
Lifetime Aware Resource Management for Sensor Network Using
Distributed Genetic Algorithm

Qinru Qiu Qing Wu
Department of Electrical and Computer Engineering

Binghamton University
Binghamton, NY 13902

001-607-777-4918, 001-607-777-4536
{qqiu, qwu}@binghamton.edu

Daniel Burns Douglas Holzhauer
Air Force Research Laboratory, Rome Site

26 Electronic Parkway
Rome, NY 13441

001-315-330-2335, 001-315-330-4920
{Daniel.Burns, Douglas.Holzhauer}@rl.af.mil

ABSTRACT
In this work we consider lifetime-aware resource management for
sensor network using distributed genetic algorithm (GA). Our goal
is to allocate different detection methods to different sensor nodes in
the way such that the required detection probability can be achieved
while the network lifetime is maximized. The contribution of this
paper is twofold. Firstly, the resource management problem is
formulated as a constraint optimization problem and is solved using
a distributed GA. Secondly, empirical analysis results are provided
that reveals the relationship between the configuration parameters
and the quality of the search. A regression model is designed to
estimate the runtime of the distributed GA given the configuration
parameters. The model is utilized to find energy efficient
configurations of the algorithm.

Categories and Subject Descriptors
J.7 [Computer Applications]: Sensors and Sensor Networks

General Terms
Experimentation

Keywords
Distributed Genetic Algorithm, Sensor Network, Energy Aware
Design, Resource Management
1. INTRODUCTION
Due to the fast development of information technology, the
networked distributed system is gradually replacing the
conventional centralized system. It is a vision of the future that large
numbers of low cost smart mobile devices will be integrated into the
daily life of ordinary people. Accumulated, they provide the
information processing capability that is equivalent to a high
performance processing station. The emerging concept of Ambient
Intelligence [1] and the recent developments of sensor networks [2],
and wearable computers [3] reflect such vision. A distributed system
consists of multiple heterogeneous networked processing elements,
which are battery-powered and work on a set of tasks
collaboratively. Each processing element has limited resources, such
as battery energy, communication bandwidth, etc. It is a challenging
task to efficiently utilize these resources to deliver required services
during the runtime in a dynamic environment.

Resource management is defined as the process that assigns tasks to
different processing elements, schedules their start times and
decides the level of service quality, which determines the resource
usage, such as the energy dissipation and communication
bandwidth, to run these tasks. The execution of each task represents
a positive gain when measuring or quantifying the performance of
the system. It also associates a cost, which represents the resource
usage. The resource management problem can be formulated as a
multi-objective optimization problem, i.e. maximizing the gain
while minimizing the cost. It can also be formulated as a constraint
optimization problem, i.e. maximizing the gain while satisfying the
cost constraint or vise versa.
In this paper we focus on the management of the energy resource in
an environment monitoring sensor network that is used to monitor,
model and forecast physical processes, such as environment
pollution, flooding, and fire etc. The basic configuration of each
node in this network consists of a microprocessor, a wireless
transceiver and an array of sensors such as light detector, barometer,
humidity and thermopile sensors. A set of data acquisition and
signal processing applications is available on each node. They
provide the tradeoffs between detection quality and resource
utilization. For example, increasing the sampling rate improves the
probability of detecting an abnormal event however it increases the
power consumption as well.
There is usually a significant cost associated with deploying an
environment monitoring system. It is desirable that the system can
work for a reasonably long time after it is deployed. A common
approach is to incorporate certain level of redundancy in the system.
More than one node usually will be deployed to cover the same
region. These nodes may be turned on alternatively to extend the
network lifetime or simultaneously to increase the detection
probability. If the minimum detection accuracy is given as a user
constraint, the resource management problem for the system is to
determine which sensor nodes should be turned on to process which
data acquisition and signal processing application such that the
network lifetime can be maximized while meeting the required
detection accuracy. This is a well known general assignment
problem which has been proven to be NP-complete [4].
Most of the traditional resource optimization algorithms are solved
in a centralized, off-line approach which is not suitable for a
distributed system. In this paper we study the use of distributed
genetic algorithm (GA) to solve the above mentioned optimization
problem, potentially using processing capabilities residing on nodes
of the distributed sensor network. One of the major characteristics of
the GA is that it is “embarrassingly parallel”, in the sense that, its
workload can easily be evenly distributed among processors,
making it an appropriate choice for solving optimization problems
in distributed systems. The configurations of the distributed, multi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ISLPED’06, October 4–6, 2006, Tegernsee, Germany.

