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ABSTRACT – In this paper, we propose a probability-based 
algorithm to estimate full-chip leakage without knowing layout 
information, under intra-die and inter-die process variations. Through 
modeling process variations into a random vector, we show that the 
standard cell leakage can be modeled as an inverse Gaussian random 
variable and further demonstrate that full-chip leakage can also be 
approximated to be an inverse Gaussian random variable. Hence, the 
leakage estimation problem is reduced to the estimation of the mean 
value and variance of the full-chip leakage.  Experimental results 
show that the proposed algorithm is over 1000X faster than Monte 
Carlo simulation while the maximum estimation error is less than 
6%.  
Categories and Subject Descriptors: B.8.2 [Hardware]: 
Performance and Reliability--Performance Analysis and Design Aids 
General Terms: Algorithm, design, performance, reliability 
Keywords: VLSI, leakage estimation 

1. Introduction 
Leakage power consumption rises as a major issue in the nano-scale 
circuit design. It primarily consists of subthreshold leakage and gate 
tunneling leakage [2]. Due to process variations, these two 
components are nondeterministic. That makes the full-chip leakage a 
random variable, and increases difficulties to estimate the full-chip 
leakage and to capture its features.  
Leakage power’s sensitivity to process variations increases much 
difficulty to estimate the total leakage of a chip.  So far many works 
[4, 6-12] have been presented to estimate the total leakage, taking 
into account the intra-die variation and inter-die variation.  The 
full-chip leakage is approximated by a log-normal random variable in 
most of these works.  In order to make full-chip leakage subject to a 
log-normal distribution, a first-order Taylor expansion is used in their 
derivations.  However, the process variation could be quite large in 
nano-scale CMOS technology and leakage current dose not linearly 
depend on the process variation, so the linear approximation leads to 
inaccurate results.  In [12], a quadratic model is used to improve the 
accuracy of results.   
However, there are two common limitations existing in these 
algorithms for leakage estimation 
1. The leakage estimation can be done only after the layout 

information of circuit design is available.  
2. For large circuits, these algorithms could be prohibitively 

expensive in terms of computation complexity.  
A random-gate-based leakage estimation technique in [13] is 
proposed to overcome these two problems. This work assessed the 
mean and variance of full-chip leakage before the layout.  But it did 
not provide the leakage distribution. Furthermore, the work in [13] 
did not consider the leakage component caused by gate tunneling, 
which contributes a significant part to the total leakage.   

In order to overcome the limitations stated above, we propose a novel 
probabilistic technique for full-chip leakage estimation in this paper. 
 The highlights of this paper are as follows:  
1. We have derived a universal model to represent process 

variations. 
2. We take into account the gate tunneling leakage component 

when estimating full-chip leakage 
3. We have derived that the full-chip leakage follows an inverse 

Gaussian  
4. The approach largely reduces the computation time for full chip 

leakage estimation  
2. Modeling 
2.1 Process Variations 
Process variations are categorized into intra-die process variation and 
inter-die process variation, and they are mutually independent. 
Intra-die process variations are limited to a die. These variations are 
spatially correlated and are represented by an N×1 column random 
vector t

Nn xxxx ),...,,...,,( 21intra =x , where )1( Nnxn ≤≤ are random 
variables, each representing one of intra-die parameter variations; N 
is the number of parameters that suffer from process variations; and 
symbol “t” means matrix transpose operation. The different gates on 
the same die will have different realizations of random vector 

intrax such as ti
N

iii xxx ),,,( 21intra L=x  for gate i and 
tj

N
jjj xxx ),,,( 21intra L=x for gate j.  

Intra-die variations indicate transistors located in the proximity are 
more likely to have similar characteristics than transistors far away 
from each other, and this property is captured by the component 
correlations between i

intrax and j
intrax . We first look at the 

correlation between components i
mx and j

nx  from i
intrax , j

intrax ,  

where Nm ≤≤1  and Nn ≤≤1 . If m is not equal to n, 
i
mx represents a different type of parameter variation from i

nx , then, 
,0, =j

n
i
m xxρ     if nm ≠ , ji ≠         (1) 

If m is equal to n, i
mx and j

nx both represent the same type of 
parameter variation, then correlation coefficient j

n
i
m xx ,ρ between 

them is determined by the distance between gate i and gate j in the 
layout, that is  

