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ABSTRACT 
In this work we consider lifetime-aware resource management for 
sensor network using distributed genetic algorithm (GA). Our goal 
is to allocate different detection methods to different sensor nodes in 
the way such that the required detection probability can be achieved 
while the network lifetime is maximized. The contribution of this 
paper is twofold. Firstly, the resource management problem is 
formulated as a constraint optimization problem and is solved using 
a distributed GA. Secondly, empirical analysis results are provided 
that reveals the relationship between the configuration parameters 
and the quality of the search. A regression model is designed to 
estimate the runtime of the distributed GA given the configuration 
parameters. The model is utilized to find energy efficient 
configurations of the algorithm. 

Categories and Subject Descriptors 
J.7 [Computer Applications]: Sensors and Sensor Networks 

General Terms 
Experimentation 

Keywords 
Distributed Genetic Algorithm, Sensor Network, Energy Aware 
Design, Resource Management 
1. INTRODUCTION 
Due to the fast development of information technology, the 
networked distributed system is gradually replacing the 
conventional centralized system. It is a vision of the future that large 
numbers of low cost smart mobile devices will be integrated into the 
daily life of ordinary people. Accumulated, they provide the 
information processing capability that is equivalent to a high 
performance processing station. The emerging concept of Ambient 
Intelligence [1] and the recent developments of sensor networks [2], 
and wearable computers [3] reflect such vision. A distributed system 
consists of multiple heterogeneous networked processing elements, 
which are battery-powered and work on a set of tasks 
collaboratively. Each processing element has limited resources, such 
as battery energy, communication bandwidth, etc. It is a challenging 
task to efficiently utilize these resources to deliver required services 
during the runtime in a dynamic environment. 

Resource management is defined as the process that assigns tasks to 
different processing elements, schedules their start times and 
decides the level of service quality, which determines the resource 
usage, such as the energy dissipation and communication 
bandwidth, to run these tasks. The execution of each task represents 
a positive gain when measuring or quantifying the performance of 
the system.  It also associates a cost, which represents the resource 
usage. The resource management problem can be formulated as a 
multi-objective optimization problem, i.e. maximizing the gain 
while minimizing the cost. It can also be formulated as a constraint 
optimization problem, i.e. maximizing the gain while satisfying the 
cost constraint or vise versa. 
In this paper we focus on the management of the energy resource in 
an environment monitoring sensor network that is used to monitor, 
model and forecast physical processes, such as environment 
pollution, flooding, and fire etc. The basic configuration of each 
node in this network consists of a microprocessor, a wireless 
transceiver and an array of sensors such as light detector, barometer, 
humidity and thermopile sensors. A set of data acquisition and 
signal processing applications is available on each node. They 
provide the tradeoffs between detection quality and resource 
utilization. For example, increasing the sampling rate improves the 
probability of detecting an abnormal event however it increases the 
power consumption as well. 
There is usually a significant cost associated with deploying an 
environment monitoring system. It is desirable that the system can 
work for a reasonably long time after it is deployed. A common 
approach is to incorporate certain level of redundancy in the system. 
More than one node usually will be deployed to cover the same 
region. These nodes may be turned on alternatively to extend the 
network lifetime or simultaneously to increase the detection 
probability. If the minimum detection accuracy is given as a user 
constraint, the resource management problem for the system is to 
determine which sensor nodes should be turned on to process which 
data acquisition and signal processing application such that the 
network lifetime can be maximized while meeting the required 
detection accuracy. This is a well known general assignment 
problem which has been proven to be NP-complete [4].  
Most of the traditional resource optimization algorithms are solved 
in a centralized, off-line approach which is not suitable for a 
distributed system. In this paper we study the use of distributed 
genetic algorithm (GA) to solve the above mentioned optimization 
problem, potentially using processing capabilities residing on nodes 
of the distributed sensor network. One of the major characteristics of 
the GA is that it is “embarrassingly parallel”, in the sense that, its 
workload can easily be evenly distributed among processors, 
making it an appropriate choice for solving optimization problems 
in distributed systems. The configurations of the distributed, multi-
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deme GA, such as the population size, the migration rate, and the 
parallelism, has a significant impact on the quality of the search [8]. 
Finding efficient configurations of the distributed GA is an 
important research topic. The contribution of this paper is twofold. 
Firstly, the resource management problem is formulated as a 
constraint optimization problem and is solved using a distributed 
GA. The simulation results show that the resulting task allocation 
scheme increases the system lifetime by 14.4% in average, 
comparing to heuristic approaches. Secondly, empirical analysis 
results are provided that reveals the relationship between the 
configuration parameters and the quality of the search. A regression 
model is presented that estimates the runtime of the distributed GA 
given the configuration parameters. This model is then used to find 
energy efficient configurations of the algorithm. 
Many previous works on sensor network resource management and 
task allocation address network communication issues [5][6]. In 
these schemes the nodes are dynamically awakened to route a 
message. In reference [7] the resource allocation problem in a 
vehicle tracking system is modeled as a virtual market and solved 
using feedback control. This work focuses more on the tracking of a 
moving object rather than the collaborative detection of a static 
event. Therefore it cannot be applied in the environment monitoring 
system. Reference [9] focuses on task allocation on the gateways in 
a cluster-based sensor network. The problem is also formulated as a 
constraint optimization problem and is solved using simulated 
annealing, which is a centralized stochastic searching algorithm. 
Compared with reference [9], the resource management problem 
considered in this paper has a different set of constraints and 
objective functions and is solved using a distributed GA.  
The rest of this paper is organized as follows. Section 2 introduces 
the sensor network architecture. Section 3 presents the distributed 
GA algorithm. Section 4 provides the empirical analysis of the 
relationship between the configuration parameters and the quality of 
search of GA and derives the regression model for runtime 
estimation. Section 5 discusses the utilization of the regression 
model to design energy efficient distributed GA. Sections 6 and 7 
provide the experimental results and summaries, respectively.   

