduction
in both computation time and energy consumption.

ACKNOWLEDGEMENT
This work is partially supported by the National Science

Foundation under Grants CCF-1337300.

REFERENCES
[1] Kuk-Hwan Kim et al, “A Functional Hybrid Memristor Crossbar-

Array/CMOS System for Data Storage and Neuromorphic Applications”,
Nano Letters 2012 12 (1), 389-395.

[2] Miao Hu; Hai Li; Qing Wu; Rose, G.S.; Yiran Chen, "Memristor crossbar
based hardware realization of BSB recall function," Neural Networks
(IJCNN), The 2012 International Joint Conference on, vol., no., pp.1,7,
10-15 June 2012.

[3] Miao Hu; Hai Li; Yiran Chen; Qing Wu; Rose, G.S.; Linderman, R.W.,
"Memristor Crossbar-Based Neuromorphic Computing System: A Case
Study," Neural Networks and Learning Systems, IEEE Transactions on ,
vol.25, no.10, pp.1864,1878, Oct. 2014.

[4] Boxun Li; Yi Shan; Miao Hu; Yu Wang; Yiran Chen; Huazhong Yang,
“Memristor-based approximated computation”, ISLPED 2013 IEEE
International Symposium on, pp.242,247, 4-6 Sept. 2013.

[5] Beiye Liu; Miao Hu; Hai Li; Zhi-Hong Mao; Yiran Chen; Tingwen
Huang; Wei Zhang, "Digital-assisted noise-eliminating training for
memristor crossbar-based analog neuromorphic computing engine,"
Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE ,
vol., no., pp.1,6, May 29 2013-June 7 2013.

[6] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive Devices for
Computing,” Nat. Nanotechnol., vol. 8, no. 1, pp. 13–24, 2013.

[7] Wei Wen; et al., “An EDA Framework for Large Scale Hybrid
Neuromorphic Computing Systems.” Proc. 52th Annual. Design.
Automation Conference, (DAC ’15), June 2015.

[8] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” Proc.
27th Int. ACM Conf. Int. Conf. Supercomput. - ICS ’13, p. 273, 2013.

[9] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication
on CUDA,” Nvidia, 2008.

[10] R. E. Pino, H. (Helen) Li, Y. Chen, M. Hu, and B. Liu, “Statistical
memristor modeling and case study in neuromorphic computing,” Proc.
49th Annu. Des. Autom. Conf. - DAC ’12, p. 585, 2012.

[11] E. Cuthill and J. McKee. 1969. “Reducing the bandwidth of sparse
symmetric matrices,” Proceedings of the 1969 24th national conference
(ACM '69). ACM, New York, NY, USA, 157-172.

[12] X. Liu, C. Engr, and J. J. Yang, “A Heterogeneous Computing System
with Memristor- Based Neuromorphic Accelerators,” Proceedings of
18th IEEE High Performance Extreme Computing Conference, 2014.

[13] http://math.nist.gov/MatrixMarket/data/SPARSKIT/
[14] Chua, L.O., “Memristor-The missing circuit element,” Circuit Theory,

IEEE Transactions on, vol.18, no.5, pp.507,519, Sep 1971.
[15] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.Williams, “The

missing memristor found,” Nature, vol. 453, pp. 80–83, 2008.
[16] J. Joshua Yang, M. X. Zhang, M. D. Pickett, F. Miao, J. Paul Strachan,

W. Di Li, W. Yi, D. A. A. Ohlberg, B. Joon Choi, W. Wu, J. H. Nickel,
G. Medeiros-Ribeiro, and R. Stanley Williams, “Engineering
nonlinearity into memristors for passive crossbar applications,” Appl.
Phys. Lett., vol. 100, no. 2012, pp. 98–102, 2012.

[17] R. E. Pino, H. (Helen) Li, Y. Chen, M. Hu, and B. Liu, “Statistical
memristor modeling and case study in neuromorphic computing,” Proc.
49th Annu. Des. Autom. Conf. - DAC ’12, p. 585, 2012.