),(, dfj
n

i
m xx =ρ                 (2) 

where d is the distance between gate i and gate j, f(∙ ) is a 
monotonically decreasing function from ]1,0[→⊂ RA , and A is 
defined as  

A := {d; d is the distance between any two gates in layout}.  
As d goes to 0, the correlation coefficient j

n
i
m xx ,ρ goes to 1; as d goes 

larger and larger,  j
n

i
m xx ,ρ  turns out to be smaller and smaller, and 

eventually becomes 0.  Function f( ∙ ) is determined by the 
manufacturing process for a specific chip.   
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Putting equations (1) and (2) together, the correlation coefficient 
j

n
i
m xx ,ρ  is represented by,  

,
)(

,0
, ⎩

⎨
⎧

=
≠≠

=
nmifdf

jinmif
j

n
i
m xxρ            (3) 

Inter-die process variations are variations across dies, and it affects all 
transistors on the same chip, e.g., making gate oxide thickness of all 
transistors larger or smaller than the nominal value. Similarly, it is 
also represented by a N×1 column random vector 

t
NNnNNN xxxx ),...,,...,,( 21inter ++++=x , where )1( Nnx nN ≤≤+ are 

random variables, and each of them represents one of the inter-die 
parameter variations, all gates on the same die share the same 
realization of random vector interx . If we stack the intra-die variation 
and inter-die variation together, then the overall variation is expressed 
by a new 2N×1 column random vector named process random 
vector,  

ttt )( interintravariation xxx =              (4) 
It is obvious that all components in variationx are mutually 
independent.  
The overall variation in gate i is fully captured by a 2N×1 column 
random vector i

variationx , which is shown as,  
i
variationx = t

NNN
i
N

ii xxxxx ),,,,,,( 121 ++ LL        (5) 
Similarly, overall variation in gate j is fully described by a 2N×1 
column random vector j

variationx , which is  
t

NNN
j
N

jjj xxxxx ),,,,,,( 121variation ++= LLx       (6) 

Note that the last N components in i
variationx and j

variationx are the 
same; it is because these N components represent the inter-die 
variations, and all gates in the same die share the identical inter-die 
variations.   
 

2.2 Standard Cell Leakage  
The full-chip leakage is simply the summation of the leakage from 
individual gates across dies.  Every gate is drawn from a standard 
cell library, and it can be regarded as an instantiation of the 
correspondent standard cell.  So first of all, we need study the 
leakage statistics from a standard cell under process variations.  
Given the input pattern, the leakage L(g) in a standard cell g can be 
modeled as a function of process variation, shown as  

L(g) = h(xvariation)                (7) 
where h(∙) is a function from R2N →R+. 
We also use a quadratic model of parameter variation xvariation to 
approximate log(h(∙)), that is  

cgL tt ++= variationvariationvariation))(log( xbAxx         (8a) 
where A is a 2N×2N diagonal matrix, b is a 2N×1 column vector, and 
c is a scalar constant. A, b, c are determined by curve fitting.   
We also point out that for different standard cells, A, b, c will be 
different.  In order to apparently show that A, b, c depend on 
standard cell type, we rewrite equation (8a) as, 

)())(()())(log( variationvariationvariation gcgggL tt ++= xbxAx    (8b) 
where the meanings of A(g), b(g) and c(g) are self-explanatory.  
For the sake of convenience, equation (8a) is used instead of equation 
(8b) if there does not exist confusion in the context about the 
meaning of A, b, c.  Based on equation (8), the mean µg and 
variance 2

gσ  of the leakage from a standard cell g can be derived 
under process variations.  

In order to make equation (8) more tractable, we define two dummy 
vectors y and e, and they are both 2N×1 column vectors. Let y = 
xvariation+e, that is  

xvariation = y - e                 (9) 
After some mathematical manipulation, we have  

log(L(g))= ytAy + c1              (10) 
where e and 1c are determined by the following equalities, 

et = 1/2btA-1,  c1 = c - etAe     
Assuming each component in variationx is subject to univariate 
normal distribution, based on equation (9) we know that each 
component in y is also following univariate normal distribution. 
Hence, ytAy is subject to a linear combination of χ2 distributions [15], 
and L(g) can be approximated to follow an inverse Gaussian 
distribution [16].   
 

