
Bus Encoding for Simultaneous Delay and Energy 
Optimization 

Jingyi Zhang, Qing Wu, Qinru Qiu 
Department of Electrical and Computer Engineering 
Binghamton University, State University of New York 

Binghamton, New York – 13902, U.S.A 
{jzhang5, qwu, qqiu}@binghamton.edu 

 
 
ABSTRACT 
In this paper we propose two bus encoding algorithms that 
optimize both bus delay and energy dissipation based on the 
probabilistic characteristics of data on data buses. The first 
algorithm minimizes the crosstalk transitions by inserting temporal 
redundancy and achieves optimal energy. The second algorithm 
reduces crosstalk more aggressively to achieve optimal bus delay 
by mapping the original data to low-energy opposite-transition-
forbidden codes. Experimental results show that they outperform 
the existing heuristic bus encoding algorithms by 15.7% to 58.8% 
in average energy dissipation and 11.4% to 58.4% in average delay. 

Categories and Subject Descriptors 
B.7.1 [Integrated circuits]: Integrated Circuits 

General Terms: Algorithms, Design, Performance. 
Keywords: Adaptive bus encoding, coupling capacitance, data 
probability distribution peaking, delay optimization, energy 
optimization, opposite transition forbidden, temporal/spatial 
redundancy. 

1. INTRODUCTION 
As technology scales down to deep submicron, the crosstalk 
energy becomes the major component in bus energy dissipation 
[1][2]. The bus delay becomes data pattern dependent because of 
the crosstalk induced delay. For example, opposite transitions (also 
called “2λ” transitions) on adjacent wires produce especially large 
propagation delay. Extensive research works have been done for 
the optimization of bus energy dissipated on the coupling 
capacitances [1][4]. Nowadays, more and more attentions have 
been paid on minimizing bus delay [2][3][5][7][8]. However, 
rarely any work effectively optimizes the delay and energy at the 
same time. Although reducing the crosstalk effect is the key for 
both optimizations, as we will show later in the paper, the bus 
energy dissipation is determined by the overall crosstalk effect 
across the bus lines while the bus delay is determined by the worst 
case local crosstalk effect. A bus encoding scheme for minimum 
delay does not always lead to minimum bus energy and vice versa. 

M. Mutyam et al. [8] proposed an approach that eliminates certain 
types of crosstalk by inserting temporal redundancy while using  

 

variable cycle transmission. The performance can be speeded up; 
meanwhile moderate energy reduction can be achieved. K. 
Sainarayanan et al. [5] proposed a method that applies bus inverter 
on every subgroup of bus, and inserts temporal redundancy to 
indicate the status of bus inverting. The method targets at reducing 
the worst case bus delay and the amount of improvement depend 
on the number of shielding lines inserted. N. Satyanarayana et al. 
[10] proposed two delay minimization techniques by exploiting the 
similarity of the upper half data, thus the performances highly 
depend on the data behaviors. They can’t guarantee to eliminate 
the delay-expensive crosstalk type. C. Duan et al. [2] presented a 
scheme to eliminate part of the high-energy and delay-expensive 
code patterns. B. victor et al. [3] proposed a one-to-one mapping 
scheme based on a codebook that doesn’t allow opposite direction 
transitions on adjacent lines. The codebook is obtained by 
searching for the largest prime clique of either one of the two 
codewords with alternating 0 and 1.  Since the largest clique 
problem is NP-hard, the calculation of the codebook is 
computationally intensive for wide bus width. L. Li et al. [7] 
proposed a variable cycle transmission technique, where a 
crosstalk analyzer is implemented to dynamically tunes the length 
of bus clock cycle time. This approach does not try to reduce the 
crosstalk effect, hence it has no effect on energy dissipation and it 
does not reduce the worst case delay. 