2. SENSOR NETWORK ARCHITECTURE 
We consider the sensor network that is deployed with a certain level 
of redundancy. The network can be partitioned into several clusters. 
Each cluster consists of p sensor nodes that are responsible for 
performing monitoring and hazard detection in the same region. 
Each sensor node is low cost and low quality; however combined 
together they provide very accurate detection. The nodes in the 
same cluster have direct communication with each other via wireless 
communication channels. The nodes in different clusters 
communicate with each other through gateways. In this work we 
assume that the clustering and routing scheme is provided. We also 
assume that each cluster has advanced data fusion capability so that 
the traffic of inter-cluster communication is low.  
An array of w sensors is installed on each node. The reading from 
these sensors can be sampled by l different sampling frequencies. 
Obviously, higher sampling frequency leads to higher detection 
probability while consumes more energy. The sampled data from 
sensor i can be analyzed in xi different ways. They provide different 
tradeoffs between accuracy and energy dissipation. A detection 
method (i.e. task) is considered as a combination of sensing 
function, sampling frequency and signal processing algorithm.  

Each task-processor pair (i, k), 1 ≤ i ≤ n and 1 ≤ k ≤ p, associates 
with two variables powi,k and probi,k, which represent the power 
consumption and the detection probability of task i when it is 

running on processor k. The probi,k is a function of the location and 
the environment of the sensor node. We assume that this function is 
pre-calibrated and installed on each sensor node before its 
deployment. The sensor node will collect the environment 
information and calculate the detection probability using the 
provided function periodically. To improve the detection 
probability, the node is allowed to use more than one detection 
method at the same time. The combined detection probability of 
node k can be calculated as ∏

Δ∈
−−
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of tasks that are allocated to node k. The total node power 
consumption can be calculated as ∑
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The goal of resource management is to find the Δk for each 
processor k so that the combined detection probability of the cluster 
is larger than the user defined constraint while the network lifetime 
is maximized. In this work, we define the network lifetime as the 
time from the deployment of the sensor network to the time when 
the first node runs out of battery energy. We assume that each 
sensor node is built with the smart battery Bus (SMBus) [10] which 
enables the system software to keep tracking of the remaining 
battery capacity and estimate the remaining lifetime. 

