
A Game Theoretic Resource Allocation for Overall Energy
Minimization in Mobile Cloud Computing System1

Yang Ge, Yukan Zhang and Qinru Qiu
Department of Electrical Engineering and Computer

Science, Syracuse University

Syracuse, NY, USA, 13210

{yage, yzhan158, qiqiu}@syr.edu

Yung-Hsiang Lu
Department of Electrical and Computer Engineering

Purdue University

West Lafayette, IN, USA, 47907

yunglu@purdue.edu

ABSTRACT
Cloud computing and virtualization techniques provide mobile
devices with battery energy saving opportunities by allowing them
to offload computation and execute code remotely. When the
cloud infrastructure consists of heterogeneous servers, the
mapping between mobile devices and servers plays an important
role in determining the energy dissipation on both sides. From an
environmental impact perspective, any energy dissipation related
to computation should be counted. To achieve energy
sustainability, it is important reducing the overall energy
consumption of the mobile systems and the cloud infrastructure.
Furthermore, reducing cloud energy consumption can potentially
reduce the cost of mobile cloud users because the pricing model
of cloud services is pay-by-usage. In this paper, we propose a
game-theoretic approach to optimize the overall energy in a
mobile cloud computing system. We formulate the energy
minimization problem as a congestion game, where each mobile
device is a player and his strategy is to select one of the servers to
offload the computation while minimizing the overall energy
consumption. We prove that the Nash equilibrium always exists in
this game and propose an efficient algorithm that could achieve
the Nash equilibrium in polynomial time. Experimental results
show that our approach is able to reduce the total energy of
mobile devices and servers compared to a random approach and
an approach which only tries to reduce mobile devices alone.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Reliability, availability,
andserviceability

General Terms
Algorithms, Management, Performance

Keywords
Congestion Game, game theory, mobile cloud computing, power
management, virtualization

1. INTRODUCTION
The emerging paradigm of mobile cloud computing (MCC)
moves the processing, memory and storage requirements all
together from the resource limited mobile devices to the resource
unlimited cloud. MCC provides many advantages to the mobile
devices [3]. It extends the storage capacity for mobile users [4]

and also reduces the risk of data and application lost on mobile
device by backing up users data on several computers in the
cloud. Security services such as virus scanning and malicious
code detection provided by the MCC improves the safety and
reliability of the mobile device.

One very important benefit brought by MCC for mobile users is
the extended battery life time. The MCC helps the mobile devices
to run the computation intensive applications, which normally
consume a large amount of battery energy. This is enabled by
virtualization technique which allows the cloud infrastructure to
run arbitrary mobile applications from the mobile users or service
subscribers. We refer to this technique as computation offloading.
Reference [5] presents a high level analysis on the conditions that
computation offloading could save the energy for mobile phones.
According to their results, an application with large amount of
computation but very limited data communication could benefit
most from computation offloading. The authors in [6] propose an
architecture called MAUI to dynamically control the computation
offloading for .NET applications at runtime. MAUI utilizes some
.NET features to partition and profile the applications and
formulate the offloading problem as a linear programming (LP)
problem. The authors in [7] propose a similar architecture for
Android applications.

Although moving the computation energy away from the mobile
devices and into the cloud relieves the pressure on the devices’
batteries, it will increase the energy consumption of cloud
infrastructure such as the servers in the data center. From
environmental impact and carbon emission control perspective,
energy is task-centric instead of system-centric [1]. Any energy
dissipation related to computation should be counted and carefully
managed. From cost reduction point of view, reducing energy
consumption of cloud can potentially reduce the cost of mobile
users, because current pricing model of cloud services is pay-by-
usage and energy consumption is a major factor in the operating
cost of cloud services.

In this paper, we consider the problem of energy minimization for
a mobile cloud computing system under computation offloading.
The MCC system consists of a group of mobile devices and a set
of servers in the data center. Each mobile device runs an
application and tries to upload a portion of its application to one
of the servers. The offloading strategy involves two decisions, (1)
the amount of computation to be offloaded, and (2) the destination
of offloading. A mobile device selects offloading strategy not only
to minimize its own energy dissipation, but also to minimize its
energy usage in the cloud. The decision of one mobile device
changes the status of the cloud infrastructure, for example one
particular server will become more congested or wakeup from
sleep mode. Since each mobile device chooses its offloading
strategy to minimize the overall energy, a status change in the
cloud infrastructure will trigger some mobile devices to adjust
their offloading strategies. This, consequently, will impose more

1This material is based upon work supported by the National
Science Foundation under Grant No. CNS-0845947

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’12, July 30–August 1, 2012, Redondo Beach, California, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07...$10.00.

