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ABSTRACT 
Cloud computing and virtualization techniques provide mobile 
devices with battery energy saving opportunities by allowing them 
to offload computation and execute code remotely. When the 
cloud infrastructure consists of heterogeneous servers, the 
mapping between mobile devices and servers plays an important 
role in determining the energy dissipation on both sides. From an 
environmental impact perspective, any energy dissipation related 
to computation should be counted. To achieve energy 
sustainability, it is important reducing the overall energy 
consumption of the mobile systems and the cloud infrastructure. 
Furthermore, reducing cloud energy consumption can potentially 
reduce the cost of mobile cloud users because the pricing model 
of cloud services is pay-by-usage. In this paper, we propose a 
game-theoretic approach to optimize the overall energy in a 
mobile cloud computing system. We formulate the energy 
minimization problem as a congestion game, where each mobile 
device is a player and his strategy is to select one of the servers to 
offload the computation while minimizing the overall energy 
consumption. We prove that the Nash equilibrium always exists in 
this game and propose an efficient algorithm that could achieve 
the Nash equilibrium in polynomial time. Experimental results 
show that our approach is able to reduce the total energy of 
mobile devices and servers compared to a random approach and 
an approach which only tries to reduce mobile devices alone. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Reliability, availability, 
andserviceability 

General Terms 
Algorithms, Management, Performance  

Keywords 
Congestion Game, game theory, mobile cloud computing, power 
management, virtualization 

1. INTRODUCTION 
The emerging paradigm of mobile cloud computing (MCC) 
moves the processing, memory and storage requirements all 
together from the resource limited mobile devices to the resource 
unlimited cloud. MCC provides many advantages to the mobile 
devices [3]. It extends the storage capacity for mobile users [4] 

and also reduces the risk of data and application lost on mobile 
device by backing up users data on several computers in the 
cloud. Security services such as virus scanning and malicious 
code detection provided by the MCC improves the safety and 
reliability of the mobile device. 

One very important benefit brought by MCC for mobile users is 
the extended battery life time. The MCC helps the mobile devices 
to run the computation intensive applications, which normally 
consume a large amount of battery energy. This is enabled by 
virtualization technique which allows the cloud infrastructure to 
run arbitrary mobile applications from the mobile users or service 
subscribers. We refer to this technique as computation offloading. 
Reference [5] presents a high level analysis on the conditions that 
computation offloading could save the energy for mobile phones. 
According to their results, an application with large amount of 
computation but very limited data communication could benefit 
most from computation offloading. The authors in [6] propose an 
architecture called MAUI to dynamically control the computation 
offloading for .NET applications at runtime. MAUI utilizes some 
.NET features to partition and profile the applications and 
formulate the offloading problem as a linear programming (LP) 
problem. The authors in [7] propose a similar architecture for 
Android applications. 

Although moving the computation energy away from the mobile 
devices and into the cloud relieves the pressure on the devices’ 
batteries, it will increase the energy consumption of cloud 
infrastructure such as the servers in the data center. From 
environmental impact and carbon emission control perspective, 
energy is task-centric instead of system-centric [1]. Any energy 
dissipation related to computation should be counted and carefully 
managed. From cost reduction point of view, reducing energy 
consumption of cloud can potentially reduce the cost of mobile 
users, because current pricing model of cloud services is pay-by-
usage and energy consumption is a major factor in the operating 
cost of cloud services.  