Copyright 2006 ACM 1-59593-462-6/06/0010...$5.00.

deme GA, such as the population size, the migration rate, and the
parallelism, has a significant impact on the quality of the search [8].
Finding efficient configurations of the distributed GA is an
important research topic. The contribution of this paper is twofold.
Firstly, the resource management problem is formulated as a
constraint optimization problem and is solved using a distributed
GA. The simulation results show that the resulting task allocation
scheme increases the system lifetime by 14.4% in average,
comparing to heuristic approaches. Secondly, empirical analysis
results are provided that reveals the relationship between the
configuration parameters and the quality of the search. A regression
model is presented that estimates the runtime of the distributed GA
given the configuration parameters. This model is then used to find
energy efficient configurations of the algorithm.
Many previous works on sensor network resource management and
task allocation address network communication issues [5][6]. In
these schemes the nodes are dynamically awakened to route a
message. In reference [7] the resource allocation problem in a
vehicle tracking system is modeled as a virtual market and solved
using feedback control. This work focuses more on the tracking of a
moving object rather than the collaborative detection of a static
event. Therefore it cannot be applied in the environment monitoring
system. Reference [9] focuses on task allocation on the gateways in
a cluster-based sensor network. The problem is also formulated as a
constraint optimization problem and is solved using simulated
annealing, which is a centralized stochastic searching algorithm.
Compared with reference [9], the resource management problem
considered in this paper has a different set of constraints and
objective functions and is solved using a distributed GA.
The rest of this paper is organized as follows. Section 2 introduces
the sensor network architecture. Section 3 presents the distributed
GA algorithm. Section 4 provides the empirical analysis of the
relationship between the configuration parameters and the quality of
search of GA and derives the regression model for runtime
estimation. Section 5 discusses the utilization of the regression
model to design energy efficient distributed GA. Sections 6 and 7
provide the experimental results and summaries, respectively.

2. SENSOR NETWORK ARCHITECTURE
We consider the sensor network that is deployed with a certain level
of redundancy. The network can be partitioned into several clusters.
Each cluster consists of p sensor nodes that are responsible for
performing monitoring and hazard detection in the same region.
Each sensor node is low cost and low quality; however combined
together they provide very accurate detection. The nodes in the
same cluster have direct communication with each other via wireless
communication channels. The nodes in different clusters
communicate with each other through gateways. In this work we
assume that the clustering and routing scheme is provided. We also
assume that each cluster has advanced data fusion capability so that
the traffic of inter-cluster communication is low.
An array of w sensors is installed on each node. The reading from
these sensors can be sampled by l different sampling frequencies.
Obviously, higher sampling frequency leads to higher detection
probability while consumes more energy. The sampled data from
sensor i can be analyzed in xi different ways. They provide different
tradeoffs between accuracy and energy dissipation. A detection
method (i.e. task) is considered as a combination of sensing
function, sampling frequency and signal processing algorithm.

Each task-processor pair (i, k), 1 ≤ i ≤ n and 1 ≤ k ≤ p, associates
with two variables powi,k and probi,k, which represent the power
consumption and the detection probability of task i when it is

running on processor k. The probi,k is a function of the location and
the environment of the sensor node. We assume that this function is
pre-calibrated and installed on each sensor node before its
deployment. The sensor node will collect the environment
information and calculate the detection probability using the
provided function periodically. To improve the detection
probability, the node is allowed to use more than one detection
method at the same time. The combined detection probability of
node k can be calculated as ∏

Δ∈
−−

ki
kiprob)1(1 , , where Δk is the set

of tasks that are allocated to node k. The total node power
consumption can be calculated as ∑

Δ∈ ki
kipow , . The detection

probability Prob of a cluster with p nodes is calculated as
∏ ∏
≤≤ Δ∈

−−=
pk i

ki
k

probProb
1

,)1(1 .