To trade off between the circuit performance and the energy 
consumption, we propose two novel delay and energy efficient bus 
coding schemes. The first algorithm exploits both spatial and 
temporal redundancy to minimize average energy and average 
delay. The second one generates a one-to-one mapping from the 
original data to the weighted opposite-transition-forbidden code, 
which is decided by the probability distribution of the original data. 
Both are based on weighted code mapping (WCM) [9].  

The remaining paper is organized as follows. Section 2 introduces 
the background on the analytical delay and energy model for DSM 
bus. In section 3, the data probability distribution peaking method 
to optimize the performance of the WCM algorithm is introduced. 
Then the proposed delay and energy efficient coding algorithms 
are presented. Section 4 presents and analyzes the experimental 
results in detail. Finally we draw conclusions in section 5. 

2. BACKGROUND 
The analytical models for the propagation delay [6] and energy 
consumption [4] in deep sub-micron buses were proposed by 
Sotiriadis et al. Let CI be the total inter-line capacitance, while CL 
be the line-to-ground capacitance. Let λ be the capacitance factor 
which is calculated as LI CC=λ . The crosstalks are categorized 
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into six classes by their corresponding delay at the intermediate 
lines, as shown in Table 1. The symbols ↑, ↓, − are used to indicate 
0→1, 1→0 and 1→1 (or) 0→0 bit transitions respectively. It is 
beneficial from delay perspective to minimize the occurrence or 
even remove crosstalk class 4, 5 and 6 transitions. However, energy 
dose not necessarily change in the same trend as delay. For 
example, transition from 000 to 101 (↑−↑) won’t cause any delay at 
the middle line, but will introduce in CL RT λ energy, because the 
first charging line and the middle unchanging line form a 
conducting path for the inter capacitor between them. Therefore it is 
important for bus encoding schemes to take both delay and energy 
into consideration. 

Table 1. Transition patterns and delay. 
CC  Delay Transition Patterns 
1 0 ↑−↑, ↓−↓, ↑−↓, ↓−↑, ↑− −, − −↓, − − −, − −↑, ↓− − 
2 CL RT ↑↑↑, ↓↓↓ 
3 CL RT (1+λ) ↑↑−, ↓↓−, −↑↑, −↓↓ 
4 CL RT (1+2λ) −↑−, −↓−, ↓↓↑, ↑↑↓, ↓↑↑, ↑↓↓ 
5 CL RT (1+3λ) −↓↑, −↑↓, ↑↓−, ↓↑− 
6 CL RT (1+4λ) ↓↑↓, ↑↓↑ 

 
3. ENERGY AND DELAY EFFICIENT 

ALGORITHMS  

3.1 Probability Distribution Peaking  
The optimality of the WCM algorithm relies on the information of 
the probability distribution of the data stream because it maps the 
data with higher probability to the code with smaller ivs[9]. 
Therefore, the data set with probability distributions that have 
sharper "peak" has higher potential for energy saving. In 
probability theory, the "peakedness" of the probability can be 
measured by kurtosis. Data distribution with higher kurtosis has a 
sharper "peak", that is, a higher probability of values near its mean. 
It is observed that exclusive-or (XOR) function is able to skew 
most data distributions toward zero. Thus, performing XOR at 
adjacent vectors of the input data may be the easiest way to 
effectively sharpen the peak of the probability distribution. An m-
bit-wide bus needs m XOR gates at the encoder side; the original 
data can be recovered at the decoder side by performing the same 
XOR operation. We performed experiments on WCM algorithm 
with various multimedia and random distributed data benchmarks. 
The results show that xor-ed data have an average improvement of 
27% in energy and 26% in delay over the original data. 

3.2 Variable Cycle Transmission with Hybrid 
Spatial Temporal Redundancy  

Even though the WCM algorithm works effectively in reducing 
energy consumption, there still are “2λ” transitions, leading to 
more energy dissipation as well as larger delay. We designed a 
hybrid bus encoding algorithm that applies WCM and also inserts 
temporal redundant pattern of all-ones or all-zeros between the old 
and the new codewords. This technique is referred to as Hybrid 
Spatial Temporal Redundancy encoding (HST). 