In this paper, we consider the problem of energy minimization for 
a mobile cloud computing system under computation offloading. 
The MCC system consists of a group of mobile devices and a set 
of servers in the data center. Each mobile device runs an 
application and tries to upload a portion of its application to one 
of the servers. The offloading strategy involves two decisions, (1) 
the amount of computation to be offloaded, and (2) the destination 
of offloading. A mobile device selects offloading strategy not only 
to minimize its own energy dissipation, but also to minimize its 
energy usage in the cloud. The decision of one mobile device 
changes the status of the cloud infrastructure, for example one 
particular server will become more congested or wakeup from 
sleep mode. Since each mobile device chooses its offloading 
strategy to minimize the overall energy, a status change in the 
cloud infrastructure will trigger some mobile devices to adjust 
their offloading strategies. This, consequently, will impose more 
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changes in the cloud and leads other mobile devices to adjust their 
offloading strategies. From the above analysis an interesting 
question is raised, if all mobile devices aim at minimizing the end-
to-end overall energy and adjust their offloading strategies 
independently, will the system ever become stable?  

We formulate the MCC system energy minimization problem as a 
class of games called congestion games. In this model, each 
mobile device is a player and his strategy is to select one of the 
available servers to offload its computation. All players compete 
for the same set of resources and their goal is to minimize the 
combined mobile and server energy dissipated to provide service 
for its own application. We prove that the Nash equilibrium 
always exists in this congestion game formulation. Nash 
equilibrium is the optimum policy in the sense that no player can 
find better policy if he deviates from current policy unilaterally 
[2]. We propose an efficient algorithm that achieves the Nash 
equilibrium in polynomial time.  

There have been some works in the literature using game theory 
to solve general resource allocation problem in cloud computing 
environment, for example [14]. However, this work only 
considers the cost in cloud side and ignores the cost on mobile 
devices. Furthermore, it defines cost as a simple linear function of 
workload, which is not a suitable model of energy dissipation if 
we want to capture some nonlinearity and discontinuity 
introduced by server power management.  

The uniqueness of our work is summarized as the following:  

 This is the first work that aims to reduce the overall energy 
of a mobile cloud computing system under computation off-
loading context. Although computation offloading techniques 
have been investigated in some previous work [5][6][7], their 
goals are only to reduce the energy consumed by the mobile 
devices and extend their battery lives, without considering 
the energy consequence of offloading on the cloud 
computing infrastructure. 

 We proposed a game theoretic formulation of the problem. 
We also proved that the Nash equilibrium of this problem 
always exists and it could be achieved in polynomial time if 
each mobile device selects its offloading strategy based on 
our proposed algorithm. The important implication of Nash 
equilibrium is that our algorithm will eventually converge to 
a stable state, where every mobile device finds its current 
optimal strategy and has no incentive to leave. 

 We demonstrate the necessity of joint optimizing the energy 
of the mobile devices and the cloud infrastructure. Compared 
to the techniques that only aim to reduce the mobile device 
energy, our technique is able to reduce the overall energy by 
45.42%. Our approach is also able to reduce more than 
61.83% energy compared to a random offloading approach. 

The rest of the paper is organized as follows: We discuss our 
system model and introduce the energy minimization problem in 
Section 2. We introduce the congestion game model and discuss 
its application in detail in Section 3. We present the algorithm to 
achieve the equilibrium in Section 4. Experimental results are 
reported in Section 5. Finally, we conclude the paper in Section 6. 

2. SYSTEM MODEL 
2.1 MCC System Architecture 
On one side of the MCC architecture, mobile devices like smart 
phones, tablet computers are connected to the cloud through Wi-
Fi or 3G networks. On the other side, a group of servers residing 

in a data center constitute a large distributed computing system 
which can provide the cloud users with different kinds of services, 
including infrastructure as a service (IaaS), platform as a service 
(PaaS) or software as a service (SaaS) [3]. In this paper, we focus 
on the IaaS, in which the servers in the cloud provide the mobile 
devices with hardware resources, like CPUs and memories for 
them to offload computation for battery energy saving. 

At a specific execution point of the mobile application, the 
migration manager decides to move a portion of the application to 
the cloud (for example, an individual thread). The manager will 
send the migration request as well as necessary data and program 
states to the remote server. Upon receiving the migration request, 
the application data and program states, the server creates a 
dedicated virtual machine (VM) for the mobile device, loads the 
application executable and starts execution. In the mean time, the 
mobile device continues to run other threads or waits for the 
results return from the remote server. At the end, the migrated 
portion returns back to the mobile device, and merges back to the 
original process. 