279

changes in the cloud and leads other mobile devices to adjust their
offloading strategies. From the above analysis an interesting
question is raised, if all mobile devices aim at minimizing the end-
to-end overall energy and adjust their offloading strategies
independently, will the system ever become stable?

We formulate the MCC system energy minimization problem as a
class of games called congestion games. In this model, each
mobile device is a player and his strategy is to select one of the
available servers to offload its computation. All players compete
for the same set of resources and their goal is to minimize the
combined mobile and server energy dissipated to provide service
for its own application. We prove that the Nash equilibrium
always exists in this congestion game formulation. Nash
equilibrium is the optimum policy in the sense that no player can
find better policy if he deviates from current policy unilaterally
[2]. We propose an efficient algorithm that achieves the Nash
equilibrium in polynomial time.

There have been some works in the literature using game theory
to solve general resource allocation problem in cloud computing
environment, for example [14]. However, this work only
considers the cost in cloud side and ignores the cost on mobile
devices. Furthermore, it defines cost as a simple linear function of
workload, which is not a suitable model of energy dissipation if
we want to capture some nonlinearity and discontinuity
introduced by server power management.

The uniqueness of our work is summarized as the following:

 This is the first work that aims to reduce the overall energy
of a mobile cloud computing system under computation off-
loading context. Although computation offloading techniques
have been investigated in some previous work [5][6][7], their
goals are only to reduce the energy consumed by the mobile
devices and extend their battery lives, without considering
the energy consequence of offloading on the cloud
computing infrastructure.

 We proposed a game theoretic formulation of the problem.
We also proved that the Nash equilibrium of this problem
always exists and it could be achieved in polynomial time if
each mobile device selects its offloading strategy based on
our proposed algorithm. The important implication of Nash
equilibrium is that our algorithm will eventually converge to
a stable state, where every mobile device finds its current
optimal strategy and has no incentive to leave.

 We demonstrate the necessity of joint optimizing the energy
of the mobile devices and the cloud infrastructure. Compared
to the techniques that only aim to reduce the mobile device
energy, our technique is able to reduce the overall energy by
45.42%. Our approach is also able to reduce more than
61.83% energy compared to a random offloading approach.

The rest of the paper is organized as follows: We discuss our
system model and introduce the energy minimization problem in
Section 2. We introduce the congestion game model and discuss
its application in detail in Section 3. We present the algorithm to
achieve the equilibrium in Section 4. Experimental results are
reported in Section 5. Finally, we conclude the paper in Section 6.

2. SYSTEM MODEL
2.1 MCC System Architecture
On one side of the MCC architecture, mobile devices like smart
phones, tablet computers are connected to the cloud through Wi-
Fi or 3G networks. On the other side, a group of servers residing

in a data center constitute a large distributed computing system
which can provide the cloud users with different kinds of services,
including infrastructure as a service (IaaS), platform as a service
(PaaS) or software as a service (SaaS) [3]. In this paper, we focus
on the IaaS, in which the servers in the cloud provide the mobile
devices with hardware resources, like CPUs and memories for
them to offload computation for battery energy saving.

At a specific execution point of the mobile application, the
migration manager decides to move a portion of the application to
the cloud (for example, an individual thread). The manager will
send the migration request as well as necessary data and program
states to the remote server. Upon receiving the migration request,
the application data and program states, the server creates a
dedicated virtual machine (VM) for the mobile device, loads the
application executable and starts execution. In the mean time, the
mobile device continues to run other threads or waits for the
results return from the remote server. At the end, the migrated
portion returns back to the mobile device, and merges back to the
original process.

Mobile devices generally can be benefited from code offloading
and remote execution because of two reasons. Firstly, the plenty
of hardware resources in the cloud can help mobile devices to
overcome resource limitation and run some resource intensive
applications. Secondly, by executing code remotely, the mobile
devices could avoid spending a long time in high power state, and
either stay in idle state or go into low power sleep state, thus save
the energy and extend the battery life. However, as pointed out in
[5], not all kinds of mobile applications could save energy through
code offloading. For example, an application with very high data
communication volume will spend much more extra energy in
transferring the data between local memory and remote servers
and not benefit from computation offloading for energy saving.
Deciding which portion of the application needs to be offloaded is
non-trivial. It usually needs detailed program profiling
information and a fast solver for integer linear programming
problems. In this paper, we assume that each device has made
their own decisions about which part of the mobile applications
should be offloaded to the cloud. We focus on how a mobile
device selects a server from a group of heterogeneous servers in
the data center for computation offloading.

