
Bus Encoding for Simultaneous Delay and Energy
Optimization

Jingyi Zhang, Qing Wu, Qinru Qiu
Department of Electrical and Computer Engineering
Binghamton University, State University of New York

Binghamton, New York – 13902, U.S.A
{jzhang5, qwu, qqiu}@binghamton.edu

ABSTRACT
In this paper we propose two bus encoding algorithms that
optimize both bus delay and energy dissipation based on the
probabilistic characteristics of data on data buses. The first
algorithm minimizes the crosstalk transitions by inserting temporal
redundancy and achieves optimal energy. The second algorithm
reduces crosstalk more aggressively to achieve optimal bus delay
by mapping the original data to low-energy opposite-transition-
forbidden codes. Experimental results show that they outperform
the existing heuristic bus encoding algorithms by 15.7% to 58.8%
in average energy dissipation and 11.4% to 58.4% in average delay.

Categories and Subject Descriptors
B.7.1 [Integrated circuits]: Integrated Circuits

General Terms: Algorithms, Design, Performance.
Keywords: Adaptive bus encoding, coupling capacitance, data
probability distribution peaking, delay optimization, energy
optimization, opposite transition forbidden, temporal/spatial
redundancy.

1. INTRODUCTION
As technology scales down to deep submicron, the crosstalk
energy becomes the major component in bus energy dissipation
[1][2]. The bus delay becomes data pattern dependent because of
the crosstalk induced delay. For example, opposite transitions (also
called “2λ” transitions) on adjacent wires produce especially large
propagation delay. Extensive research works have been done for
the optimization of bus energy dissipated on the coupling
capacitances [1][4]. Nowadays, more and more attentions have
been paid on minimizing bus delay [2][3][5][7][8]. However,
rarely any work effectively optimizes the delay and energy at the
same time. Although reducing the crosstalk effect is the key for
both optimizations, as we will show later in the paper, the bus
energy dissipation is determined by the overall crosstalk effect
across the bus lines while the bus delay is determined by the worst
case local crosstalk effect. A bus encoding scheme for minimum
delay does not always lead to minimum bus energy and vice versa.

M. Mutyam et al. [8] proposed an approach that eliminates certain
types of crosstalk by inserting temporal redundancy while using

variable cycle transmission. The performance can be speeded up;
meanwhile moderate energy reduction can be achieved. K.
Sainarayanan et al. [5] proposed a method that applies bus inverter
on every subgroup of bus, and inserts temporal redundancy to
indicate the status of bus inverting. The method targets at reducing
the worst case bus delay and the amount of improvement depend
on the number of shielding lines inserted. N. Satyanarayana et al.
[10] proposed two delay minimization techniques by exploiting the
similarity of the upper half data, thus the performances highly
depend on the data behaviors. They can’t guarantee to eliminate
the delay-expensive crosstalk type. C. Duan et al. [2] presented a
scheme to eliminate part of the high-energy and delay-expensive
code patterns. B. victor et al. [3] proposed a one-to-one mapping
scheme based on a codebook that doesn’t allow opposite direction
transitions on adjacent lines. The codebook is obtained by
searching for the largest prime clique of either one of the two
codewords with alternating 0 and 1. Since the largest clique
problem is NP-hard, the calculation of the codebook is
computationally intensive for wide bus width. L. Li et al. [7]
proposed a variable cycle transmission technique, where a
crosstalk analyzer is implemented to dynamically tunes the length
of bus clock cycle time. This approach does not try to reduce the
crosstalk effect, hence it has no effect on energy dissipation and it
does not reduce the worst case delay.

To trade off between the circuit performance and the energy
consumption, we propose two novel delay and energy efficient bus
coding schemes. The first algorithm exploits both spatial and
temporal redundancy to minimize average energy and average
delay. The second one generates a one-to-one mapping from the
original data to the weighted opposite-transition-forbidden code,
which is decided by the probability distribution of the original data.
Both are based on weighted code mapping (WCM) [9].