Mobile devices generally can be benefited from code offloading 
and remote execution because of two reasons. Firstly, the plenty 
of hardware resources in the cloud can help mobile devices to 
overcome resource limitation and run some resource intensive 
applications. Secondly, by executing code remotely, the mobile 
devices could avoid spending a long time in high power state, and 
either stay in idle state or go into low power sleep state, thus save 
the energy and extend the battery life. However, as pointed out in 
[5], not all kinds of mobile applications could save energy through 
code offloading. For example, an application with very high data 
communication volume will spend much more extra energy in 
transferring the data between local memory and remote servers 
and not benefit from computation offloading for energy saving. 
Deciding which portion of the application needs to be offloaded is 
non-trivial. It usually needs detailed program profiling 
information and a fast solver for integer linear programming 
problems. In this paper, we assume that each device has made 
their own decisions about which part of the mobile applications 
should be offloaded to the cloud. We focus on how a mobile 
device selects a server from a group of heterogeneous servers in 
the data center for computation offloading. 

2.2 MCC Energy Minimization Problem 
We assume that there are ݊ mobile devices and ݎ cloud servers in 
the MCC system. The ݅th mobile device runs an application ܣ 
with computation workload ܥ (which can be measured by the 
number of clock cycles or execution time). We assume that, based 
on careful application profiling and device characterization, the 
amount of computation to be offloaded to the dedicated virtual 
machine ܸܯ is pre-determined and is denoted as ܱ. The amount 
of computation left for local execution is denoted as ܮ, ܮ  ܱ ൌ
 . We also assume that the mobile device has a performanceܥ
requirement on ܸܯ, i.e. the ܱ amount computation must be 
finished within deadline ܦ, otherwise offloading computation to 
server will not bring notable performance benefit. If this 
performance constraint cannot be satisfied, the mobile device will 
either reduce the amount of offloading, or move the VM to a 
faster server or even request to wake up a new server. 

We assume the power consumption of the mobile device ݅ during 
the execution of the application ܣ is determined by an application 
specific factor ߙ, which is a high level parameter reflecting its 
overall power intensity, i.e. ܲ௧௩, ൌ  ܲ, where ܲ is theߙ
normalized maximum mobile device power consumption. 
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Therefore, the energy consumed by running the local portion of 
the application ܣ is ܧ, ൌ ܲ௧௩,ܮ.   

We assume that the servers in the data center are also 
heterogeneous machines. They have different processing speeds 
and power consumption, so they could accommodate different 
service requests (delay sensitive or power sensitive) from the 
mobile clients. Here we assume server ݆ is operating at speed ݏ 
and its power consumption is ݂ሺݏሻ, e.g. ݂൫ݏ൯ ൌ ݏ

ଷ. Please note 
that our algorithm does not rely on any properties of ݂. We 
assume different offloaded applications have different power even 
running on the same server. Similar to the factor ߙ on the mobile 
device, we assign each application a parameter ߚ. So the power 
consumption of application ܣ running on server ݆ will be ߚ݂ሺݏሻ. 
And the energy consumption for the jth server to run the offloaded 
code from device ݅ will be calculated as ܧ௦௩,

 ൌ ሻݏ݂ሺߚ ܱ. 