2.2 MCC Energy Minimization Problem
We assume that there are ݊ mobile devices and ݎ cloud servers in
the MCC system. The ݅th mobile device runs an application ܣ
with computation workload ܥ (which can be measured by the
number of clock cycles or execution time). We assume that, based
on careful application profiling and device characterization, the
amount of computation to be offloaded to the dedicated virtual
machine ܸܯ is pre-determined and is denoted as ܱ. The amount
of computation left for local execution is denoted as ܮ, ܮ ܱ ൌ
 . We also assume that the mobile device has a performanceܥ
requirement on ܸܯ, i.e. the ܱ amount computation must be
finished within deadline ܦ, otherwise offloading computation to
server will not bring notable performance benefit. If this
performance constraint cannot be satisfied, the mobile device will
either reduce the amount of offloading, or move the VM to a
faster server or even request to wake up a new server.

We assume the power consumption of the mobile device ݅ during
the execution of the application ܣ is determined by an application
specific factor ߙ, which is a high level parameter reflecting its
overall power intensity, i.e. ܲ௧௩, ൌ ܲ, where ܲ is theߙ
normalized maximum mobile device power consumption.

280

Therefore, the energy consumed by running the local portion of
the application ܣ is ܧ, ൌ ܲ௧௩,ܮ.

We assume that the servers in the data center are also
heterogeneous machines. They have different processing speeds
and power consumption, so they could accommodate different
service requests (delay sensitive or power sensitive) from the
mobile clients. Here we assume server ݆ is operating at speed ݏ
and its power consumption is ݂ሺݏሻ, e.g. ݂൫ݏ൯ ൌ ݏ

ଷ. Please note
that our algorithm does not rely on any properties of ݂. We
assume different offloaded applications have different power even
running on the same server. Similar to the factor ߙ on the mobile
device, we assign each application a parameter ߚ. So the power
consumption of application ܣ running on server ݆ will be ߚ݂ሺݏሻ.
And the energy consumption for the jth server to run the offloaded
code from device ݅ will be calculated as ܧ௦௩,

 ൌ ሻݏ݂ሺߚ ܱ.

If only one application ܣ running on server ݆, we assume that the
waiting time experienced by the mobile device ݅ is ݃ሺݏሻ ܱ, where
݃ሺݏሻ is a non-increasing function of speed ݏ. If there are ݊
applications running on the server j, we assume the waiting time
experienced by the mobile device ݅ is ݃൫ݏ൯ ܱ ݄ሺ ݊ሻ, where

݄ሺ ݊ሻ is a non-decreasing function of ݊. For example, if each
VM has equal time slice on the server, without considering the
overhead of context switch and cache miss, ݄ሺ ݊ሻ can be
simplified to ݊. As a server gets more congested, ܣ running on it
will experience longer delay and might violate the performance
constraint ܦ. The mobile device has to reduce the computation
amount ܱ to satisfy ܦ or selects another server which is less
congested. [12] shows that, with proper configuration, network
latency in a data center is independent of network topology and
server’s location. Thus we ignore the network latency in this
problem formulation. Neither do we consider the communication
energy on the routers and switches because they are usually small
comparing to the energy consumed on mobile devices and servers
[13], and they are not affected by the mapping of the computation.

The overall energy related to the execution of application ܣ
consists of the energy dissipation on both the server and mobile
device. It can be calculated as the following:

,௧௧ሺ݅ܧ ݆ሻ ൌ ,ܧ ௦௩,ܧ
 (1)

݆ is the index of the server to which the application ܣ is mapped.

We also assume servers follow time out power management
policies, i.e. they will switch to low power mode after a certain
period of idle. Let ܶdenote the time out threshold and ௦ܲ௧௧,
denote the static power server ݆ consumes when it is idle. Then the
static energy consumption of server ݆ during the idle period is

݆,ܿ݅ݐܽݐݏܧ ൌ ݆,ܿ݅ݐܽݐݏܲ ൈ ܶ. The total energy consumed by the MCC
system is ܧெ ൌ ∑ ௧௧ሺ݅ሻܧ

ୀଵ ∑ ௦௧௧,ܧ

ୀଵ .

The MCC system energy minimization problem can be stated as
the following resource allocation problem:

Given ݊ mobile devices and r servers, for each device, find a
server for computation offloading, such that the overall MCC
system energy ܧெ is minimized while the performance
constraint is satisfied.

This problem can be formulated as an integer linear programming
(ILP). When the number of mobile devices and cloud servers gets
large, which is usually the case in reality, solving such ILP
becomes exponentially difficult. In the next sections, we introduce
a game theoretic formulation which solves this problem using a
distributive approach, where each mobile device chooses its own

offloading strategy, including the amount of offloading and the
destination of offloading in order to minimize its overall energy.