The remaining paper is organized as follows. Section 2 introduces
the background on the analytical delay and energy model for DSM
bus. In section 3, the data probability distribution peaking method
to optimize the performance of the WCM algorithm is introduced.
Then the proposed delay and energy efficient coding algorithms
are presented. Section 4 presents and analyzes the experimental
results in detail. Finally we draw conclusions in section 5.

2. BACKGROUND
The analytical models for the propagation delay [6] and energy
consumption [4] in deep sub-micron buses were proposed by
Sotiriadis et al. Let CI be the total inter-line capacitance, while CL
be the line-to-ground capacitance. Let λ be the capacitance factor
which is calculated as LI CC=λ . The crosstalks are categorized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’08, August 11–13, 2008, Bangalore, India.
Copyright 2008 ACM 978-1-60558-109-5/08/08...$5.00.

209

into six classes by their corresponding delay at the intermediate
lines, as shown in Table 1. The symbols ↑, ↓, − are used to indicate
0→1, 1→0 and 1→1 (or) 0→0 bit transitions respectively. It is
beneficial from delay perspective to minimize the occurrence or
even remove crosstalk class 4, 5 and 6 transitions. However, energy
dose not necessarily change in the same trend as delay. For
example, transition from 000 to 101 (↑−↑) won’t cause any delay at
the middle line, but will introduce in CL RT λ energy, because the
first charging line and the middle unchanging line form a
conducting path for the inter capacitor between them. Therefore it is
important for bus encoding schemes to take both delay and energy
into consideration.

Table 1. Transition patterns and delay.
CC Delay Transition Patterns
1 0 ↑−↑, ↓−↓, ↑−↓, ↓−↑, ↑− −, − −↓, − − −, − −↑, ↓− −
2 CL RT ↑↑↑, ↓↓↓
3 CL RT (1+λ) ↑↑−, ↓↓−, −↑↑, −↓↓
4 CL RT (1+2λ) −↑−, −↓−, ↓↓↑, ↑↑↓, ↓↑↑, ↑↓↓
5 CL RT (1+3λ) −↓↑, −↑↓, ↑↓−, ↓↑−
6 CL RT (1+4λ) ↓↑↓, ↑↓↑

3. ENERGY AND DELAY EFFICIENT

ALGORITHMS

3.1 Probability Distribution Peaking
The optimality of the WCM algorithm relies on the information of
the probability distribution of the data stream because it maps the
data with higher probability to the code with smaller ivs[9].
Therefore, the data set with probability distributions that have
sharper "peak" has higher potential for energy saving. In
probability theory, the "peakedness" of the probability can be
measured by kurtosis. Data distribution with higher kurtosis has a
sharper "peak", that is, a higher probability of values near its mean.
It is observed that exclusive-or (XOR) function is able to skew
most data distributions toward zero. Thus, performing XOR at
adjacent vectors of the input data may be the easiest way to
effectively sharpen the peak of the probability distribution. An m-
bit-wide bus needs m XOR gates at the encoder side; the original
data can be recovered at the decoder side by performing the same
XOR operation. We performed experiments on WCM algorithm
with various multimedia and random distributed data benchmarks.
The results show that xor-ed data have an average improvement of
27% in energy and 26% in delay over the original data.

3.2 Variable Cycle Transmission with Hybrid
Spatial Temporal Redundancy

Even though the WCM algorithm works effectively in reducing
energy consumption, there still are “2λ” transitions, leading to
more energy dissipation as well as larger delay. We designed a
hybrid bus encoding algorithm that applies WCM and also inserts
temporal redundant pattern of all-ones or all-zeros between the old
and the new codewords. This technique is referred to as Hybrid
Spatial Temporal Redundancy encoding (HST).

Let D(i, j) present the transition delay from the code i to the new
code j. It is observed that the sum of)0,(iwD and),0(jwD (referred

as sum_zeros), or the sum of))12(,(−m
iwD and)),12((j

m wD −
(referred as sum_ones), is smaller than or equal to the original
entry),(ji wwD . In another word, inserting a temporal redundant

data 0 or 2m-1 between two neighboring data will result in smaller
delay. It is also beneficial to reduce energy consumption, since
transitions from or to all-zero vector and all-one vector draws
relatively fewer or even no energy from the power supply. The
pseudo code of the HST algorithm is given in figure 1.