If only one application ܣ running on server ݆, we assume that the 
waiting time experienced by the mobile device ݅ is ݃ሺݏሻ ܱ, where 
݃ሺݏሻ is a non-increasing function of speed ݏ. If there are ݊ 
applications running on the server j, we assume the waiting time 
experienced by the mobile device ݅ is ݃൫ݏ൯ ܱ ݄ሺ ݊ሻ, where 

݄ሺ ݊ሻ is a non-decreasing function of ݊. For example, if each 
VM has equal time slice on the server, without considering the 
overhead of context switch and cache miss, ݄ሺ ݊ሻ can be 
simplified to ݊. As a server gets more congested, ܣ running on it 
will experience longer delay and might violate the performance 
constraint ܦ. The mobile device has to reduce the computation 
amount ܱ to satisfy ܦ or selects another server which is less 
congested. [12] shows that, with proper configuration, network 
latency in a data center is independent of network topology and 
server’s location. Thus we ignore the network latency in this 
problem formulation. Neither do we consider the communication 
energy on the routers and switches because they are usually small 
comparing to the energy consumed on mobile devices and servers 
[13], and they are not affected by the mapping of the computation. 

The overall energy related to the execution of application ܣ 
consists of the energy dissipation on both the server and mobile 
device. It can be calculated as the following:  

,௧௧ሺ݅ܧ                     ݆ሻ ൌ ,ܧ  ௦௩,ܧ
                             (1) 

݆ is the index of the server to which the application ܣ is mapped. 

We also assume servers follow time out power management 
policies, i.e. they will switch to low power mode after a certain 
period of idle. Let ܶdenote the time out threshold and ௦ܲ௧௧, 
denote the static power server ݆ consumes when it is idle. Then the 
static energy consumption of server ݆ during the idle period is 

݆,ܿ݅ݐܽݐݏܧ ൌ ݆,ܿ݅ݐܽݐݏܲ ൈ ܶ. The total energy consumed by the MCC 
system is ܧெ ൌ ∑ ௧௧ሺ݅ሻܧ

ୀଵ  ∑ ௦௧௧,ܧ

ୀଵ .  

The MCC system energy minimization problem can be stated as 
the following resource allocation problem:  

Given ݊ mobile devices and r servers, for each device, find a 
server for computation offloading, such that the overall MCC 
system energy ܧெ is minimized while the performance 
constraint is satisfied. 

This problem can be formulated as an integer linear programming 
(ILP). When the number of mobile devices and cloud servers gets 
large, which is usually the case in reality, solving such ILP 
becomes exponentially difficult. In the next sections, we introduce 
a game theoretic formulation which solves this problem using a 
distributive approach, where each mobile device chooses its own 

offloading strategy, including the amount of offloading and the 
destination of offloading in order to minimize its overall energy.  

3. GAME THEORETIC FORMULATION 
3.1 Congestion Game Model 
Congestion games [8] model a group of players sharing a set of 
resources. In a congestion game, each player chooses one or a 
subset of resources to maximize his own utility or minimize his 
own cost. The utility/cost obtained by the player is the sum of the 
utilities he received from each resource he chooses. The 
utility/cost received from a resource depends on how many 
players sharing the same resource and it is generally a non-
increasing/non-decreasing function of the number of players 
sharing it. For example, the more senders in a network share the 
same link to send packets, the less throughput and longer waiting 
time they will experience. In this paper, we consider a simple 
congestion game in which each player only selects one resource, 
because each mobile device is only allowed to offload its 
computation to one server. 

We introduce the following notation to define congestion game.  
 ܰ ൌ ሼ1, … , ݊ሽ is a finite set of ݊ players 
 ܴ ൌ ሼ1, … ,  resources ݎ ሽ is a finite set ofݎ
 ߑ is the set of strategies for player ݅, which is a subset of 

resource set ܴ. We use ߑ ൌ ∏ ߑ

  to denote the joint strategy 

space and ߪ ൌ ሺߪଵ, ,ଶߪ … ,  ሻ a strategy tuple in which theߪ
player ݅ plays strategy ߪ, i.e. it chooses resource ߪ א  .ߑ
Please note ߪ is the strategy vector, and ߪ with subscript ݅ is 
the strategy of player ݅. Sometime we also use ܬ to denote a 
strategy in our algorithms. 