3. GAME THEORETIC FORMULATION
3.1 Congestion Game Model
Congestion games [8] model a group of players sharing a set of
resources. In a congestion game, each player chooses one or a
subset of resources to maximize his own utility or minimize his
own cost. The utility/cost obtained by the player is the sum of the
utilities he received from each resource he chooses. The
utility/cost received from a resource depends on how many
players sharing the same resource and it is generally a non-
increasing/non-decreasing function of the number of players
sharing it. For example, the more senders in a network share the
same link to send packets, the less throughput and longer waiting
time they will experience. In this paper, we consider a simple
congestion game in which each player only selects one resource,
because each mobile device is only allowed to offload its
computation to one server.

We introduce the following notation to define congestion game.
 ܰ ൌ ሼ1, … , ݊ሽ is a finite set of ݊ players
 ܴ ൌ ሼ1, … , resources ݎ ሽ is a finite set ofݎ
 ߑ is the set of strategies for player ݅, which is a subset of

resource set ܴ. We use ߑ ൌ ∏ ߑ

 to denote the joint strategy

space and ߪ ൌ ሺߪଵ, ,ଶߪ … , ሻ a strategy tuple in which theߪ
player ݅ plays strategy ߪ, i.e. it chooses resource ߪ א .ߑ
Please note ߪ is the strategy vector, and ߪ with subscript ݅ is
the strategy of player ݅. Sometime we also use ܬ to denote a
strategy in our algorithms.

 ݊ is the number of players who selects strategy ݆, and for a
strategy tuple ߪ, ݊ ൌ ∑ ߪሺܫ ൌ ݆ሻ

ୀଵ is the indicator ܫ ,
function. We call ሺ݊ଵ, ݊ଶ, … , ݊ሻ a congestion vector.

 ܵ is the cost function when player ݅ selects resource ݆. ܵ is

a monotonically non-decreasing function of ݊, i.e. ܵ൫ ݊൯

ܵ൫ ݊ 1൯ for any positive integer ݊.

For some specific congestion games, there exists Nash
equilibrium. Nash equilibrium is a general term in game theory
and is defined as a state that no player can benefit by changing its
strategy while the other players keep their strategies unchanged
[1]. For a congestion game defined as above, a strategy tuple ߪ
leads to Nash equilibrium if and only if

ܵఙ
൫݊ఙ

൯ ܵ൫ ݊ 1൯, 1 ݅ ݊, 1 ݆ ݎ
 ݅ is also said to be the best reply or best response for playerߪ
against strategy tuple ߪ. In other words, a strategy vector ߪ is at
Nash equilibrium, if for any user ݅, moving away from resource ߪ
to choose resource ݆ by itself will lead to higher cost.

3.2 Application to MCC Energy Minimization
Problem
To apply the congestion game model to our MCC system energy
minimization problem, we define each mobile device and the
dedicated VM created for it to be a player and each server to be a
resource. We use mobile device, VM, player interchangeably in
the paper. For each player, the strategy set ߑ is equal to the
resource set ܴ, and if mobile device ݅ selects server ݆, then ߪ ൌ ݆.

One way for the player (i.e. the mobile device) to define its cost
function is to use the total energy consumed locally. By reducing
his own energy, the player can extend its battery life. However, if
every player wants to save his own local energy, he will select
faster servers to maximize the offloaded computation. This makes

281

the faster servers more congested than the others and as a result,
there might be performance violation and the mobile device have
to either reduce the offload amount or move to another server.
Furthermore, our objective is not to minimize the mobile devices’
energy but the overall system energy. We would like each player
be less selfish and take some “social responsibilities”. Therefore,
we define the first component of cost function as the sum of
weighted energy associated with the execution of application ܣ at
both mobile device side and server side, as show in equation (2).

 ܽܧ, ܾܧ௦௩,
 (2)

By this definition, each player does not only try to minimize its
own energy but also the energy that he added on the servers as
well. The weight coefficients ܽ and ܾ in this equation
differentiate the quality of the energy used by a mobile device and
a server. The former, due to the overhead of battery charge and
discharge and also because of the limited battery capacity, is
usually considered higher quality, therefore we have ܽ ܾ.
These weight coefficients do not have to be the same for all
mobile devices. For example, when a mobile device’s battery is
full, it could be more altruistic and reduce the value of ܽ to
offload less computation; when its battery drops under a critical
level, it could increase the weight on ܧ, and offload more
computation.

Eq. (2) is a non-decreasing function of ݊. When ݊ increases,
server ݆ becomes more congested. As a result, less offloaded
computation can be completed within the performance constraint
and more may have to be done on the mobile device locally, thus
gives an increase in ܧ, and decrease in ܧ௦௩,

 . Because
servers usually have better energy efficiency than the mobile
devices due to their multi-core architecture and powerful co-
processors such as GPUs and DSPs, the increase in ܧ, is
usually greater than the decrease in ܧ,. Also because
coefficient ܽ is greater than or equal to coefficient ܾ , Eq. (2) is a
non-decreasing function of ݊.