Figure 1. The hybrid spatial temporal algorithm.

We then combine our algorithm with the variable cycle
transmission scheme. Same as in the VCT scheme [7], a ready_out
signal is added and activated dynamically depending on the
transition patterns. Unlike other temporal redundant bus algorithms,
our decoder doesn’t care whether a temporal redundant code tw′ is
inserted or which pattern is inserted. As long as it detects an active
ready_out, the original data can be decoded from the current code
wt+1, and previous code wt. The algorithm requires three extra lines:
the first one is used to form the WCM codebook, the second one to
indicate whether the bus is inverted, and the last is the ready_out
signal, disregarding the space used to shield the ready_out, invert
indicator and the actual code. Example 1 shows the working of our
algorithm.

Example1: Consider m = 8, a = 1, λ = 5. As explained in precious
section, the maximum ivs of the selected WCM code is 4. Assume
there are two data sequentially mapped to WCM code: wt =
101111000, wt+1 = 010001000. The original delay of the transition
is 1+4λ. The algorithm detects a crosstalk type 6 transition, so wt+1
is first flip-flopped; then the summation of)0,(twD and

),0(1+twD is calculated and found to be smaller than the original
),(1+tt wwD . After encoding, the actual sequence transmitted on the

bus is {101111000, 000000000, 101110111}. The total
propagation delay and energy consumption for transmitting the
sequence are 12 (i.e. 2+2λ), and 27 respectively, compared to the
delay and energy of 21 (i.e. 1+4λ), and 26 for the original WCM
algorithm with 9-bit wide bus.

The reason that HST algorithm outstands from many of other
works lies in that it only requires a small number of extra bus lines.
The property of ivs code allows us to reduce the crosstalk 5 and 6
delay to 2(1+λ) for most of the transition patterns, leading to much
smaller average delay. Furthermore, our approach encodes data
sequence by assigning the higher mapping priority to the code with
lower ivs achieving significant energy reduction.

Input: present data dt , next data dt+1 and present code wt

Output: encoded next data tw′ and wt+1

1. map xored_dt+1 to wt+1 using Weighted Code Mapping;
2. if (crosstalk type(wt ,wt+1) > 4) {
3. if (crosstalk type(wt ,wt+1) = 6)
4. wt+1 = inverted wt+1;
5. if (min{sum_zeros, sum_ones} <),(ji wwD) {

6. if (sum_zeros ≤ sum_ones)

7. ;12 −=′ m
tw

8. else
9. ;0=′tw } }

210

3.3 Opposite-Transition-Forbidden Weighted
Code Mapping (OTF_WCM)

The original WCM algorithm [9] cannot guarantee to eliminate
crosstalk 5 and 6. We proposed the Opposite-Transition-Forbidden
Weighted Code Mapping (OTF_WCM) algorithm. The new
technique generates a WCM codebook that doesn’t have opposite
transition patterns, therefore, all crosstalk type 5 and 6 as well as
part of crosstalk type 4 are eliminated.

Let W denote the set of codewords of n bits:
W= }1,0,|{ 121 == + inii aaaaaaww KK , where i denotes the
index of the bit line of the codeword.

Definition: An opposite transition forbidden (OTF) codebook W is
a set of codewords that don’t have “2λ” transitions with each other.

Theorem 1: A codebook W is OTF, if
}1,,)1()1{(1 niiaa i

i
i

i ≤≤∀×−≤×− + , Ww∈∀

Theorem 2: the number of the k-bit OTF codewords is a Fibonacci
number. A closed-form formula for the total number of the valid k-

bit codes is given by
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
2

2
51

2

2
51

5

1
kk

. It can be used to

calculate the number of required OTF code bits for any bus width.

With the OTF codebook, we are able to eliminate the “2λ”
transitions, and hence keep the worst-case delay to 1+2λ. With the
WCM mapping, we are able to reduce the average bus energy by
maximizing the occurrence of low IVS codewords. Figure 2 gives
the pseudo code of the OTF_WCM algorithm. The valid OTF
codeword is selected by simply scanning through all the bits and
check if it satisfies theorem 1.