 ݊ is the number of players who selects strategy ݆, and for a 
strategy tuple ߪ, ݊ ൌ ∑ ߪሺܫ ൌ ݆ሻ

ୀଵ  is the indicator ܫ ,
function. We call ሺ݊ଵ, ݊ଶ, … , ݊ሻ a congestion vector. 

 ܵ  is the cost function when player ݅ selects resource ݆. ܵ  is 

a monotonically non-decreasing function of ݊, i.e. ܵ൫ ݊൯ 

ܵ൫ ݊  1൯ for any positive integer ݊.  

For some specific congestion games, there exists Nash 
equilibrium. Nash equilibrium is a general term in game theory 
and is defined as a state that no player can benefit by changing its 
strategy while the other players keep their strategies unchanged 
[1]. For a congestion game defined as above, a strategy tuple  ߪ 
leads to Nash equilibrium if and only if 

ܵఙ
൫݊ఙ

൯   ܵ൫ ݊  1൯, 1  ݅  ݊, 1  ݆   ݎ
 ݅  is also said to be the best reply or best response for playerߪ
against strategy tuple ߪ. In other words, a strategy vector ߪ is at 
Nash equilibrium, if for any user ݅, moving away from resource ߪ 
to choose resource ݆ by itself will lead to higher cost.  

3.2 Application to MCC Energy Minimization 
Problem 
To apply the congestion game model to our MCC system energy 
minimization problem, we define each mobile device and the 
dedicated VM created for it to be a player and each server to be a 
resource. We use mobile device, VM, player interchangeably in 
the paper. For each player, the strategy set ߑ is equal to the 
resource set ܴ, and if mobile device ݅ selects server ݆, then ߪ ൌ ݆. 

One way for the player (i.e. the mobile device) to define its cost 
function is to use the total energy consumed locally. By reducing 
his own energy, the player can extend its battery life. However, if 
every player wants to save his own local energy, he will select 
faster servers to maximize the offloaded computation. This makes 
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the faster servers more congested than the others and as a result, 
there might be performance violation and the mobile device have 
to either reduce the offload amount or move to another server. 
Furthermore, our objective is not to minimize the mobile devices’ 
energy but the overall system energy. We would like each player 
be less selfish and take some “social responsibilities”. Therefore, 
we define the first component of cost function as the sum of 
weighted energy associated with the execution of application ܣ at 
both mobile device side and server side, as show in equation (2). 

                                   ܽܧ,  ܾܧ௦௩,
                               (2) 

By this definition, each player does not only try to minimize its 
own energy but also the energy that he added on the servers as 
well. The weight coefficients ܽ and ܾ in this equation 
differentiate the quality of the energy used by a mobile device and 
a server. The former, due to the overhead of battery charge and 
discharge and also because of the limited battery capacity, is 
usually considered higher quality, therefore we have ܽ  ܾ. 
These weight coefficients do not have to be the same for all 
mobile devices. For example, when a mobile device’s battery is 
full, it could be more altruistic and reduce the value of ܽ to 
offload less computation; when its battery drops under a critical 
level, it could increase the weight on ܧ, and offload more 
computation. 

Eq. (2) is a non-decreasing function of ݊. When ݊ increases, 
server ݆ becomes more congested. As a result, less offloaded 
computation can be completed within the performance constraint 
and more may have to be done on the mobile device locally, thus 
gives an increase in ܧ, and decrease in ܧ௦௩,

 . Because 
servers usually have better energy efficiency than the mobile 
devices due to their multi-core architecture and powerful co-
processors such as GPUs and DSPs, the increase in ܧ, is 
usually greater than the decrease in ܧ,. Also because 
coefficient ܽ is greater than or equal to coefficient ܾ , Eq. (2) is a 
non-decreasing function of ݊.  