3. RESOURCE MANAGEMENT USING 
DISTRIBUTED GA 

A Genetic Algorithm (GA) is a stochastic search technique based on 
the mechanism of natural selection and recombination. It starts with 
an initial population of individuals, i.e. a set of randomly generated 
candidate solutions. The solutions are represented by chromosomes, 
which are collections of numbers or symbols that map onto 
parameters of the problem.  Individuals are evolved from generation 
to generation, with selection, mating, and mutation operators that 
provide an effective combination of exploration of the global search 
space and pressure to converge to the global minimum. The solution 
quality is measured by a fitness function.  
The Island multi-deme GA is one of the parallel GA models that are 
widely used [8]. In this model, the population is divided into several 
sub-populations and distributed on different processors. Each sub-
population evolves independently for a few generations, before one 
or more of the best individuals of the sub-populations migrate across 
processors. The time between migrations is called epoch.  
In this work the Island multi-deme GA is used to optimize the 
resource management for a cluster of sensor nodes. Each individual 
solution is a chromosome of n symbols, where n is the total number 
of tasks in the cluster. We assume that each task can only be 
selected by at most one sensor node in a cluster because multiple 
executions of the same task only generate redundant information. If 
the jth task is allocated to node x then the jth entry of the 
chromosome is equal to x. If the jth entry of the chromosome is -1 
then this task is not allocated to any of the processors. Denote the 
user specified minimum detection probability as probth, the fitness 
function is: 
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where Bk is the remaining battery capacity of node k. The fitness of 
an individual is 0 if the corresponding resource management scheme 
cannot meet the user specified detection threshold; otherwise its 
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fitness is equal to the minimum remaining lifetime of the nodes. 
Single point crossover mating function is used in our experiment. 
The mutation probability is set to 1%, and involves flipping bits in 
integer representations of the parameters stored in chromosomes.   
The GA is running on np processors. Each sub-population is 
initialized randomly and its size is denoted as pop. The sub-
population evolves independently for c generations, and then 5 of 
the best individuals are broadcast to all other processors. The three 
parameters, np, pop and c, will be referred as the configuration 
parameters in the rest of this paper. The value of the configuration 
parameters has significant impact on the convergence speed of the 
GA and the quality of the solution. An empirical analysis is next. 

4. CONFIGURATION PARAMETERS 
We are interested in understanding the effect of configuration 
parameters on the quality of the search of the distributed GA that is 
previously discussed. Some work has been carried out in this area 
[8]. However, most of these involve the analysis of simple 
optimization problems such as the fully deceptive function [12]. 
Whether their results can be applied to our problem is unknown. 
Due to the extremely large search space and very complicated 
stochastic behavior of the GA, we found that it is difficult to 
perform an analytical study. Therefore, extensive experiments have 
been simulated and the relation between the configuration 
parameters and the quality of search is derived empirically.  
 
 
 
 
 

 
 

Figure 1 Normalized fitness vs. Sub-population size 
Two sets of experiments have been carried out. In these 
experiments, we model a cluster of 10 sensor nodes. There are 100 
tasks available. The GA is running on np sensor nodes with np ≤ 10. 
The detection probability and the power consumption of each task 
are uniformly distributed random variables whose range is 1% ~ 
25% and 0.1Watt ~ 10Watt respectively. The battery of each sensor 
has the capacity of 5000 Ampere⋅hour and the Vdd is 1V. Because 
GA is a stochastic algorithm, we run each simulation 50 times and 
report the mean value. 
The first set of experiments is designed to find out the effect of the 
configuration parameters on the quality of the solution. We swept 
the np from 2 to 8, the pop from 25 to 350, and the c from 1 to 35.  
For each configuration, the distributed GA is simulated. The GA 
will stop when the fitness of the best individual does not improve 
for 2000 generations. The relation between the pop and the 
normalized fitness of the best individual is reported. Figure 1 shows 
two sets of data for np (i.e. the number of processors) equal to 8 and 
3. The results show that increasing both the pop and the np improves 
the quality of the solution. However, varying c has very little impact 
on it. Therefore the quality of the solution is determined by the size 
of the total population which is the product of the pop and np. 
The second set of experiments is designed to find out the effect of 
the configuration parameters on the runtime of the GA. The value of 
np, pop and c are swept in the same way as the first experiment. The 
GA stops when the fitness of the best individual exceeds the 
threshold which is set to be 5 times of the expected fitness of a 

random individual. The number of generations that the GA has 
iterated is reported. Due to the iterative nature of GA, it is 
reasonable to assume that the runtime of each generation is 
approximately the same and it increases linearly as population size 
increases. Therefore we use the product of pop and the number of 
generations that the GA has iterated as a measure of the runtime. 
 