In order to consider each server’s static energy penalty during the
time-out period, we add the second component to each player’s
cost function. It is proportional to the current total static energy,
i.e. ݓሺ∑ ௦௧௧,ܧ

ୀଵ ሻ, ݓ is a constant weight. Therefore the

overall cost function for a player is as following:

 ܵ ൌ ܽܧ, ܾܧ௦௩,
 ∑ሺݓ ௦௧௧,ܧ

ୀଵ ሻ (3)

Because the static penalty does not depend on the congestion of
each server, the overall utility is still a non-decreasing function of

݊. The cost function meets the requirement of a congestion game.

4. NASH EQUILIBRIUM OF THE ENERGY
MINIMIZATION CONGESTION GAME
In this section, we present the algorithms which find the Nash
equilibrium for the energy minimization problem defined above.
The algorithms themselves provide a constructive proof for the
existence of the Nash equilibrium. Please note that the actual
algorithm to achieve the equilibrium could run by the dedicated
VM to relieve the computation burden on mobile devices and
reduce communication between mobile devices and the cloud.

Our algorithm adopts an incremental optimization scheme. At
each step, only one player is allowed to change its current strategy
and choose its best response against other players’ current
strategies. Consider the initial scenario that the first ݊ െ 1 players
have achieved equilibrium and their strategy vector is ߪሺ0ሻ ൌ
ሺߪଵሺ0ሻ, ,ଶሺ0ሻߪ … , ିଵሺ0ሻሻ. We are interested to find out, after theߪ
݊th player enters, how will the system regain the equilibrium.

Let ܴ denote the set of all servers and ܵ denote the set of
servers which have already been turned on. Let ܬሺ0ሻ ൌ ሺ0ሻߪ
denote the first strategy chosen by player n against the initial
strategy vector ߪሺ0ሻ of the rest of the system. We consider the
following two scenarios.

Scenario 1: ܬሺ0ሻ ൌ ሺ0ሻߪ א ܵ. Then the only players affected
by player ݊’s choice are those players whose current strategy is
also ܬሺ0ሻ in ߪሺ0ሻ, because player ݊ makes server ߪሺ0ሻ more
congested. For other players, their current strategies remain to be
their best strategies. If every player in server ܬሺ0ሻ finds ܬሺ0ሻ
remaining to be its best choice, then Nash equilibrium is achieved.
Otherwise, there will be a player on ܬሺ0ሻ whose best strategy
deviates from its current strategy. Assume this player moves from
 ሺ1ሻ at step 1. We let the process continue as shown inܬ ሺ0ሻ toܬ
algorithm1. The algorithm returns when all players are in their
best strategies or a new server is turned on. Please note that in the
algorithm, ܬሺ݅ሻ represents a strategy that a player chooses at step ݅.
It can be proved that this process will stop in finite step. The claim
is given in Lemma1. We skip the proof due to space limit.

Algorithm1: type1_ move (࣌ሺሻ, ࣌ሺሻ, ࡾ)
1. ݅ ൌ ሺ0ሻܬ ;0 ൌ ;ሺ0ሻߪ
2. while true
 .3 ൌ ;݈݈ݑ݊
4. for each player with strategy ߪሺ݅ሻ ൌ ሺ݅ሻܬ
5. if ܬሺ݅ሻ is not player ’s best reply against ߪሺ݅ሻ in ܴ
ሺ݅ܬ .6 1ሻ ൌ player ’s best reply against ߪሺ݅ሻ in ܴ
ሺ݅ߪ .7 1ሻ ൌ ߪሺ݅ሻ, ݍ ് ,
ሺ݅ߪ .8 1ሻ ൌ ሺ݅ܬ 1ሻ;
9. break;
10. end
11. end
12. if () return ;
13. else if (ܬሺ݅ 1ሻ ב ܵ)
14. turn on ܬሺ݅ 1ሻ;
15. return ܬሺ݅ 1ሻ;
16. end
17. ݅++;
18. end
Lemma1: TYPE1_MOVE will stop in at most ݊ steps, where ݊ is
the number of players. Furthermore, if type1_move returns at line
12, then Nash equilibrium is achieved.

We define a limited version of type1_move called
type1_move_limited. The limited version restricts the move in a
given subset of servers denoted as ܵ௧. We set the third input of
type1_move algorithm to ܵ௧ instead of using ܴ in the limited
version.