In order to consider each server’s static energy penalty during the 
time-out period, we add the second component to each player’s 
cost function. It is proportional to the current total static energy, 
i.e. ݓሺ∑ ௦௧௧,ܧ


ୀଵ ሻ, ݓ is a constant weight. Therefore the 

overall cost function for a player is as following: 

           ܵ ൌ ܽܧ,  ܾܧ௦௩,
  ∑ሺݓ ௦௧௧,ܧ


ୀଵ ሻ          (3) 

Because the static penalty does not depend on the congestion of 
each server, the overall utility is still a non-decreasing function of 

݊. The cost function meets the requirement of a congestion game.  

4. NASH EQUILIBRIUM OF THE ENERGY 
MINIMIZATION CONGESTION GAME 
In this section, we present the algorithms which find the Nash 
equilibrium for the energy minimization problem defined above. 
The algorithms themselves provide a constructive proof for the 
existence of the Nash equilibrium. Please note that the actual 
algorithm to achieve the equilibrium could run by the dedicated 
VM to relieve the computation burden on mobile devices and 
reduce communication between mobile devices and the cloud. 

Our algorithm adopts an incremental optimization scheme. At 
each step, only one player is allowed to change its current strategy 
and choose its best response against other players’ current 
strategies. Consider the initial scenario that the first ݊ െ 1 players 
have achieved equilibrium and their strategy vector is ߪሺ0ሻ ൌ
ሺߪଵሺ0ሻ, ,ଶሺ0ሻߪ … ,  ିଵሺ0ሻሻ. We are interested to find out, after theߪ
݊th player enters, how will the system regain the equilibrium.  

Let ܴ denote the set of all servers and ܵ denote the set of 
servers which have already been turned on. Let ܬሺ0ሻ ൌ  ሺ0ሻߪ
denote the first strategy chosen by player n against the initial 
strategy vector ߪሺ0ሻ of the rest of the system. We consider the 
following two scenarios. 

Scenario 1: ܬሺ0ሻ ൌ ሺ0ሻߪ א ܵ. Then the only players affected 
by player ݊’s choice are those players whose current strategy is 
also ܬሺ0ሻ in ߪሺ0ሻ, because player ݊ makes server ߪሺ0ሻ more 
congested. For other players, their current strategies remain to be 
their best strategies. If every player in server ܬሺ0ሻ finds ܬሺ0ሻ 
remaining to be its best choice, then Nash equilibrium is achieved. 
Otherwise, there will be a player  on ܬሺ0ሻ whose best strategy 
deviates from its current strategy. Assume this player moves from 
 ሺ1ሻ at step 1. We let the process continue as shown inܬ ሺ0ሻ toܬ
algorithm1. The algorithm returns when all players are in their 
best strategies or a new server is turned on. Please note that in the 
algorithm, ܬሺ݅ሻ represents a strategy that a player chooses at step ݅. 
It can be proved that this process will stop in finite step. The claim 
is given in Lemma1. We skip the proof due to space limit. 

Algorithm1: type1_ move (࣌ሺሻ, ࣌ሺሻ, ࡾ) 
1. ݅ ൌ ሺ0ሻܬ ;0 ൌ   ;ሺ0ሻߪ
2. while true 
         .3 ൌ  ;݈݈ݑ݊
4.        for each player  with strategy ߪሺ݅ሻ ൌ  ሺ݅ሻܬ
5.              if ܬሺ݅ሻ is not player ’s best reply against ߪሺ݅ሻ in ܴ 
ሺ݅ܬ                     .6  1ሻ ൌ player ’s best reply against ߪሺ݅ሻ in ܴ 
ሺ݅ߪ                     .7  1ሻ ൌ ߪሺ݅ሻ, ݍ ്  ,
ሺ݅ߪ                     .8  1ሻ ൌ ሺ݅ܬ  1ሻ; 
9.                     break; 
10.             end 
11.       end 
12.         if () return ; 
13.         else if (ܬሺ݅  1ሻ ב ܵ)  
14.               turn on ܬሺ݅  1ሻ; 
15.               return ܬሺ݅  1ሻ; 
16.         end 
17.         ݅++; 
18. end
Lemma1: TYPE1_MOVE will stop in at most ݊ steps, where ݊ is 
the number of players. Furthermore, if type1_move returns at line 
12, then Nash equilibrium is achieved. 