The goal of resource management is to find the Δk for each
processor k so that the combined detection probability of the cluster
is larger than the user defined constraint while the network lifetime
is maximized. In this work, we define the network lifetime as the
time from the deployment of the sensor network to the time when
the first node runs out of battery energy. We assume that each
sensor node is built with the smart battery Bus (SMBus) [10] which
enables the system software to keep tracking of the remaining
battery capacity and estimate the remaining lifetime.

3. RESOURCE MANAGEMENT USING
DISTRIBUTED GA

A Genetic Algorithm (GA) is a stochastic search technique based on
the mechanism of natural selection and recombination. It starts with
an initial population of individuals, i.e. a set of randomly generated
candidate solutions. The solutions are represented by chromosomes,
which are collections of numbers or symbols that map onto
parameters of the problem. Individuals are evolved from generation
to generation, with selection, mating, and mutation operators that
provide an effective combination of exploration of the global search
space and pressure to converge to the global minimum. The solution
quality is measured by a fitness function.
The Island multi-deme GA is one of the parallel GA models that are
widely used [8]. In this model, the population is divided into several
sub-populations and distributed on different processors. Each sub-
population evolves independently for a few generations, before one
or more of the best individuals of the sub-populations migrate across
processors. The time between migrations is called epoch.
In this work the Island multi-deme GA is used to optimize the
resource management for a cluster of sensor nodes. Each individual
solution is a chromosome of n symbols, where n is the total number
of tasks in the cluster. We assume that each task can only be
selected by at most one sensor node in a cluster because multiple
executions of the same task only generate redundant information. If
the jth task is allocated to node x then the jth entry of the
chromosome is equal to x. If the jth entry of the chromosome is -1
then this task is not allocated to any of the processors. Denote the
user specified minimum detection probability as probth, the fitness
function is:

⎪⎩

⎪
⎨
⎧ <

= ∑
Δ∈≤≤

ki
kikpk

th

powB
Prob Prob

fitness otherwise)/(min
 if 0

,1

 (1)

where Bk is the remaining battery capacity of node k. The fitness of
an individual is 0 if the corresponding resource management scheme
cannot meet the user specified detection threshold; otherwise its

np=8

0.0112

0.012

0.0128

0.0136

0 100 200 300 400
pop

fit
ne

ss

c=5 c=10
c=15 c=20
c=25 c=30

np=3

0.0112

0.0116

0.012

0.0124

0.0128

0 100 200 300 400
pop

fit
ne

ss

c=5 c=10
c=15 c=20
c=25 c=30

fitness is equal to the minimum remaining lifetime of the nodes.
Single point crossover mating function is used in our experiment.
The mutation probability is set to 1%, and involves flipping bits in
integer representations of the parameters stored in chromosomes.
The GA is running on np processors. Each sub-population is
initialized randomly and its size is denoted as pop. The sub-
population evolves independently for c generations, and then 5 of
the best individuals are broadcast to all other processors. The three
parameters, np, pop and c, will be referred as the configuration
parameters in the rest of this paper. The value of the configuration
parameters has significant impact on the convergence speed of the
GA and the quality of the solution. An empirical analysis is next.

4. CONFIGURATION PARAMETERS
We are interested in understanding the effect of configuration
parameters on the quality of the search of the distributed GA that is
previously discussed. Some work has been carried out in this area
[8]. However, most of these involve the analysis of simple
optimization problems such as the fully deceptive function [12].
Whether their results can be applied to our problem is unknown.
Due to the extremely large search space and very complicated
stochastic behavior of the GA, we found that it is difficult to
perform an analytical study. Therefore, extensive experiments have
been simulated and the relation between the configuration
parameters and the quality of search is derived empirically.

Figure 1 Normalized fitness vs. Sub-population size
Two sets of experiments have been carried out. In these
experiments, we model a cluster of 10 sensor nodes. There are 100
tasks available. The GA is running on np sensor nodes with np ≤ 10.
The detection probability and the power consumption of each task
are uniformly distributed random variables whose range is 1% ~
25% and 0.1Watt ~ 10Watt respectively. The battery of each sensor
has the capacity of 5000 Ampere⋅hour and the Vdd is 1V. Because
GA is a stochastic algorithm, we run each simulation 50 times and
report the mean value.
The first set of experiments is designed to find out the effect of the
configuration parameters on the quality of the solution. We swept
the np from 2 to 8, the pop from 25 to 350, and the c from 1 to 35.
For each configuration, the distributed GA is simulated. The GA
will stop when the fitness of the best individual does not improve
for 2000 generations. The relation between the pop and the
normalized fitness of the best individual is reported. Figure 1 shows
two sets of data for np (i.e. the number of processors) equal to 8 and
3. The results show that increasing both the pop and the np improves
the quality of the solution. However, varying c has very little impact
on it. Therefore the quality of the solution is determined by the size
of the total population which is the product of the pop and np.
The second set of experiments is designed to find out the effect of
the configuration parameters on the runtime of the GA. The value of
np, pop and c are swept in the same way as the first experiment. The
GA stops when the fitness of the best individual exceeds the
threshold which is set to be 5 times of the expected fitness of a