Algorithm2: type2_ move (ࡶሺሻ, (ࡾ ,ሺሻ࣌
1. ݅ ൌ 1;
2. while true
 .3 ൌ ;݈݈ݑ݊
4. for each player with strategy ߪሺ݅ሻ ് ሺ݅ሻܬ
5. if ܬሺ݅ሻ is player ’s best reply against ߪሺ݅ሻ in ܴ
ሺ݅ߪ .6 1ሻ ൌ ߪሺ݅ሻ, ݍ ് ,
ሺ݅ߪ .7 1ሻ ൌ ሺ݅ܬ ;ሺ݅ሻܬ 1ሻ ൌ ;ሺ݅ሻߪ
8. break;
9. end
10. end
11. if ()
12. break;
13. end
14. ݅++;
15.end
Scenario 2: If ܬሺ0ሻ ൌ ሺ0ሻߪ ב ܵ. Then all players’ strategies
will be affected by the newly turned on server because of two
reasons. Firstly, all players’ utilities are increased by the static

282

energy penalty of turning on ܬሺ0ሻ. Secondly, ܬሺ0ሻ is much less
congested than other servers in ܵ, players could potentially
offload more computation if they choose ܬሺ0ሻ and achieve energy
savings (reduce cost function). For each player, if the current
strategy is its best strategy then the system is still in equilibrium;
otherwise ܬሺ0ሻ will be its best strategy. Assume player ଵ on
server ܬሺ1ሻ ൌ .ሺ0ሻܬ ଵሺ0ሻ finds its current best response to beߪ
Then at step 1, we let player ଵ move from ܬሺ1ሻ to ܬሺ0ሻ, i.e.
ଵሺ1ሻߪ ൌ ሺ1ሻ less congestedܬ ଵ’s move will make server .ሺ0ሻߪ
than before. Then there might be a player ଶ on ܬሺ2ሻ ൌ ଶሺ1ሻߪ ്
 ଶ ሺ1ሻ. Then at step 2, we letܬ ሺ1ሻ find its best strategy to beܬ
moves from ܬሺ2ሻ to ܬሺ1ሻ. We let the process continues and
summarize it in algorithm2. We call it type-2 move. We claim
type-2 move will stop after finite steps in Lemma2. Again the
proof is skipped due to space limit.

Lemma2: TYPE2_MOVE will stop in at most ݊ ڄ steps, whereݎ
 . is the number of servers which has been turned onݎ

Again, we define a limited version of type2_move called
type2_move_limited. The limited version restricts the move in a
given subset of servers denoted as ܵ௧. We set the third input of
type2_move algorithm to ܵ௧ instead of using ܴ in the limited
version.

We now present our algorithm for finding Nash equilibrium for
the first ݊ player. We again assume the first ݊ െ 1 players have
achieved equilibrium. Lemma1 shows that if ܬ ൌ then ,(line 8)
the equilibrium is achieved. If ܬ ് from algorithm1 we know ,
that the congestion vector for servers in ܵ does not change after
type1_move (line 5). Because the cost function (3) is an
increasing function of the congestion, for each player, either the
current strategy is its best strategy or newly turned on server ܬ is
its best strategy. Property 2 in Lemma3 shows that the loop 11 ~
15 will repeat at most ݊ iterations. After this loop, property 1
show that the first ݊ െ 1 players are in their best strategies and
player ݊ is either in its best strategy or has its best strategy outside
ܵ. Because there are only ݎ servers in the system, the outer loop
will repeat at most ݎ times. After the outer loop terminates, all
players are in their best strategy and Nash equilibrium is achieved.
We skip the proof of Lemma3 due to space limit.

Algorithm3: find_equilibrium_for_first_n_players()
1. while true
ߪ ;݊ best strategy of player = ܬ .2 ൌ current strategy vector;
3. assign player ݊ to ܬ;
4. if (ܬ א ܵ)
,ܬ)type1_move = ܬ .5 ;(ܴ ,ߪ
6. end
7. if (== ܬ)
8. return; // reach the equilibrium
9. end
10. ܵ = ܵ ܬ turned on a new server // ;ܬ
11. while (, its current strategy is ߪ and its best strategy is ܬ)
12. move from ߪ to ܬ;
13. type1_move_limited(ߪ ,ܬ, ܵ);
14. type2_move_limited(ߪ, ߪ, ܵ െ ;(ܬ
15. end
16. if (player ݊ is in its best strategy)
17. return; // reach the equilibrium;
18. end
19. end
Lemma3: The loop in line 11 ~ 15 have the following properties:
1. After every iteration, for each of first ݊ െ 1 player , either it

is in its best strategy or new server ܬ is its best strategy.
2. The number of players in the server ܬ keeps non-decreasing.

If a player leaves ܬ at an iteration, it never comes back to ܬ.