 
 
 
 
 
 
 

 
 
 

 

 
 

 
 

 
Figure 2 Runtime vs. configuration parameters  

 
The relation among pop, c, np and the runtime are extracted from 
the results of second experiment. Figure 2 (a)-(c) show some of the 
data that we have obtained. Several observations can be made from 
these data. First, when the size of the sub-population increases, the 
runtime increases linearly. Combined with the results from the first 
experiment we can see that if the goal of the GA is to find the best 
possible solution, then a large population should be used. However, 
if the goal of the GA is to find a good solution in a short time, then 
increasing the population size will not help. Instead a small 
population should be used. Second, reducing the migration rate will 
result an almost linear increase in solution time. The slope is the 
same for different sub population size. Third, increasing the number 
of processors will reduce runtime, and this effect is more dominant 
when the sub-population is small. 
In order to consider the combined effect of all of the three 
configuration parameters, we introduce a new variable called 
effective population (Epop). The size of the effective population 
increases when the size of the sub-population, the parallelism or the 
migration rate increases. It can be calculated as the following: 

                   cnppoppopEpop /)1( −⋅+=                                  (2) 
Given the effective population, the runtime of the distributed GA 
can be predicted. Let G denote the number of generations that the 
GA has iterated before it finds the solution with the required fitness. 
Figure 3 (a) gives the relation between Epop and G. It shows that G 
is a continuous and differentiable function of Epop. 
Based on the observation, we construct a prediction model to predict 
the number of generations that the GA has iterated.  
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(a) Runtime vs. Sub-population 
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(b) Runtime vs. length of epoch  

(c) Runtime vs. parallelism 
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The coefficients a, a0 …, a5 are obtained using regression analysis. 
Note that the value of the coefficients will change if the experiment 
setup changes. Here the experiment setup includes the threshold of 
fitness and the distribution function of prob and power. For each 
new setup, regression analysis should be performed to obtain the 
values of the coefficients. 
  
 
 
 
 
 
 
 

Figure 3 Runtime vs. effective population  
The above model gives quite accurate prediction of the number of 
generations that GA has iterated given the configuration parameters. 
Figure 3 (b) compares the prediction model with the simulated 
results. The blue dots give the G value obtained from simulation and 
the magenta dots give the G value obtained using the prediction 
model. The runtime T is measured as the product of pop and the 
number of generations popGT ⋅= . 

5. ENERGY EFFICIENT CONFIGURATIONS OF 
DISTRIBUTED GA  

Sensor nodes are energy constraint systems. Any application 
running on the sensor node should be designed carefully to achieve 
high speed and energy efficiency. In this section we will discuss 
how to select the configuration parameters to minimize the energy 
dissipation of the distributed GA. 
In a computing system with fixed supply voltage (Vdd) and clock 
frequency, reducing the runtime of an algorithm leads to linear 
reduction of the energy dissipation if the processor can be turned off 
after the program finishes. More energy saving is possible by using 
dynamic voltage and frequency scaling (DVFS), which is one of the 
runtime power management approaches that is supported by many 
processors for the state-of-the-art mobile computing platforms. It is 
a property of CMOS digital circuit that reducing the Vdd can reduce 
the energy dissipation quadratically but increase the circuit delay 
linearly [11]. In a system with DVFS capability, the program is 
running at the minimum supply voltage and clock frequency so that 
it finishes just before the deadline. Due to the convex relation 
between the energy and the runtime, this gives more energy saving 
than running the program at the nominal speed and turn off the 
processor after the program finishes.  
Population migration among the processors is an important feature 
in distributed GA. The communication energy to broadcast the best 
individuals must be considered. Under the assumption of a fixed 
transmission power and a constant transmission speed, the 
communication energy is proportional to the size of the transmitted 
data. The communication energy will not be affected by DVFS. 
The computing energy is a product of the runtime and the power 
consumption of the processor. Therefore, the runtime model 
proposed in Section 4 is the key for the energy estimation of the 
distributed GA. While increasing the migration rate, decreasing the 
population size and increasing the parallelism reduce the runtime of 
GA and consequently reduce the computing energy, frequent 
population migration leads to high communication energy. The 
configuration parameters must be selected carefully to minimize the 

overall system energy dissipation, which is the sum of computing 
energy and communication energy.  
Let Tnom denote the process time for a single individual in each 
generation at nominal Vdd and let pnom denote the power 
consumption of the processor at nominal Vdd. The energy dissipation 
of GA on a processor without DVFS can be calculated as: 