2.3 Random Gate Leakage  
The VLSI circuit design is usually based on the standard cell library. 
The standard cell library is a collection of standard cells, and it is 
defined as  

lib = {gi: 1 ≤ i ≤ I}                (11) 
where gi represents standard cell i, and I is the total number of 
standard cells in the library. 
Each gate in the chip is regarded as an instance of the random gate 
(RG) [13], and the sample space for RG is the standard cell library lib. 
RG is a discrete random variable, the probability pi that RG is 
instantiated by standard cell gi, that is pi = P(RG = gi),  is determined 
by the ratio of the usage of standard cell gi to the overall usage of the 
standard cells.  Let the usage of gate gi be Ki, then the overall usage 
of the standard cells is ∑ =

I
i iK1 , and pi can be calculated as, 

pi = P(RG = gi) =Ki/ΣKi            (12) 
Obviously we have  

∑ ==
I
i ip1 1                 (13) 

We introduce a notation L(RG) to denote the leakage in RG.  L(GR) 
is also a random variable, and it has a hierarchy distribution. Through 
the discussion in section 2.2, we know L(GR)|GR=gi can be 
approximated to be an inverse Gaussian distribution, and RG is 
subject to a known discrete distribution with P(RG = gi) equal to pi. 
So the mean µRGof L(RG) can be obtained by  

∑ ==== I
i gigRG ii

pERGLE 1)())(( μμμ       (14) 

where
igμ is the mean value of leakage in standard cell gi, under the 

process variations.  
In order to calculate the variance 2

RGσ  of L(RG) , we also need to 

know the second moment ))(( 2 RGLE of L(RG), and it is  

∑ = +=== I
i ggi ii

gRGRGLEERGLE 1
2222 ))|)((())(( σμ   (15) 

Right now we are ready to calculate 2
RGσ  

 2
11

222 )()( ∑∑ == −+= I
i gi

I
i ggiRG iii

pp μσμσ      (16) 

2.4 Random Gate Leakage Correlation Coefficient 
The correlation of the intra-die process variations leads to the 
correlation between leakages from different gates across the chip.  
Let two instances of RG gi and gj, and leakages from these two 
instances can be represented by L(gi) and L(gj), so the covariance 
between L(gi) and L(gj) is  
cov(L(gi) ,L(gj)) =   

exp( )())(()()( variationvariationvariation i
jt

i
j

i
tj gcgg ++ xbxAx ))   (17) 
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Accordingly, the covariance between two RGs is  
cov(L(RGi), L(RGj)) =∑ ∑= =

I
j

I
i jiij gLgLpp1 1 ))(),(cov(  (18) 

And the correlation coefficient ρ(L(RGi), L(RGj)) can be easily 
obtained by  
ρ(L(RGi), L(RGj)) = cov(L(RGi), L(RGj)) /( 2

RGσ )    (19) 
3. Full-chip Leakage Analysis 
In our analysis approach, a chip consists of individual gates, and each 
gate is modeled as a random gate RG.  Accordingly, the full-chip 
leakage can be modeled as the summation of the leakage from each 
random gate.  Assuming the full-chip leakage is denoted by Lfc, then 
it can be expressed by,  
  ∑ =∈= K

klibRG kfc k
RGLL 1, )(           (20) 

where K is the total number of random gates used in the circuit.  
When the circuit design is given, then K it is actually equal to the 
overall usage of the standard cells, which is ΣKi, so we have K=ΣKi.  
Based on equation (20), we can also calculate some statistics of 
full-chip leakage such as mean and variance,   
( ) ( ) RG

K
klibRG kfc KRGLELE

k
μ== ∑ =∈ 1, )(        (21a) 

( ) ( )∑ ∑= == K
i

K
j jiRGfc RGLRGLL 1 1

2 )(),(var ρσ        (21b) 

Before working on deriving the distribution of the leakage, we need 
to clarify one thing: every random gate RG is instantiated by one of 
standard cells in the design library after synthesis and placement for a 
given circuit design.  So the full-chip leakage is expressed as 

∑ =∈ == K
klibg kkfc k

gRGLL 1, )(         (22) 

where gate gk is the realization of random gate RGk.  
We have shown in section 2.2 that )( kk gRGL = in equation (22) is 
subjected to the inverse Gaussian distribution under process 
variations, and the summation of random variables with inverse 
Gaussian distribution is still following an inverse Gaussian 
distribution [16], so Lfc is a random variable with the inverse 
Gaussian distribution, and its probability density function (pdf) has 
the following form with two characteristic parameters λ and μ  