We define a limited version of type1_move called 
type1_move_limited. The limited version restricts the move in a 
given subset of servers denoted as ܵ௧. We set the third input of 
type1_move algorithm to ܵ௧ instead of using ܴ in the limited 
version.  

Algorithm2: type2_ move (ࡶሺሻ,  (ࡾ ,ሺሻ࣌
1. ݅ ൌ 1; 
2. while true 
        .3 ൌ  ;݈݈ݑ݊
4.        for each player  with strategy ߪሺ݅ሻ ്  ሺ݅ሻܬ 
5.              if ܬሺ݅ሻ is player ’s best reply against ߪሺ݅ሻ in ܴ 
ሺ݅ߪ                    .6  1ሻ ൌ ߪሺ݅ሻ, ݍ ്   ,
ሺ݅ߪ                    .7  1ሻ ൌ ሺ݅ܬ ;ሺ݅ሻܬ  1ሻ ൌ  ;ሺ݅ሻߪ
8.                     break; 
9.              end 
10.       end 
11.        if () 
12.            break; 
13.        end 
14.        ݅++; 
15.end
Scenario 2: If ܬሺ0ሻ ൌ ሺ0ሻߪ ב ܵ. Then all players’ strategies 
will be affected by the newly turned on server because of two 
reasons. Firstly, all players’ utilities are increased by the static 
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energy penalty of turning on ܬሺ0ሻ. Secondly, ܬሺ0ሻ is much less 
congested than other servers in ܵ, players could potentially 
offload more computation if they choose ܬሺ0ሻ and achieve energy 
savings (reduce cost function). For each player, if the current 
strategy is its best strategy then the system is still in equilibrium; 
otherwise ܬሺ0ሻ will be its best strategy. Assume player ଵ on 
server ܬሺ1ሻ ൌ  .ሺ0ሻܬ ଵሺ0ሻ finds its current best response to beߪ
Then at step 1, we let player ଵ move from ܬሺ1ሻ to ܬሺ0ሻ, i.e. 
ଵሺ1ሻߪ ൌ  ሺ1ሻ less congestedܬ ଵ’s move will make server .ሺ0ሻߪ
than before. Then there might be a player ଶ on ܬሺ2ሻ ൌ ଶሺ1ሻߪ ്
 ଶ ሺ1ሻ. Then at step 2, we letܬ ሺ1ሻ find its best strategy to beܬ
moves from ܬሺ2ሻ to ܬሺ1ሻ. We let the process continues and 
summarize it in algorithm2. We call it type-2 move. We claim 
type-2 move will stop after finite steps in Lemma2. Again the 
proof is skipped due to space limit. 

Lemma2: TYPE2_MOVE will stop in at most ݊ ڄ   steps, whereݎ
 . is the number of servers which has been turned onݎ

Again, we define a limited version of type2_move called 
type2_move_limited. The limited version restricts the move in a 
given subset of servers denoted as ܵ௧. We set the third input of 
type2_move algorithm to ܵ௧ instead of using ܴ in the limited 
version.  

We now present our algorithm for finding Nash equilibrium for 
the first ݊ player. We again assume the first ݊ െ 1 players have 
achieved equilibrium. Lemma1 shows that if ܬ ൌ  then ,(line 8) 
the equilibrium is achieved. If ܬ ്  from algorithm1 we know ,
that the congestion vector for servers in ܵ does not change after 
type1_move (line 5). Because the cost function (3) is an 
increasing function of the congestion, for each player, either the 
current strategy is its best strategy or newly turned on server ܬ is 
its best strategy. Property 2 in Lemma3 shows that the loop 11 ~ 
15 will repeat at most ݊ iterations. After this loop, property 1 
show that the first ݊ െ 1 players are in their best strategies and 
player ݊ is either in its best strategy or has its best strategy outside 
ܵ. Because there are only ݎ servers in the system, the outer loop 
will repeat at most ݎ times. After the outer loop terminates, all 
players are in their best strategy and Nash equilibrium is achieved. 
We skip the proof of Lemma3 due to space limit. 