Let D(i, j) present the transition delay from the code i to the new 
code j. It is observed that the sum of )0,( iwD and ),0( jwD  (referred 

as sum_zeros), or the sum of ))12(,( −m
iwD and )),12(( j

m wD −  
(referred as sum_ones), is smaller than or equal to the original 
entry ),( ji wwD . In another word, inserting a temporal redundant 

data 0 or 2m-1 between two neighboring data will result in smaller 
delay. It is also beneficial to reduce energy consumption, since 
transitions from or to all-zero vector and all-one vector draws 
relatively fewer or even no energy from the power supply. The 
pseudo code of the HST algorithm is given in figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1. The hybrid spatial temporal algorithm. 
 

We then combine our algorithm with the variable cycle 
transmission scheme. Same as in the VCT scheme [7], a ready_out 
signal is added and activated dynamically depending on the 
transition patterns. Unlike other temporal redundant bus algorithms, 
our decoder doesn’t care whether a temporal redundant code tw′ is 
inserted or which pattern is inserted. As long as it detects an active 
ready_out, the original data can be decoded from the current code 
wt+1, and previous code wt. The algorithm requires three extra lines: 
the first one is used to form the WCM codebook, the second one to 
indicate whether the bus is inverted, and the last is the ready_out 
signal, disregarding the space used to shield the ready_out, invert 
indicator and the actual code. Example 1 shows the working of our 
algorithm. 

Example1: Consider m = 8, a = 1, λ = 5. As explained in precious 
section, the maximum ivs of the selected WCM code is 4. Assume 
there are two data sequentially mapped to WCM code: wt = 
101111000, wt+1 = 010001000. The original delay of the transition 
is 1+4λ. The algorithm detects a crosstalk type 6 transition, so wt+1 
is first flip-flopped; then the summation of )0,( twD and 

),0( 1+twD is calculated and found to be smaller than the original 
),( 1+tt wwD . After encoding, the actual sequence transmitted on the 

bus is {101111000, 000000000, 101110111}. The total 
propagation delay and energy consumption for transmitting the 
sequence are 12 (i.e. 2+2λ), and 27 respectively, compared to the 
delay and energy of 21 (i.e. 1+4λ), and 26 for the original WCM 
algorithm with 9-bit wide bus. 

The reason that HST algorithm outstands from many of other 
works lies in that it only requires a small number of extra bus lines. 
The property of ivs code allows us to reduce the crosstalk 5 and 6 
delay to 2(1+λ) for most of the transition patterns, leading to much 
smaller average delay. Furthermore, our approach encodes data 
sequence by assigning the higher mapping priority to the code with 
lower ivs achieving significant energy reduction.  

Input: present data dt , next data dt+1 and present  code wt

Output: encoded next data tw′  and wt+1 

1. map xored_dt+1 to wt+1 using Weighted Code Mapping; 
2. if (crosstalk type(wt ,wt+1) > 4) { 
3. if (crosstalk type(wt ,wt+1) = 6) 
4.          wt+1  = inverted wt+1; 
5.            if (min{sum_zeros, sum_ones} < ),( ji wwD ) { 

6.     if (sum_zeros ≤  sum_ones)  

7.        ;12 −=′ m
tw  

8.         else 
9.       ;0=′tw }  } 
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3.3 Opposite-Transition-Forbidden Weighted 
Code Mapping (OTF_WCM) 

The original WCM algorithm [9] cannot guarantee to eliminate 
crosstalk 5 and 6. We proposed the Opposite-Transition-Forbidden 
Weighted Code Mapping (OTF_WCM) algorithm. The new 
technique generates a WCM codebook that doesn’t have opposite 
transition patterns, therefore, all crosstalk type 5 and 6 as well as 
part of crosstalk type 4 are eliminated.  