                        bitnomnom ENcGTpTE ⋅⋅+⋅⋅= / ,                       (4) 
where G is the number of generations that GA has iterated, T is the 
runtime of the GA that is measured as the product of pop and G, c is 
the length of an epoch, N is the size of data that is broadcasted 
during each population migration, and Ebit is the energy to transmit 
one bit data. The first term in equation (4) is the computing energy 
and the second term is the communication energy. Furthermore, 

nomnom pT ⋅  represents the computing energy to processor one 

individual in each generation and bitEN ⋅ represents the 
communication energy to broadcast the best individual during one 
migration. Tnom, pnom, and Ebit are hardware related constant 
parameters. N is determined by the size of migrations which is also 
a constant value. Because we are not interested in calculating the 
absolute energy dissipation, we simplify equation (4) and consider a 
normalized energy dissipation which is calculated as the following, 

                         mig
nomnom

norm E
c
GT

pT
EE +=
⋅

= ,                      (5) 

where Emig is the ratio of communication energy versus computing 

energy and it is calculated as 
nomnom

bit
mig pT

ENE
⋅
⋅= . As we can see the 

value of Emig is determined by the system hardware configuration. 
For example, the power consumption of a Lucent ORiNOCO USB 
Wireless Adapter is 360mA in TX mode and 245mA in RX mode. 
The typical active power of an Intel XScale processor is 300mA. 
Assume that the data is transmitted at 1Mbit/s. If N equals to 1k 
bytes and Tnom equals to 5μs, which is the time to run 10k 
instructions at 200MHz clock, then Emig is approximately 160.  
Enorm is an increasing function of pop and a decreasing function of 
np because changing these two parameters only affects the 
computing energy. The only configuration parameter that affects 
both the computing and communication energy is c.  Provided with 
the value of pop, np, Emig, it is not difficult to find the optimal c that 

minimizes Enorm by solving the differential equation 0=
∂

∂
c

Enorm .  

Because GA is running on multiple sensor nodes, the total energy 
dissipation can be calculated as normtotal EnpE ⋅= where np is the 
parallelism of the GA. 
If the DVFS is available on the processor, then the computing 
energy can be scaled quadratically as the runtime decreases. The 
energy dissipation of GA on each processor can be calculated as the 
following, 

                   bitnomnom ENcGsTpTEDVFS ⋅⋅+⋅⋅⋅= /2               (6) 

Here s is the scaling factor and it is calculated as
req

nom

T
TTs ⋅= , where 

Treq is the deadline before which the GA must return a solution with 
the required fitness. Again, we simplify equation (6) and consider 
the normalized energy dissipation as the following, 

                 migreqnomnorm EcGTTTEDVFS '/)/( 3 ⋅+⋅= ,               (7) 

(a) G vs. effective population G (b) Comparing predicted and actual G 

50

150

250

350

450

0 500 1000 1500

Effective Population

G
en

er
at

io
ns

50

150

250

350

450

0 500 1000 1500

Effective Population

G
en

er
at

io
ns

Actual runtime

Estimated runtime



migE '  is calculated as 
reqnom

bit
mig Tp

ENE
⋅

⋅='  which stands for the ratio 

of the communication energy for one migration versus the 
computing energy of the program if if takes exactly Treq time when 
running at the nominal Vdd. For the previous mentioned hardware 
system, which consists of Lucent ORiNOCO USB Wireless Adapter 
and Intel XScale processor, if the Treq is 1ms then E’mig is 
approximately 0.8. 
Again, the total energy dissipation can be calculated as 

npEDVFSEDVFS normtotal ⋅=  and the optimal c that minimizes the 
energy dissipation can be found by solving the differential 

equation 0=
∂

∂
c

EDVFSnorm . 