random individual. The number of generations that the GA has
iterated is reported. Due to the iterative nature of GA, it is
reasonable to assume that the runtime of each generation is
approximately the same and it increases linearly as population size
increases. Therefore we use the product of pop and the number of
generations that the GA has iterated as a measure of the runtime.

Figure 2 Runtime vs. configuration parameters

The relation among pop, c, np and the runtime are extracted from
the results of second experiment. Figure 2 (a)-(c) show some of the
data that we have obtained. Several observations can be made from
these data. First, when the size of the sub-population increases, the
runtime increases linearly. Combined with the results from the first
experiment we can see that if the goal of the GA is to find the best
possible solution, then a large population should be used. However,
if the goal of the GA is to find a good solution in a short time, then
increasing the population size will not help. Instead a small
population should be used. Second, reducing the migration rate will
result an almost linear increase in solution time. The slope is the
same for different sub population size. Third, increasing the number
of processors will reduce runtime, and this effect is more dominant
when the sub-population is small.
In order to consider the combined effect of all of the three
configuration parameters, we introduce a new variable called
effective population (Epop). The size of the effective population
increases when the size of the sub-population, the parallelism or the
migration rate increases. It can be calculated as the following:

 cnppoppopEpop /)1(−⋅+= (2)
Given the effective population, the runtime of the distributed GA
can be predicted. Let G denote the number of generations that the
GA has iterated before it finds the solution with the required fitness.
Figure 3 (a) gives the relation between Epop and G. It shows that G
is a continuous and differentiable function of Epop.
Based on the observation, we construct a prediction model to predict
the number of generations that the GA has iterated.

 ∑
=

++=
5

1
0 //

i

i
i EpopaEpopaaG (3)

(a) Runtime vs. Sub-population

np=8

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

0 100 200 300
pop

ru
nt

im
e

c=5 c=10
c=15 c=20
c=25 c=30

np=8

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

0 10 20 30c

ru
nt

im
e

ppo=50 pop=100
pop=150 pop=200
pop=250

(b) Runtime vs. length of epoch

(c) Runtime vs. parallelism

c=30

0.0E+00

4.0E+04

8.0E+04

1.2E+05

1.6E+05

2.0E+05

2 4 6 8
np

ru
nt

im
e

pop=25 pop=50
pop=100 pop=150
pop=200 pop=250

The coefficients a, a0 …, a5 are obtained using regression analysis.
Note that the value of the coefficients will change if the experiment
setup changes. Here the experiment setup includes the threshold of
fitness and the distribution function of prob and power. For each
new setup, regression analysis should be performed to obtain the
values of the coefficients.

Figure 3 Runtime vs. effective population
The above model gives quite accurate prediction of the number of
generations that GA has iterated given the configuration parameters.
Figure 3 (b) compares the prediction model with the simulated
results. The blue dots give the G value obtained from simulation and
the magenta dots give the G value obtained using the prediction
model. The runtime T is measured as the product of pop and the
number of generations popGT ⋅= .