3. After the loop, for player ݊, either the current strategy is its
best strategy or its best strategy is not in ܵ.

5. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of our approach, we implement
our Nash equilibrium algorithm in Matlab and carry out the
experiments on a DELL T3400 workstation. We obtain the power
model of mobile applications from [9], which is a linear
combination of the activities on different components, including
CPU utilization, Wi-Fi module status, the brightness of the LCD
etc. Because our purpose is not a detailed power analysis for
mobile devices, we just use one factor ߙ to represent the overall
activities of the application. We assume the maximum power
consumption of a mobile device is 2.4W and the actual power of
the application is ܲ ൌ ߙ ൈ 2.4W . We set the activity factor ߙ
as a random variable with a uniform distribution in the range
ሾ0.3, 1.0ሿ. We assume the offloaded computation amount is
predetermined by careful application profiling as in [6][7].

We assume the servers are heterogeneous and they are operating
at different speeds in the range of [2.0GHz, 3.0GHz]. We adopt
the server power model from [15], which is based on Intel Xeon
processors. According to this model, server power is a linear
function against the CPU’s frequency at full utilization. It is
200W at 2.0GHz and 240W at 3.0GHz. These data are the full
system power including the static power. Based on the data
provided in [16], we assume the static power of our server is
100W when it is in idle state. Reference [10] shows that at a given
operating frequency, server power is a linear function against the
VM system utilization ߚ. We set ߚ ൌ in our experiments for ߙ
simplicity. Overall, we assume the server power is a linear
function against both operating frequency and utilization. This is
also confirmed by [17]. At 100% system utilization, the server
consumes 100W to 140W more power than in idle state.

For the delay model, we assume all servers provide ܯ times
speedup over the mobile devices [5] when running at 2.0GHz.
When running at speed ݏ, its speedup ratio is 2/ܯݏ, i.e. ݃൫ݏ൯ ൌ
2/ሺݏܯሻ. If there are ܰ mobile devices offloading to the server,
we assume the slowdown factor is ݄ሺܰሻ ൌ ܰఊ, ߛ accounts ߛ ,1
for the context switching overhead [11]. If a mobile device ݅
offloads an amount of 10 seconds computation on a server with
speed ݏ and shared by ܰ mobile devices, device ݅ will wait for
10 ൈ ሺ2/ܯݏሻ ൈ ܰఊ time to get results. In our experiment, ߛ is set
to 1.05. Please note that our optimization algorithm does not rely
on any specific power or delay models.

5.1 Results Analysis
In the first set of experiments, we compare our policy with a
policy which randomly assigns the mobile devices to cloud
servers. We call this policy Random. The proposed policy that
minimizes the overall energy is denoted as Nash-overall. We set
10 servers and 60 mobile devices in the MCC system. The results
are from the average of 10 runs.

Table 1 Comparison between Nash-overall and Random
Mobile weight (a) Nash overall (J) Random (J) Improvement (%)

1 3558.26 9319.07 61.83%
1.5 5695.91 9319.07 38.92%
2 6007.31 9319.07 35.55%

2.5 6637.01 9319.07 28.79%
Table 1 shows the energy comparison between Nash-overall
policy and Random policy. We vary the mobile weight, i.e. ܽ in
equation (3) from 1 to 2.5. As the ܽ goes bigger, the Nash-overall
algorithm tries to complete more offloaded computation on the
server side. The random policy is not affected by the weight. As

283

shown in this table, our Nash-overall policy could achieve large
energy savings compare to the Random policy. This is because
our policy tries to reduce the static energy consumption of the
servers by conservatively waking them up and consolidating the
offloaded computation to a small number of energy efficient
servers, especially when the weight is small. On the other hand,
when is big, the first component in equation (3) becomes
dominant. Our policy tries to reduce the energy on mobile devices
and turn on more servers to accommodate the offloaded
computation. Therefore, the static energy increases which causes
higher total energy consumption.

This trend can be seen in Figure 1, which shows the energy
components of each policy. The blue bar represents the dynamic
energy when servers are running the offloaded computation and
the red bars represent the static energy when servers. Because the
Random policy will blindly turn on servers, it incurs most static
energy. However, this behavior is beneficial for mobile devices
because mobile devices can be uniformly distributed among all
the servers, and each server is less congested. Servers could
complete more offloaded computation under mobile devices’
performance constraints. Therefore, the Random policy results the
minimum mobile devices energy consumption among all five
groups. For our policy, when weight is small, mobile device
energy is dominant, when is big, the server static energy is
dominant. As shown, when , mobile devices’ energy is
same as the Random policy. Further increasing does not reduce
the mobile devices’ energy anymore because all offloaded
computation has been completed by the servers. In this case, we
still achieve 28.79% total energy savings compare to Random
policy, because each mobile device is aware of server static
energy and will not turn on unnecessary servers. It is the unique
feature of our algorithm to get energy tradeoff between mobile
devices and cloud servers.