Let W denote the set of codewords of n bits: 
W= }1,0,|{ 121 == + inii aaaaaaww KK , where i denotes the 
index of the bit line of the codeword.  

Definition: An opposite transition forbidden (OTF) codebook W is 
a set of codewords that don’t have “2λ” transitions with each other. 

Theorem 1: A codebook W is OTF, if 
}1,,)1()1{( 1 niiaa i

i
i

i ≤≤∀×−≤×− + , Ww∈∀  

Theorem 2: the number of the k-bit OTF codewords is a Fibonacci 
number. A closed-form formula for the total number of the valid k-

bit codes is given by
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. It can be used to 

calculate the number of required OTF code bits for any bus width.  

With the OTF codebook, we are able to eliminate the “2λ” 
transitions, and hence keep the worst-case delay to 1+2λ. With the 
WCM mapping, we are able to reduce the average bus energy by 
maximizing the occurrence of low IVS codewords. Figure 2 gives 
the pseudo code of the OTF_WCM algorithm. The valid OTF 
codeword is selected by simply scanning through all the bits and 
check if it satisfies theorem 1. 

 

 

 

 

 

 

 

 
 

Figure 2. The OTF_WCM algorithm. 
Although the idea of utilizing the OTF code is similar as the 
crosstalk preventing coding method [3] and the forbidden pattern 
algorithm [2], here we apply a weighted code mapping to 
maximize the occurrence of low IVS codewords. Therefore, the 
OTF_WCM outperforms the previous two works in average energy 
consumption. Furthermore, instead of solving the maximum clique 
problem, our OTF codebook generation is based on Theorem 1 and 
it requires only one scan of the codewords. Therefore, it has a 
much less complexity.  
 
4. EXPERIMENTAL RESULTS 
Total of 11 data sequences are tested to evaluate the efficiency of 
our coding algorithms, 6 of which are artificially generated and the 
others are extracted from multimedia applications. The artificial 

data sequences are generated following three different types of 
random distributions: triangular (T), uniform (U) and normal (N). 
The “Im8” is an 8-bit sequence with subsequences selected from 
four different images. The “Au8”, and “Vi8” are 8-bit audio and 
video sequences. Each data sequence is 10-20Mbits long. Twelve 
different coding algorithms have been compared, which include: 
the original hybrid WCM (HYB)[9], the HYB with xored-data 
(HYB_xor), the proposed HST and OTF_WCM algorithms, the 
original and the modified spatial temporal redundancy algorithms 
[6] (denoted as ST and MST respectively), the forbidden pattern 
coding (FP) [2], the crosstalk preventing coding (CPC) [3], the 
variable cycle transmission algorithm (VCT) [7], the variable cycle 
transmission with temporal redundancy (VCTR) [8], the data 
packing (DPack) and data permutation (DPerm) coding methods 
[10], as well as our proposed algorithms combined with the 
window-base adaptive scheme [9], where a sliding window is used 
to find out the probability distribution of the input data  (denoted as 
AHST and AOTF_WCM). The simulation results for 8-bit data 
benchmarks are shown in Table 2 (see next page). It compares the 
required bus width for every algorithm (# of lines), the worst-case 
delay without implementing the VCT technique (worst-case delay), 
the percentage improvement over un-coded data in average energy 
(E %) and the percentage improvement over un-coded data in 
average delay (D %) when the VCT technique is employed. We 
then compare the percentage improvement of our algorithms over 
the average of others’ works (Average % Improv of AHST and 
Average % Improv of AOTFW). The last two rows of the table 
present the percentage improvement in average energy or average 
delay over the best of others’ works, namely the worst-case 
percentage improvement of AHST (Wst-case % Improv of AHST), 
and the worst-case percentage improvement of AOTF_WCM 
(Wst-case % Improv of AOTFW). Table 3 shows the 
corresponding experimental results for 16-bit data benchmarks.  