Figure 2. The OTF_WCM algorithm.
Although the idea of utilizing the OTF code is similar as the
crosstalk preventing coding method [3] and the forbidden pattern
algorithm [2], here we apply a weighted code mapping to
maximize the occurrence of low IVS codewords. Therefore, the
OTF_WCM outperforms the previous two works in average energy
consumption. Furthermore, instead of solving the maximum clique
problem, our OTF codebook generation is based on Theorem 1 and
it requires only one scan of the codewords. Therefore, it has a
much less complexity.

4. EXPERIMENTAL RESULTS
Total of 11 data sequences are tested to evaluate the efficiency of
our coding algorithms, 6 of which are artificially generated and the
others are extracted from multimedia applications. The artificial

data sequences are generated following three different types of
random distributions: triangular (T), uniform (U) and normal (N).
The “Im8” is an 8-bit sequence with subsequences selected from
four different images. The “Au8”, and “Vi8” are 8-bit audio and
video sequences. Each data sequence is 10-20Mbits long. Twelve
different coding algorithms have been compared, which include:
the original hybrid WCM (HYB)[9], the HYB with xored-data
(HYB_xor), the proposed HST and OTF_WCM algorithms, the
original and the modified spatial temporal redundancy algorithms
[6] (denoted as ST and MST respectively), the forbidden pattern
coding (FP) [2], the crosstalk preventing coding (CPC) [3], the
variable cycle transmission algorithm (VCT) [7], the variable cycle
transmission with temporal redundancy (VCTR) [8], the data
packing (DPack) and data permutation (DPerm) coding methods
[10], as well as our proposed algorithms combined with the
window-base adaptive scheme [9], where a sliding window is used
to find out the probability distribution of the input data (denoted as
AHST and AOTF_WCM). The simulation results for 8-bit data
benchmarks are shown in Table 2 (see next page). It compares the
required bus width for every algorithm (# of lines), the worst-case
delay without implementing the VCT technique (worst-case delay),
the percentage improvement over un-coded data in average energy
(E %) and the percentage improvement over un-coded data in
average delay (D %) when the VCT technique is employed. We
then compare the percentage improvement of our algorithms over
the average of others’ works (Average % Improv of AHST and
Average % Improv of AOTFW). The last two rows of the table
present the percentage improvement in average energy or average
delay over the best of others’ works, namely the worst-case
percentage improvement of AHST (Wst-case % Improv of AHST),
and the worst-case percentage improvement of AOTF_WCM
(Wst-case % Improv of AOTFW). Table 3 shows the
corresponding experimental results for 16-bit data benchmarks.

The results clearly show that AHST has more optimal average
energy while AOTF_WCM has more optimal average delay. Both
are superior to any of the other works in reducing bus energy. It is
also noticed that for random distributed data benchmarks, MST is
superior to AHST in reducing average delay. However, when it
comes to real application benchmarks, MST can’t compete with
our algorithms in minimizing delay. Besides, each inserted
shielding line for MST method introduces in up to 2λ extra energy.
We summarized table 2 and 3 by comparing the average of the
results for all the data benchmarks. AHST ends up with 40.91% (8-
bit) and 28.19% (16-bit) improvement in energy over the best of
the other works. AOTF_WCM shows 21.79% (8-bit) and 12.77%
(16-bit) improvement in energy over the best of other works.
AOTF_WCM also has 16.7% (8-bit) and 26.42% (16-bit)
improvement in bus delay over MST, which is the best of others’
works. It is quite intuitive from the results that our AHST and
AOTF_WCM methods have much more optimal energy delay
product. We employ Synopsis Design Compiler to generate the
gate-level net-lists for the encoders and decoders of our HST and
OTF_WCM schemes. Table 4 compares the area overhead
(measured by the number of NAND gates) of 8-bit and 16-bit bus
encoders and decoders. We believe it is tolerable for probability-
based bus encoding schemes.