5. ENERGY EFFICIENT CONFIGURATIONS OF
DISTRIBUTED GA

Sensor nodes are energy constraint systems. Any application
running on the sensor node should be designed carefully to achieve
high speed and energy efficiency. In this section we will discuss
how to select the configuration parameters to minimize the energy
dissipation of the distributed GA.
In a computing system with fixed supply voltage (Vdd) and clock
frequency, reducing the runtime of an algorithm leads to linear
reduction of the energy dissipation if the processor can be turned off
after the program finishes. More energy saving is possible by using
dynamic voltage and frequency scaling (DVFS), which is one of the
runtime power management approaches that is supported by many
processors for the state-of-the-art mobile computing platforms. It is
a property of CMOS digital circuit that reducing the Vdd can reduce
the energy dissipation quadratically but increase the circuit delay
linearly [11]. In a system with DVFS capability, the program is
running at the minimum supply voltage and clock frequency so that
it finishes just before the deadline. Due to the convex relation
between the energy and the runtime, this gives more energy saving
than running the program at the nominal speed and turn off the
processor after the program finishes.
Population migration among the processors is an important feature
in distributed GA. The communication energy to broadcast the best
individuals must be considered. Under the assumption of a fixed
transmission power and a constant transmission speed, the
communication energy is proportional to the size of the transmitted
data. The communication energy will not be affected by DVFS.
The computing energy is a product of the runtime and the power
consumption of the processor. Therefore, the runtime model
proposed in Section 4 is the key for the energy estimation of the
distributed GA. While increasing the migration rate, decreasing the
population size and increasing the parallelism reduce the runtime of
GA and consequently reduce the computing energy, frequent
population migration leads to high communication energy. The
configuration parameters must be selected carefully to minimize the

overall system energy dissipation, which is the sum of computing
energy and communication energy.
Let Tnom denote the process time for a single individual in each
generation at nominal Vdd and let pnom denote the power
consumption of the processor at nominal Vdd. The energy dissipation
of GA on a processor without DVFS can be calculated as:

 bitnomnom ENcGTpTE ⋅⋅+⋅⋅= / , (4)
where G is the number of generations that GA has iterated, T is the
runtime of the GA that is measured as the product of pop and G, c is
the length of an epoch, N is the size of data that is broadcasted
during each population migration, and Ebit is the energy to transmit
one bit data. The first term in equation (4) is the computing energy
and the second term is the communication energy. Furthermore,

nomnom pT ⋅ represents the computing energy to processor one

individual in each generation and bitEN ⋅ represents the
communication energy to broadcast the best individual during one
migration. Tnom, pnom, and Ebit are hardware related constant
parameters. N is determined by the size of migrations which is also
a constant value. Because we are not interested in calculating the
absolute energy dissipation, we simplify equation (4) and consider a
normalized energy dissipation which is calculated as the following,

 mig
nomnom

norm E
c
GT

pT
EE +=
⋅

= , (5)

where Emig is the ratio of communication energy versus computing

energy and it is calculated as
nomnom

bit
mig pT

ENE
⋅
⋅= . As we can see the

value of Emig is determined by the system hardware configuration.
For example, the power consumption of a Lucent ORiNOCO USB
Wireless Adapter is 360mA in TX mode and 245mA in RX mode.
The typical active power of an Intel XScale processor is 300mA.
Assume that the data is transmitted at 1Mbit/s. If N equals to 1k
bytes and Tnom equals to 5μs, which is the time to run 10k
instructions at 200MHz clock, then Emig is approximately 160.
Enorm is an increasing function of pop and a decreasing function of
np because changing these two parameters only affects the
computing energy. The only configuration parameter that affects
both the computing and communication energy is c. Provided with
the value of pop, np, Emig, it is not difficult to find the optimal c that

minimizes Enorm by solving the differential equation 0=
∂

∂
c

Enorm .

Because GA is running on multiple sensor nodes, the total energy
dissipation can be calculated as normtotal EnpE ⋅= where np is the
parallelism of the GA.
If the DVFS is available on the processor, then the computing
energy can be scaled quadratically as the runtime decreases. The
energy dissipation of GA on each processor can be calculated as the
following,

 bitnomnom ENcGsTpTEDVFS ⋅⋅+⋅⋅⋅= /2 (6)

Here s is the scaling factor and it is calculated as
req

nom

T
TTs ⋅= , where

Treq is the deadline before which the GA must return a solution with
the required fitness. Again, we simplify equation (6) and consider
the normalized energy dissipation as the following,

 migreqnomnorm EcGTTTEDVFS '/)/(3 ⋅+⋅= , (7)