   ,
2

)(exp
2

),;( 2

22/1

3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
⎥⎦
⎤

⎢⎣
⎡=

x
x

x
xf

μ
μλ

π
λλμ   if 0≥x  (23) 

If a random variable X follows an inverse Gaussian with parameters μ 
and λ, then its mean and variance are μ , μ3/λ, respectively. In other 
words, the following equalities are true, 

μ=)(XE                  (24a) 

λμ /)var( 3=X                (24b) 
In the situation where mean and variance are known, μ and λ can be 
calculated by trivial effort, 
 )(XE=μ                  (24c) 

 ( ) )var(/)( 3 XXE=λ              (24d) 
Combine equations (21a), (21b), (24c) and (24d) together, we can 
easily get two characteristic parameters for random variable Lfc.  
The full-chip leakage is subjected to the inverse Gaussian distribution 
whose two characteristic parameters have been calculated, so we 
completely know about statistics of the full-chip leakage in terms of 
equation (23).  
4. Experimental Setup and Results                                              
We verify the accuracy of proposed leakage estimation algorithm 
using ISCAS’85 benchmark. All circuits are in implemented in 45nm 
technology. Technology parameters used in our experiments come 
from 45nm Berkeley Predictive Technology Model [17]. The circuits 
are synthesized with using SIS [18] with standard cell library 

comprised of an inverter, and NAND, NOR, AND as well as OR 
gates with 2, 3, 4 input pins  
In our experiments, three parameters are used to model full-chip 
leakage variation under process variations, and they are channel 
length (Lch), oxide thickness (Tox) and threshold voltage (Vth), 
respectively. However, Vth is a derived parameter, and it is 
dependent on channel length and channel dopant concentration [13]. 
For the convenience, the threshold voltage variation is regarded to 
be independent of channel length variation.   
Now it is clear that variationx is a random vector, containing 2N = 6 
random variables, with the first 3 of them for intra-die variations 
and the others for inter-die variations.  Every component in 

variationx is assumed to follow a univariate normal distribution, and 
their joint distribution is assumed to follow a multivariate normal 
distribution.  The 3σ values of variations for Lch, Tox and Vth are all 
set to 50% of their nominal parameter values. Intra-die process 
variation contributes 60% to the full-chip variation, and inter-die 
process variation contributes 40%.  The spatial correlation is 
modeled based on the process variation model. 
 

4.1 Curve Fitting for Standard Cells 
The full-chip leakage analysis is based on leakage from standard 
cells. First of all, we need to work out coefficients A, b, c in the 
leakage model, shown in equations (8a) and (8b).  For a specific 
standard cell, we pick up 100 samples of variationx and run 
HSPICE simulations to get the leakage under each sample, then 
perform curve fitting to get coefficients A, b, c.   
In order to measure how accurate the leakage model predicts 
leakage, we drawn 1000 samples from variationx sample space for 
each standard cell gi∈ lib, and then use the leakage model for 
calculating leakage for every sample. On the other hand, HSPICE 
simulations are executed to get leakage for every sample, and we 
call it HSPICE leakage.  Table 1 shows the average error of 
leakage model for each standard cell, compared to HSPICE 
leakage. 

Table 1.  The average error of leakage model.  
Standard cell name INV1 AND2 AND3 AND4 NOR2 NOR3 NOR4
Average error(%) 0.45 1.86 3.73 2.85 1.06 2.07 3.66 

Simulation results show that compared to HSPICE leakage, 
maximum average error is 3.73%, and the average error is 1.95% if 
using the leakage model to calculate leakage.  So the leakage 
model is effective to calculate the leakage based on samples of the 
process random vector.  
4.2 Mean and Variance of Full-chip Leakage  
The leakage statistics in standard cells paves way for the full-chip 
leakage analysis. In this section, we are first targeting at statistics 
estimation of standard cells under process variations.  
First 10,000 samples for variationx are drawn for each standard cell 
in terms of variationx distribution, and then get the mean value and 
variance of the leakage.  
After the mean and variance of the standard cell is ready, we get the 
mean value and variance of full-chip leakage by equations (21a) 
and (21b). On the other hand, we also perform Monte Carlo (MC) 
simulation to get the full-chip leakage for comparison.  Monte 
Carlo simulation take hours to finish for a single benchmark circuit, 
while the proposed algorithm can provide results in a minute. And 
the proposed algorithm is over 1000X faster than Monte Carlo 
simulation.  The simulation results are shown in Table 2. 
By observing the experimental results from table 2, we see the 
estimation errors in mean and variance are no more than -2.73%, 
and -5.09%, respectively. 
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Table 2. Mean and variance of Full-chip Leakage: Monte Carlo 
vs. the proposed algorithm. 