Table 4. Area overhead for the encoder and decoder.
HST OTF_WCM

Encoder Decoder Encoder Decoder
8-bit codec 1307 904 861 1075
16-bit codec 105012 95104 100047 117100

1. Set codeword array A[2m]=0; ivs=0; C=0; id = 0;
2. While (|A|)<2m {

3. if (C== 2* ivs
nC 1−) {

4. ivs++;
5. C=0;}
6. Generate the next binary vector w with IVS(w)=ivs;
7 if (w is OTF code) {
8. A[id++] = w;
9. C++;} }
10. Sort the input xored_data based on their probability;
11. Map the highest probable data to the code with the smallest IVS;

211

5. CONCLUSIONS
In this paper, we have proposed two bus encoding algorithms that
reduce bus delay and minimize energy consumption. The first one
minimizes the occurrence of type 5 and 6 crosstalk by inserting
temporal redundancy, and minimizes the occurrence of energy-
expensive crosstalk by assigning the higher mapping priority to the
code with lower IVS. The second one selects the codebook that
forbids “2λ” transitions to reduce the worst case delay, meanwhile,
minimizes the expected bus energy.

6. REFERENCES
[1] S. R. Sridhara, A. Ahmed, and N. R. Shanbhag, Area and Energy-

Efficient Crosstalk Avoidance Codes for On-Chip Buses, Proc. Of
IEEE International Conference on Computer Design, 2004.

[2] C. Duan and A. Tirumala, Analysis and Avoidance of Cross-talk in
On-Chip Buses, Hot Interconnects 9, pp. 133-138, Aug. 2001.

[3] B. Victor and K. Keutzer, Bus Encoding to Prevent Crosstalk
Delay, IEEE/ACM International Conference on Computer Aided
Design, 2001.

[4] Sotiriadis, P., A. P. Chandrakasan, Bus Energy Reduction by
Transition Pattern Coding Using a Detailed Deep Submicrometer
Bus Model, IEEE Transactions on Circuits and Systems, pp. 1280-
1295, October 2003.

[5] K. S. Sainarayanan, C. Raghunandan, M. B. Srinivas, Bus-encoding
schemes for minimizing delay in VLSI interconnects, Proc. of
Integrated circuits and systems design, pp. 184-189, 2007.

[6] Sotiriadis P, Chandrakasan A. P., Reducing bus delay in submicron
technology using coding, In Proc. of IEEE Conf. ASPDAC’01, pp
109-114, 2000.

[7] L. Li et al., A Crosstalk Aware Interconnect with Variable Cycle
Transmission, In DATE, 2004, pp. 102-107.

[8] Madhu et al., Delay and Energy-Efficient Data Transmission for
On-chip Buses, In ISVLSI’06, pp355-360, 2006.

[9] A. Brahmbhatt, J. Zhang, Q. Wu, and Q. Qiu, Low-power bus
encoding using an adaptive hybrid algorithm, Proceedings of the
43rd annual conference on Design automation, pp. 987-990, 2006.

[10] N. Satyanarayana, M. Mutyam, A. V. Babu, Exploiting on-chip
data behavior for delay minimization, Proc. of international
workshop on System level interconnect prediction, pp. 103-110,
2007.