Figure 1 Energy components of Nash-overall and Random
policy

Table 2 Comparison between Nash-overall and Greedy
Mobile weight (a) Nash overall (J) Greedy (J) Improvement (%)

1 3659.28 6703.22 45.42%
1.5 5779.22 6703.22 13.80%
2 6153.47 6703.22 8.18%

2.5 6575.44 6703.22 1.90%
In the second set of experiments, we compare Nash-overall policy
with a greedy policy which tries to reduce mobile devices energy.
For a mobile device, this greedy policy first selects those servers
which could mostly satisfy its offload computation within the
performance constraint. Among these servers, the greedy policy
then selects the server which could minimize its total energy.
Table 2 shows the energy comparison between Nash-overall and
Greedy policy as the weight gradually increases. This table
shows similar trend as in Table 1, because the greedy policy is
also relatively aggressive in turning on servers. When is small,
the total energy reduction is most significant. When increase to
2.5, the reduction in total energy decrease from 45.42% to 1.9%,
because the Nash-overall also become more aggressive in turning
on new server and incurs larger server static energy. On the other

hand, the energy consumption differences on mobile devices
between these two policies decrease from 43.75% to only 1.64%.

6. CONCLUSIONS
In this paper, we propose a game-theoretic approach to optimize
the energy consumption of the MCC systems. We formulate the
mobile devices and cloud servers energy minimization problem as
a congestion game. We prove that the Nash equilibrium always
exists in this congestion game, and propose an efficient algorithm
that could achieve the Nash equilibrium in polynomial time.
Experimental results show that our approach is able to reduce the
total energy compare to a random approach and an approach
which only tries to reduce mobile devices energy.

7. REFERENCES
[1] Y. H. Lu, Qinru Qiu, A. R. Butt and K. W. Cameron, “End-to-End

Energy Management,” in IEEE Computer, 44 (11), November 2011.

[2] M. Osborne and A. Rubinstein, “A Course in Game Theory”
Cambrisdge, MA: MIT, 1994.

[3] H. Dinh, C. Lee, D. Niyato and Ping Wang, “A Survey of Mobile
Cloud Computing: Architecture, Applications, and Approaches”, in
Wireless Commu. and Mobile Comput., 11(11), Oct. 2011.

[4] http://aws.amazon.com/s3/

[5] K. Kumar and Y. Lu, “Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?” in IEEE Computer, vol.
43(4), Apr. 2010.

[6] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R.
Chandra and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in Proc. of international conference on Mobile
systems, applications, and services, 2010.

[7] B. G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“CloneCloud: elastic execution between mobile device and cloud,”
in Proc. of conf. on Computer systems (EuroSys), Apr. 2011.

[8] I. Milchtaich, “Congestion games with player-specificpayoff
functions,” in Games and Economic Behavior,13(1):111–124, 1996.

[9] L. Zhang , B. Tiwana, Z. Qian , Z. Wang , R. Dick , Z. Mao and L.
Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Proc.
of Inter. Conf. on HW/SW codesign and system synthesis, Oct. 2010.

[10] M. Pedram and I. Hwang, “Power and Performance Modeling in a
Virtualized Server System,” in Proc. of International Conference on
Parallel Processing Workshops (ICPPW), Sep. 2010.

[11] T. Enokido, A. Aikebaier and M. Takizawa, “A Model for Reducing
Power Consumption in Peer-to-Peer Systems,” in IEEE System
Journal, vol. 4, issue 2, pp. 221-229, Jun. 2010.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel and S. Sengupta. “VL2: a scalable and flexible
data center network,” in Proc. of the ACM SIGCOMM, 2009.

[13] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang,and S.
Wright. Power Awareness in Network Design andRouting. In
INFOCOM, pages 457 - 465, 2008.

[14] G. Wei, A. Vasilakos, Y. Zheng and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,” in
Journal of Supercomput. 54(2), pp 252-269, Nov. 2010.

[15] A. Gandhi, M. Harchol-Balter, R. Das and C. Lefurgy. “Optimal
power allocation in server farms,” in Proc. of intern. joint conf. on
measurement and modeling of computer systems, pp157-168, 2009.

[16] Intel® Xeon® Processor 5600 Series Product Brief:
http://www.intel.com/content/www/us/en/processors/xeon/xe
on-5600-brief.html

[17] Z. Wang, X. Zhu, C. McCarthy, P. Ranganathan and V. Talwar,
“Feedback Control Algorithms for Power Management of Servers,”
in Proc. Intern. Workshop on Feedback Control Implementation and
Design in Computing Systems and Networks, Jun. 2008.

0

2000

4000

6000

8000

a=1 a=1.5 a=2.0 a=2.5 Random

En
er
gy
(J
)

server dynamic

server static

mobile

284