(a) G vs. effective population G (b) Comparing predicted and actual G

50

150

250

350

450

0 500 1000 1500

Effective Population

G
en

er
at

io
ns

50

150

250

350

450

0 500 1000 1500

Effective Population

G
en

er
at

io
ns

Actual runtime

Estimated runtime

migE ' is calculated as
reqnom

bit
mig Tp

ENE
⋅

⋅=' which stands for the ratio

of the communication energy for one migration versus the
computing energy of the program if if takes exactly Treq time when
running at the nominal Vdd. For the previous mentioned hardware
system, which consists of Lucent ORiNOCO USB Wireless Adapter
and Intel XScale processor, if the Treq is 1ms then E’mig is
approximately 0.8.
Again, the total energy dissipation can be calculated as

npEDVFSEDVFS normtotal ⋅= and the optimal c that minimizes the
energy dissipation can be found by solving the differential

equation 0=
∂

∂
c

EDVFSnorm .

Plug in the runtime estimation of G and T into equation (4)~(7), the
energy dissipation of GA can be expressed as a function of the
configuration parameters. Figure 4 (a) shows the relation between
Enorm and c in a system without DVFS. The np and pop are set to 5
and 100 respectively. The Emig varies from 90 to 180. As we can see
from the figure, the energy is an increasing function of c for small
Emig and a decreasing function of c for large Emig. Furthermore,
when the Emig falls into certain range, the energy is first a decreasing
then an increasing function of c. In this case, we need to solve the
previous mentioned differential equation to find the most energy
efficient migration rate. When the parameter c gets larger, the Enorm
under different Emig approach to the same value. This is because the
migration rate is so low that a small difference in the
communication energy does not have a significant affect on the total
energy.

Figure 4 Energy vs. configuration parameters without DVFS

Figure 5 Energy vs. configuration parameters with DVFS
Figure 4 (b) shows the relation between Etotal and np in a system
without DVFS. The parameters c and pop are set to 5 and 100
respectively. Emig varies from 90 to 180. It is interesting to note that
the total energy always increases no matter how we change the Emig.

This indicates that without DVFS the energy efficiency will
decrease as the parallelism increases.
Figure 5 (a) shows the relation between EDVFSnorm and c in a
system with DVFS. The np is set to 5, the pop is set to 100 and the
E’mig varies from 1.0 to 0.4. In this figure, we see the similar trend
as what has been shown for the system without DVFS. Figure 5 (b)
shows the relation between the EDVFStotal and np with E’mig varies
from 0.4 to 0.1. As we can see that for systems with E’mig≥0.3,
increasing the parallelism always increases the total energy
dissipation. However, for systems with E’mig < 0.3, increasing the
parallelism will first increase then decrease the total energy. This is
because increasing the parallelism reduces the overall computing
energy quadratically and increases the overall communication
energy linearly. Eventually the quadratic decreasing in computing
energy will become dominant.

6. EXPERIMENTAL RESULTS
In order to evaluate the performance of the GA based resource
management scheme, a C++ based software program is constructed
to emulate the environment monitoring sensor network. The cluster
consists of 10 low cost and low quality sensor nodes and 100 tasks.
The battery of each sensor has the capacity of 5000 Ampere⋅hour.
The detection probability and the power consumption of each task
are randomly generated. Different distributions with different
variances are tested in the experiment. Furthermore, to emulate the
behavior of the real sensor network which is deployed in a dynamic
environment, the detection probability of the sensors is constantly
changing. Every 1000 hours, for a set of x sensor nodes, their
detection probability probi, 1 ≤ i ≤ 100 will be regenerated and
reapplied to model the change of their environment. The x is set to
be 1, 2, and 5.
The environment setup is named by a quintuplet (distribution, prob
variance, power variance, biased/unbiased, x). The first field
specifies the type of distribution that is used to generate the
detection probability and power consumption of each task. It can
either be uniform distribution or normal distribution. The second
and third filed specifies the variance of the detection probability and
the power consumption respectively. The fourth field is either
biased or unbiased. When an environment setup is biased, half of the
sensor nodes have lower power consumption than the others. This
field is designed to model a heterogeneous network. The final field
specifies the number of sensors whose detection probability changes
due to changes in the environment. Table 1 column 1 gives the list
of environment setups that were tested in our experiments. Note that
the variance of power consumption is different for the biased and
unbiased environment.
Our distributed GA algorithm which is presented in section 4 is
denoted as GA-lifetime, since its objective is to maximize the
lifetime of the sensor network. The program is distributed on 5
processors (np = 5). The subpopulation size is set to 100 (pop = 100)
and the number of generations in each epoch is 5 (c = 5).
We designed two algorithms to compare with the GA-lifetime. The
first one is also a distributed GA whose objective is to minimize the
total power consumption of the cluster. Therefore it is denoted as
GA-power. Instead of using equation (1), the GA-power uses a
fitness function as the following.