T8 U8 N8 Im8 Au8 Vi8
 # of

lines

Worst-
caes
delay E % D % E % D % E % D % E % D % E % D % E % D %

 HYB [9] 9 2+4λ 10.97 4.46 10.11 0.47 30.94 23.2 9.39 1.4 21.44 8.69 16.96 15.59
 HYB_xor 9 2+4λ 33.18 27.64 19.7 6.9 47.83 42.29 55.09 52.57 52.39 51.16 44.11 45.28
 HST 10 2+3λ 43.74 34.46 42.61 32.99 55.79 42.8 50.26 40.99 46.98 38.08 52.86 42.76
AHST 10 2+3λ 44.21 37.51 43.14 36.21 59.53 47.28 73.86 69.28 67.73 60.6 73.84 69.19
OTF_WCM 12 1+2λ 33.85 40.72 32.17 38.4 48.13 49.63 37.89 45.56 39.9 45.12 39.91 47.25
AOTF_WCM 12 1+2λ 38.9 50.59 34.60 50.78 51.63 54.92 51.75 64.52 56.84 64.65 47.5 61.53
ST [6] 10 2+4λ 29.34 18.79 31.06 18.73 36.73 22.76 11.05 4.01 18.81 12.75 17.32 6.44
MST [6] 14 2+2λ 22.81 48 26.72 46.24 41.19 53.74 17.89 44.54 26.65 45.53 22.77 45.94
FP [2] 11 1+3λ 6.12 7.91 4.6 -0.24 14.41 27.09 11.58 41.36 28.38 26.41 20.36 50.05
CPC [3] 12 1+2λ 11.17 22.71 11.03 20.3 29.86 29.15 26.32 24.46 27.97 25.17 27.59 22.97
VCT [7] 8 4+4λ 0 9.01 0 9.48 0 -1.69 0 -5.32 0 -0.17 0 -3.92
VCTR [8] 9 3+3λ 28.2 2.66 28.56 2.82 35.52 3.08 31.4 3.27 32.55 3.06 31.79 3.36
Average % Improv of AHST 33.37 23.62 31.50 23.05 45.10 32.10 68.74 62.21 58.42 51.48 67.31 61.09
Average % Improv of AOTFW 27.02 30.42 21.21 29.38 34.38 41.94 42.31 56.35 44.38 56.47 34.40 51.42
Wst-case % Improv of AHST 21.05 -20.1 17.52 -18.6 31.18 -13.9 61.89 44.61 52.16 27.66 61.65 38.32
Wst-case % Improv of AOTFW 13.52 4.97 10.75 -1.45 17.74 2.54 29.67 36.03 36.01 35.11 23.04 22.99

T16 U16 N16 Vi16 Im16
 # of

lines

Worst-
caes
delay E % D % E % D % E % D % E % D % E % D %

HST 18 1+4λ 45.47 28.15 43.51 27.06 49.70 29.87 41.47 31.82 45.51 31.41
AHST 18 1+4λ 58.54 41.89 55.35 37.17 60.27 43.58 57.32 57.40 65.86 48.56
OTF_WCM 23 1+2λ 38.46 48.46 36.30 47.84 41.29 50.82 33.98 52.20 31.45 53.26
AOTF_WCM 23 1+2λ 53.64 59.31 49.16 56.55 53.05 62.08 46.32 71.33 48.40 61.84
ST [6] 21 2+4λ 49.40 30.50 47.25 29.43 48.54 28.18 37.59 24.98 27.23 14.80
MST [6] 31 2+2λ 45.91 50.57 43.66 49.54 44.84 50.06 33.08 49.44 21.72 44.76
FP [2] 23 1+3λ 8.06 26.40 4.97 7.98 1.27 11.38 9.89 10.91 22.73 13.51
CPC [3] 23 1+2λ 25.78 34.54 23.47 33.82 27.84 31.45 18.72 31.89 25.47 21.09
VCT [7] 16 4+4λ 0.00 -6.21 0.00 -5.12 0.00 -2.52 0.00 -6.31 0.00 -14.2
VCTR [8] 17 3+3λ 33.51 4.76 31.43 4.69 31.09 4.09 33.89 3.02 31.33 -9.86
DPack [10] 18 1+4 λ 0.19 0.18 0.17 0.18 0.17 0.19 0.03 0.00 -0.12 -12.2
DPerm [10] 22 1+4 λ 2.84 1.57 -0.22 -0.30 -2.90 -2.64 2.17 4.67 0.08 5.77
Average % Improv of AHST 47.71 29.33 44.99 26.04 51.04 33.60 48.62 50.00 59.33 44.11
Average % Improv of AOTFW 41.53 50.51 37.36 48.85 42.14 55.37 35.37 66.36 38.53 58.53
Wst-case % Improv of AHST 18.06 -17.5 15.36 -24.5 22.81 -12.9 31.61 15.73 53.09 6.87
Wst-case % Improv of AOTFW 8.38 17.68 3.61 13.89 8.78 24.06 13.98 43.30 29.09 33.19

Table 2. Comparisons of bus encoding algorithms (8-bit bus, λ = 5).

Table 3. Comparisons of bus encoding algorithms (16-bit bus, λ = 5).

212