Plug in the runtime estimation of G and T into equation (4)~(7), the 
energy dissipation of GA can be expressed as a function of the 
configuration parameters. Figure 4 (a) shows the relation between 
Enorm and c in a system without DVFS. The np and pop are set to 5 
and 100 respectively. The Emig varies from 90 to 180. As we can see 
from the figure, the energy is an increasing function of c for small 
Emig and a decreasing function of c for large Emig. Furthermore, 
when the Emig falls into certain range, the energy is first a decreasing 
then an increasing function of c. In this case, we need to solve the 
previous mentioned differential equation to find the most energy 
efficient migration rate. When the parameter c gets larger, the Enorm 
under different Emig approach to the same value. This is because the 
migration rate is so low that a small difference in the 
communication energy does not have a significant affect on the total 
energy. 
  
 
 
 
 
 
 
 
 

Figure 4 Energy vs. configuration parameters without DVFS 
 
 
 
 
 
 
 
 
 
 

Figure 5 Energy vs. configuration parameters with DVFS 
Figure 4 (b) shows the relation between Etotal and np in a system 
without DVFS. The parameters c and pop are set to 5 and 100 
respectively. Emig varies from 90 to 180. It is interesting to note that 
the total energy always increases no matter how we change the Emig. 

This indicates that without DVFS the energy efficiency will 
decrease as the parallelism increases.  
Figure 5 (a) shows the relation between EDVFSnorm and c in a 
system with DVFS. The np is set to 5, the pop is set to 100 and the 
E’mig varies from 1.0 to 0.4. In this figure, we see the similar trend 
as what has been shown for the system without DVFS. Figure 5 (b) 
shows the relation between the EDVFStotal and np with E’mig varies 
from 0.4 to 0.1. As we can see that for systems with E’mig≥0.3, 
increasing the parallelism always increases the total energy 
dissipation. However, for systems with E’mig < 0.3, increasing the 
parallelism will first increase then decrease the total energy. This is 
because increasing the parallelism reduces the overall computing 
energy quadratically and increases the overall communication 
energy linearly. Eventually the quadratic decreasing in computing 
energy will become dominant. 

6. EXPERIMENTAL RESULTS 
In order to evaluate the performance of the GA based resource 
management scheme, a C++ based software program is constructed 
to emulate the environment monitoring sensor network.  The cluster 
consists of 10 low cost and low quality sensor nodes and 100 tasks. 
The battery of each sensor has the capacity of 5000 Ampere⋅hour. 
The detection probability and the power consumption of each task 
are randomly generated. Different distributions with different 
variances are tested in the experiment. Furthermore, to emulate the 
behavior of the real sensor network which is deployed in a dynamic 
environment, the detection probability of the sensors is constantly 
changing. Every 1000 hours, for a set of x sensor nodes, their 
detection probability probi, 1 ≤ i ≤ 100 will be regenerated and 
reapplied to model the change of their environment. The x is set to 
be 1, 2, and 5.  
The environment setup is named by a quintuplet (distribution, prob 
variance, power variance, biased/unbiased, x). The first field 
specifies the type of distribution that is used to generate the 
detection probability and power consumption of each task. It can 
either be uniform distribution or normal distribution. The second 
and third filed specifies the variance of the detection probability and 
the power consumption respectively. The fourth field is either 
biased or unbiased. When an environment setup is biased, half of the 
sensor nodes have lower power consumption than the others. This 
field is designed to model a heterogeneous network. The final field 
specifies the number of sensors whose detection probability changes 
due to changes in the environment. Table 1 column 1 gives the list 
of environment setups that were tested in our experiments. Note that 
the variance of power consumption is different for the biased and 
unbiased environment. 
Our distributed GA algorithm which is presented in section 4 is 
denoted as GA-lifetime, since its objective is to maximize the 
lifetime of the sensor network. The program is distributed on 5 
processors (np = 5). The subpopulation size is set to 100 (pop = 100) 
and the number of generations in each epoch is 5 (c = 5).  
We designed two algorithms to compare with the GA-lifetime.  The 
first one is also a distributed GA whose objective is to minimize the 
total power consumption of the cluster. Therefore it is denoted as 
GA-power. Instead of using equation (1), the GA-power uses a 
fitness function as the following. 
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The second one is a heuristic algorithm which selects and allocates 
task based on the power versus detection probability ratio. For each 
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task, it first selects the sensor node that has the highest power vs. 
detection probability ratio. Then it arranges the available tasks 
based on the descending order of this ratio. From the beginning of 
the list the algorithm selects the tasks one by one and assigns them 
to the sensor node, which is the most power efficient, until the 
overall detection probability of the cluster exceeds the user defined 
threshold Probth. In our experiment, the Probth is set to 99.9%. The 
same threshold is applied to two other programs as well. We applied 
the above mentioned three resource management algorithms in the 
sensor network emulator. The lifetime of the network is recorded. 
The results are provided in Table 1. The first column specifies the 
environment setup and the last three columns specify the network 
lifetime (in hours) with different resource management algorithms. 