⎪⎩

⎪
⎨
⎧ <

= ∑
Δ∈ ki

kipow
Prob

fitness otherwise /1
Prob if 0

,

th
.

The second one is a heuristic algorithm which selects and allocates
task based on the power versus detection probability ratio. For each

np=5 pop=100

1.5E+04

1.6E+04

1.7E+04

1.8E+04

1.9E+04

0 10 20 30
c

En
or

m

Emig=180 Emig=150
Emig=120 Emig=90

(b) Etotal vs. np (a) Enorm vs. c

c=5 pop=100

0.E+00
2.E+04
4.E+04
6.E+04
8.E+04
1.E+05
1.E+05
1.E+05

2 7 12
np

Et
ot

al

Emig=180
Emig=150
Emig=120
Emig=90

np=5 pop=100

20

30

40

50

60

0 10 20 30
c

ED
VF

Sn
or

m

E'mig=1.0 E'mig=0.8
E'mig=0.6 E'mig=0.4

c=5 pop=100

20

60

100

140

180

0 5 10
np

ED
VF

St
ot

al

E'mig=0.4 E'mig=0.3
E'mig=0.2 E'mig=0.1

(a) EDVFSnorm vs. c (b) EDVFStotal vs. np

-20

-10

0

10

20

30

40

50

60

x=1 x=2 x=5%
 li

fe
tim

e
im

pr
ov

em
en

t

normal, 2, 2, unbiased, *
normal, 1, 1, unbiased, *
normal, 2, 5.5, biased, *
normal, 1.5, 4.2, biased, *
uniform, 8.3, 8.3, unbiased, *
uniform, 8.3, 7.1, biased, *

-20

0

20

40

60

x=1 x=2 x=5%
 li

fe
tim

e
im

pr
ov

em
en

t

normal, 2, 2, unbiased, *
normal, 1, 1, unbiased, *
normal, 2, 5.5, biased, *
normal, 1.5, 4.2, biased, *
uniform, 8.3, 8.3, unbiased, *
uniform, 8.3, 7.1, biased, *

task, it first selects the sensor node that has the highest power vs.
detection probability ratio. Then it arranges the available tasks
based on the descending order of this ratio. From the beginning of
the list the algorithm selects the tasks one by one and assigns them
to the sensor node, which is the most power efficient, until the
overall detection probability of the cluster exceeds the user defined
threshold Probth. In our experiment, the Probth is set to 99.9%. The
same threshold is applied to two other programs as well. We applied
the above mentioned three resource management algorithms in the
sensor network emulator. The lifetime of the network is recorded.
The results are provided in Table 1. The first column specifies the
environment setup and the last three columns specify the network
lifetime (in hours) with different resource management algorithms.

Table 1 Network lifetime under different algorithms

Figure 6 shows the percent lifetime improvement of GA-lifetime
relative to the heuristic algorithm. We can see that the GA-lifetime
generally works better than the heuristic algorithm. The average
lifetime improvement is 14.4%. The only case for which the
heuristic algorithm works better than the GA-lifetime is when the
detection probability and power consumption of the tasks are
distributed uniformly and the network is unbiased. This is because,
in this environment setup, the detection probability and power
consumption have significant variety. Therefore, there exist some
task-processor pairs that are much more power efficient than others.
A similar reason can be used to explain why the GA-lifetime works
relatively better in the environment setup with normal distribution.
Figure 7 shows the comparison between the GA-lifetime and the
GA-power. The average lifetime improvement of GA-lifetime over
GA-power is 6.5%. This indicates that merely reducing the power
consumption is not a good way to improve the network lifetime. If a
sensor node has more remaining battery, it should be allocated with
more tasks even though it is not the most power efficient node that
can be used to process these tasks. In another word, to extend the
network lifetime, it is more important to evenly distribute the tasks.
We also observe that the GA-power outperforms the GA-lifetime
when the environment setup is uniform and unbiased. This shows us

that these two algorithms are complementary to each other, and they
can be applied in different situations.