The results clearly show that AHST has more optimal average 
energy while AOTF_WCM has more optimal average delay. Both 
are superior to any of the other works in reducing bus energy. It is 
also noticed that for random distributed data benchmarks, MST is 
superior to AHST in reducing average delay. However, when it 
comes to real application benchmarks, MST can’t compete with 
our algorithms in minimizing delay. Besides, each inserted 
shielding line for MST method introduces in up to 2λ extra energy. 
We summarized table 2 and 3 by comparing the average of the 
results for all the data benchmarks. AHST ends up with 40.91% (8-
bit) and 28.19% (16-bit) improvement in energy over the best of 
the other works. AOTF_WCM shows 21.79% (8-bit) and 12.77% 
(16-bit) improvement in energy over the best of other works. 
AOTF_WCM also has 16.7% (8-bit) and 26.42% (16-bit) 
improvement in bus delay over MST, which is the best of others’ 
works. It is quite intuitive from the results that our AHST and 
AOTF_WCM methods have much more optimal energy delay 
product.  We employ Synopsis Design Compiler to generate the 
gate-level net-lists for the encoders and decoders of our HST and 
OTF_WCM schemes. Table 4 compares the area overhead 
(measured by the number of NAND gates) of 8-bit and 16-bit bus 
encoders and decoders. We believe it is tolerable for probability-
based bus encoding schemes. 

Table 4. Area overhead for the encoder and decoder. 
HST OTF_WCM

Encoder Decoder Encoder Decoder
8-bit codec 1307 904 861 1075
16-bit codec 105012 95104 100047 117100

1. Set codeword array A[2m]=0;  ivs=0; C=0;  id = 0; 
2. While (|A|)<2m { 

3.    if (C== 2* ivs
nC 1− ) { 

4.         ivs++; 
5.         C=0;} 
6.    Generate the next binary vector w with IVS(w)=ivs; 
7   if (w is OTF code) { 
8.       A[id++] = w; 
9.      C++;} } 
10. Sort the input xored_data based on their probability; 
11. Map the highest probable data to the code with the smallest IVS; 
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5. CONCLUSIONS 
In this paper, we have proposed two bus encoding algorithms that 
reduce bus delay and minimize energy consumption. The first one 
minimizes the occurrence of type 5 and 6 crosstalk by inserting 
temporal redundancy, and minimizes the occurrence of energy-
expensive crosstalk by assigning the higher mapping priority to the 
code with lower IVS. The second one selects the codebook that 
forbids “2λ” transitions to reduce the worst case delay, meanwhile, 
minimizes the expected bus energy.  
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T8 U8 N8 Im8 Au8 Vi8 
  # of 