Table 1 Network lifetime under different algorithms 

Figure 6 shows the percent lifetime improvement of GA-lifetime 
relative to the heuristic algorithm. We can see that the GA-lifetime 
generally works better than the heuristic algorithm. The average 
lifetime improvement is 14.4%. The only case for which the 
heuristic algorithm works better than the GA-lifetime is when the 
detection probability and power consumption of the tasks are 
distributed uniformly and the network is unbiased. This is because, 
in this environment setup, the detection probability and power 
consumption have significant variety. Therefore, there exist some 
task-processor pairs that are much more power efficient than others. 
A similar reason can be used to explain why the GA-lifetime works 
relatively better in the environment setup with normal distribution.  
Figure 7 shows the comparison between the GA-lifetime and the 
GA-power. The average lifetime improvement of GA-lifetime over 
GA-power is 6.5%. This indicates that merely reducing the power 
consumption is not a good way to improve the network lifetime. If a 
sensor node has more remaining battery, it should be allocated with 
more tasks even though it is not the most power efficient node that 
can be used to process these tasks. In another word, to extend the 
network lifetime, it is more important to evenly distribute the tasks. 
We also observe that the GA-power outperforms the GA-lifetime 
when the environment setup is uniform and unbiased. This shows us 

that these two algorithms are complementary to each other, and they 
can be applied in different situations. 
 

 
 
 
 
 
 
 

Figure 6 GA-lifetime vs. heuristic algorithm 
 

 
 
 
 
 
 
 
 

Figure 7 GA-lifetime vs. GA-power 

7. CONCLUSIONS 
In this paper we present a distributed GA algorithm that solves the 
resource management problem in a sensor network. A regression 
estimation model is presented that estimates the runtime of this 
algorithm. It is used to find the energy efficient configurations of the 
GA. The experimental results show that the proposed algorithm 
improves network lifetime by 14.4% in average.    
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ENVIRONMENT SETUP GA-
LIFETIME 

GA-
POWER 

HEURIS
TIC 

uniform, 8.3, 7.1, biased, 1 44752.22 41930.85 40066.12 
uniform, 8.3, 7.1, biased, 2 42158.9 35224.52 35028.29 
uniform, 8.3, 7.1, biased, 5 42186.89 33207.64 31848.58 
 
uniform, 8.3, 8.3, unbiased, 1 23874.2 26462.19 26776.26 
uniform, 8.3, 8.3, unbiased, 2 26828.16 31983.17 32294.36 
uniform, 8.3, 8.3, unbiased, 5 27656.94 29365.77 29794.95 
 
normal, 2, 5.5, biased, 1 480000 430909.1 450000 
normal, 2, 5.5, biased, 2 511200.4 436666.7 450000 
normal, 2, 5.5, biased, 5 507500 404285.7 416923.1 
 
normal, 2, 2, unbiased, 1 14531.39 14218.28 10358.73 
normal, 2, 2, unbiased, 2 13892.64 10881.77 9143.943 
normal, 2, 2, unbiased, 5 15708.92 16131.24 14628.62 
 
normal, 1, 1, unbiased, 1 2788.086 2224.231 2255.613 
normal, 1, 1, unbiased, 2 2759.893 2597.652 2248.155 
normal, 1, 1, unbiased, 5 2857.993 2647.201 2647.037 
 
normal, 1.5, 4.2, biased, 1 43315.71 40533.04 34495.43 
normal, 1.5, 4.2,  biased, 2 49774.59 52759.19 47284.2 
normal, 1.5, 4.2,  biased, 5 50744.86 50134.21 48893.41 
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