Figure 6 GA-lifetime vs. heuristic algorithm

Figure 7 GA-lifetime vs. GA-power

7. CONCLUSIONS
In this paper we present a distributed GA algorithm that solves the
resource management problem in a sensor network. A regression
estimation model is presented that estimates the runtime of this
algorithm. It is used to find the energy efficient configurations of the
GA. The experimental results show that the proposed algorithm
improves network lifetime by 14.4% in average.

8. REFERENCES
[1] ISTAG, “Ambient Intelligence: From Vision to Reality,” Sept. 2003.
[2] I. F. Akyildiz, S. Weilian, Y. Sankarasubramaniam and E. Cayirci, “A Survey on

Sensor Networks,” IEEE Communications Magazine, Volume 40, Issue 8, pp.
102-114, Aug. 2002.

[3] E. R. Post and M. Orth, “Smart Fabric, or Wearable Computing,” Proc. First Int’l
Symp. Wearable Computers, pp. 167-168, Oct. 1997.

[4] H. Feltl and G. R. Raidl, “Evolutionary computation and optimization (ECO): An
improved hybrid genetic algorithm for the generalized assignment problem,”
Proceedings of the 2004 ACM symposium on Applied computing, March 2004.

[5] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energyefficient
communication protocol for wireless microsensor networks,” Proceeding of
International Conference on System Sciences (HICSS), Jan. 2000.

[6] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, “Topology
management for sensor networks: Exploiting latency and density,” Proceeding of
International Symposium on Mobile Ad Hoc Networking and Computing, 2002.

[7] G. Mainland, D. C. Parkes, and M. Welsh, “Decentralized, Adaptive Resource
Allocation for Sensor Networks,” Symposium on Networked Systems Design and
Implementation, May 2005.

[8] E. Cantu-Paz, “A Survey of Parallel Genetic Algorithms,” Calculateurs
Paralleles, Reseaux et Systems Repartis, Vol. 10, No. 2.

[9] M. Younis, K. Akkaya, and A. Kunjithapatham, “Optimization of task allocation
in a cluster-based sensor network,” Proceedings of IEEE International
Symposium on Computers and Communication, 2003.

[10] http://smbus.org/.
[11] M. Pedram, "Power Minimization in IC Design: Principles and Applications,"

ACM Trans. on Design Auto. of Elec. Systems, Vol. 1, No. 1, pp. 3-56, 1996.
[12] E. Cantu-Paz, “Markov chain models of parallel genetic algorithms,” IEEE

Transactions on Evolutionary Computation, Vol. 4, Issue 3, pp 216-226, Sep.
2000.

ENVIRONMENT SETUP GA-
LIFETIME

GA-
POWER

HEURIS
TIC

uniform, 8.3, 7.1, biased, 1 44752.22 41930.85 40066.12
uniform, 8.3, 7.1, biased, 2 42158.9 35224.52 35028.29
uniform, 8.3, 7.1, biased, 5 42186.89 33207.64 31848.58

uniform, 8.3, 8.3, unbiased, 1 23874.2 26462.19 26776.26
uniform, 8.3, 8.3, unbiased, 2 26828.16 31983.17 32294.36
uniform, 8.3, 8.3, unbiased, 5 27656.94 29365.77 29794.95

normal, 2, 5.5, biased, 1 480000 430909.1 450000
normal, 2, 5.5, biased, 2 511200.4 436666.7 450000
normal, 2, 5.5, biased, 5 507500 404285.7 416923.1

normal, 2, 2, unbiased, 1 14531.39 14218.28 10358.73
normal, 2, 2, unbiased, 2 13892.64 10881.77 9143.943
normal, 2, 2, unbiased, 5 15708.92 16131.24 14628.62

normal, 1, 1, unbiased, 1 2788.086 2224.231 2255.613
normal, 1, 1, unbiased, 2 2759.893 2597.652 2248.155
normal, 1, 1, unbiased, 5 2857.993 2647.201 2647.037

normal, 1.5, 4.2, biased, 1 43315.71 40533.04 34495.43
normal, 1.5, 4.2, biased, 2 49774.59 52759.19 47284.2
normal, 1.5, 4.2, biased, 5 50744.86 50134.21 48893.41

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