4.3 Leakage Distribution 
In this section, we will compare the leakage distribution obtained 
by the proposed algorithm against the one from Monte Carlo (MC) 
simulation.   
We know the leakage is following an inverse Gaussian distribution, 
so before plotting its probability density curve, all we should do is 
to compute its two characteristic parameters μ and λ, which is easily 
achieved by making use of the mean value and variance, shown in 
equations (24c) and (24d).  After that, the probability density 
curve is plotted in terms of equation (23).  
For the sake of convenience, take benchmark circuit C1355 as an 
example, two probability density curves is shown in Figure 1. One 
is from our algorithm, the other from Monte Carlo simulation, 
which is used for a benchmark.  
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Figure 1. The probability density curve for C1355: the 

proposed algorithm vs. Monte Carlo . 
From the plot, we can see the two curves are nearly overlapping 
with each other, so our algorithm works well for leakage 
distribution estimation.  However, that is a qualitative 
consequence; in order to measure how close these two curves are to 
each other, we define a new measurement G as,  

dxxfxfdxxf
xf

xfxf
G

x
estiMC

x
MC

MC

estiMC
∫ −=∫

−
=

>> 00
)()()(

)(
)()(

(25) 

where fMC(x), festi(x) are the probability density function estimated 
from Monte Carlo simulation and the proposed algorithm, 
respectively. 
Parameter G measures the average error of estimated probability 
density function (pdf) festi(x), compared against fMC(x).  In the case 
of benchmark circuit C1355, G is 1.85 %. We report G values for 
all benchmark circuits in Table 3.  
Table 3 shows that using the inverse Gaussian distribution as an 
estimate for leakage distribution, the error is no more than 5.33%.  

Table 3. The average error of pdf estimation. 

Therefore, the proposed algorithm is effective in estimate the 
full-chip leakage estimation under process variations.  
 

5 Conclusion 
In this paper, we have proposed a probability-based full-chip 
leakage estimation algorithm.  First of all, the process variations 
are modeled as a process random vector, the first half of whose 
components denote the intra-die variations, and the second half for 
the inter-die variations. Based on the assumption that each 
component in process random vector is a Gaussian random variable, 
we have derived that the leakage in every standard cell under 
process variations is subjected to an inverse Gaussian distribution. 
By further derivation, we get a significant consequence that the 
full-chip leakage is also following an inverse Gaussian distribution 
under process variation.  Therefore, after knowing the mean value 
and variance of full-chip leakage, we have the complete 
information about the full-chip leakage under process variations.  
Experimental results show that the proposed leakage estimation 
algorithm is fast and effective to capture the statistics of the leakage 
under process variations. The proposed algorithm does not require 
the layout information, so it can also be used for pre-layout leakage 
analysis as well.  
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Monte Carlo Proposed algorithm 
Circuit Name mean 

(μA) 
variance 

(μA2) 
mean 
(μA) 

Error 
(%) 

variance 
(μA2) 

Error 
(%) 

C432 1.81 1.14 1.76 -2.73 1.19 4.77 
C880 3.09 3.03 3.01 -2.50 2.93 -3.28

C1355 4.58 1.93 4.50 -1.76 1.92 -0.39
C1908 5.92 4.62 5.89 -0.53 4.56 -1.33
C2670 7.27 4.67 7.29 0.32 4.43 -5.09
C3540 10.3 9.42 10.04 -2.49 9.05 -3.89
C5312 15.8 15.29 15.95 0.93 15.33 0.29 
C6288 21.7 33.06 21.77 0.32 33.93 2.63 
C7552 25.7 27.98 25.93 0.89 27.16 -2.92

Ckt Name C432 C880 C1355 C1908 C2670 C3540 C5312 C6288C7552
G(%) 5.33 4.87 1.85 3.70 1.55 2.71 1.84 3.82 2.95
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