lines 

Worst-
caes 
delay E % D % E % D % E % D % E % D % E % D % E % D % 

 HYB [9] 9 2+4λ 10.97 4.46 10.11 0.47 30.94 23.2 9.39 1.4 21.44 8.69 16.96 15.59 
 HYB_xor 9 2+4λ 33.18 27.64 19.7 6.9 47.83 42.29 55.09 52.57 52.39 51.16 44.11 45.28 
 HST 10 2+3λ 43.74 34.46 42.61 32.99 55.79 42.8 50.26 40.99 46.98 38.08 52.86 42.76 
AHST 10 2+3λ 44.21 37.51 43.14 36.21 59.53 47.28 73.86 69.28 67.73 60.6 73.84 69.19 
OTF_WCM 12 1+2λ 33.85 40.72 32.17 38.4 48.13 49.63 37.89 45.56 39.9 45.12 39.91 47.25 
AOTF_WCM 12 1+2λ 38.9 50.59 34.60 50.78 51.63 54.92 51.75 64.52 56.84 64.65 47.5 61.53 
ST [6] 10 2+4λ 29.34 18.79 31.06 18.73 36.73 22.76 11.05 4.01 18.81 12.75 17.32 6.44 
MST [6] 14 2+2λ 22.81 48 26.72 46.24 41.19 53.74 17.89 44.54 26.65 45.53 22.77 45.94 
FP [ 2] 11 1+3λ 6.12 7.91 4.6 -0.24 14.41 27.09 11.58 41.36 28.38 26.41 20.36 50.05 
CPC [3] 12 1+2λ 11.17 22.71 11.03 20.3 29.86 29.15 26.32 24.46 27.97 25.17 27.59 22.97 
VCT [ 7] 8 4+4λ 0 9.01 0 9.48 0 -1.69 0 -5.32 0 -0.17 0 -3.92 
VCTR [8 ] 9 3+3λ 28.2 2.66 28.56 2.82 35.52 3.08 31.4 3.27 32.55 3.06 31.79 3.36 
Average % Improv of AHST 33.37 23.62 31.50 23.05 45.10 32.10 68.74 62.21 58.42 51.48 67.31 61.09 
Average % Improv of AOTFW 27.02 30.42 21.21 29.38 34.38 41.94 42.31 56.35 44.38 56.47 34.40 51.42 
Wst-case % Improv of AHST 21.05 -20.1 17.52 -18.6 31.18 -13.9 61.89 44.61 52.16 27.66 61.65 38.32 
Wst-case % Improv of AOTFW 13.52 4.97 10.75 -1.45 17.74 2.54 29.67 36.03 36.01 35.11 23.04 22.99 

T16 U16 N16 Vi16 Im16 
  # of 

lines 

Worst-
caes 
delay E % D % E % D % E % D % E % D % E % D % 

HST 18 1+4λ 45.47  28.15  43.51  27.06  49.70  29.87  41.47  31.82  45.51  31.41 
AHST 18 1+4λ 58.54  41.89  55.35  37.17  60.27  43.58  57.32  57.40  65.86  48.56 
OTF_WCM 23 1+2λ 38.46  48.46  36.30  47.84  41.29  50.82  33.98  52.20  31.45  53.26 
AOTF_WCM 23 1+2λ 53.64  59.31  49.16  56.55  53.05  62.08  46.32  71.33  48.40  61.84 
ST [6] 21 2+4λ 49.40  30.50  47.25  29.43  48.54  28.18  37.59  24.98  27.23  14.80 
MST [6] 31 2+2λ 45.91  50.57  43.66  49.54  44.84  50.06  33.08  49.44  21.72  44.76 
FP [2] 23 1+3λ 8.06  26.40  4.97  7.98  1.27  11.38  9.89  10.91  22.73  13.51 
CPC [3] 23 1+2λ 25.78  34.54  23.47  33.82  27.84  31.45  18.72  31.89  25.47  21.09 
VCT [7] 16 4+4λ 0.00  -6.21  0.00  -5.12  0.00  -2.52  0.00  -6.31  0.00  -14.2 
VCTR [8] 17 3+3λ 33.51  4.76  31.43  4.69  31.09  4.09  33.89  3.02  31.33  -9.86 
DPack [10] 18 1+4 λ 0.19  0.18  0.17  0.18  0.17  0.19  0.03  0.00  -0.12  -12.2 
DPerm [10] 22 1+4 λ 2.84  1.57  -0.22  -0.30  -2.90  -2.64  2.17  4.67  0.08  5.77 
Average % Improv of AHST 47.71 29.33 44.99 26.04 51.04 33.60 48.62 50.00 59.33 44.11 
Average % Improv of AOTFW 41.53 50.51 37.36 48.85 42.14 55.37 35.37 66.36 38.53 58.53 
Wst-case % Improv of AHST 18.06 -17.5 15.36 -24.5 22.81 -12.9 31.61 15.73 53.09 6.87 
Wst-case % Improv of AOTFW 8.38 17.68 3.61 13.89 8.78 24.06 13.98 43.30 29.09 33.19 

Table 2. Comparisons of bus encoding algorithms (8-bit bus, λ = 5). 

Table 3. Comparisons of bus encoding algorithms (16-bit bus, λ = 5). 
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