Algorithm3: find_equilibrium_for_first_n_players() 
1. while true 
ߪ ;݊ best strategy of player = ܬ       .2 ൌ current strategy vector; 
3.       assign player ݊ to ܬ; 
4.       if (ܬ א ܵ) 
,ܬ)type1_move = ܬ              .5  ;(ܴ ,ߪ
6.       end 
7.       if ( == ܬ) 
8.             return;  // reach the equilibrium 
9.       end 
10.       ܵ = ܵ   ܬ turned on a new server //  ;ܬ
11.       while (, its current strategy is ߪ and its best strategy is ܬ) 
12.             move  from ߪ to ܬ; 
13.             type1_move_limited(ߪ ,ܬ, ܵ); 
14.             type2_move_limited(ߪ, ߪ, ܵ െ  ;(ܬ
15.       end 
16.       if (player ݊ is in its best strategy)  
17.             return;  // reach the equilibrium; 
18.       end 
19. end 
Lemma3: The loop in line 11 ~ 15 have the following properties: 
1. After every iteration, for each of first ݊ െ 1 player , either it 

is in its best strategy or new server ܬ is its best strategy.  
2. The number of players in the server ܬ keeps non-decreasing. 

If a player  leaves ܬ at an iteration, it never comes back to ܬ.  

3. After the loop, for player ݊, either the current strategy is its 
best strategy or its best strategy is not in ܵ. 

5. EXPERIMENTAL RESULTS 
To demonstrate the effectiveness of our approach, we implement 
our Nash equilibrium algorithm in Matlab and carry out the 
experiments on a DELL T3400 workstation. We obtain the power 
model of mobile applications from [9], which is a linear 
combination of the activities on different components, including 
CPU utilization, Wi-Fi module status, the brightness of the LCD 
etc. Because our purpose is not a detailed power analysis for 
mobile devices, we just use one factor ߙ to represent the overall 
activities of the application. We assume the maximum power 
consumption of a mobile device is 2.4W and the actual power of 
the application is ܲ ൌ ߙ ൈ 2.4W . We set the activity factor ߙ 
as a random variable with a uniform distribution in the range 
ሾ0.3, 1.0ሿ. We assume the offloaded computation amount is 
predetermined by careful application profiling as in [6][7]. 

We assume the servers are heterogeneous and they are operating 
at different speeds in the range of [2.0GHz, 3.0GHz]. We adopt 
the server power model from [15], which is based on Intel Xeon 
processors. According to this model, server power is a linear 
function against the CPU’s frequency at full utilization. It is 
200W at 2.0GHz and 240W at 3.0GHz. These data are the full 
system power including the static power. Based on the data 
provided in [16], we assume the static power of our server is 
100W when it is in idle state. Reference [10] shows that at a given 
operating frequency, server power is a linear function against the 
VM system utilization ߚ. We set ߚ ൌ  in our experiments for ߙ
simplicity. Overall, we assume the server power is a linear 
function against both operating frequency and utilization. This is 
also confirmed by [17]. At 100% system utilization, the server 
consumes 100W to 140W more power than in idle state. 

For the delay model, we assume all servers provide ܯ times 
speedup over the mobile devices [5] when running at 2.0GHz. 
When running at speed ݏ, its speedup ratio is 2/ܯݏ, i.e. ݃൫ݏ൯ ൌ
2/ሺݏܯሻ. If there are ܰ mobile devices offloading to the server, 
we assume the slowdown factor is ݄ሺܰሻ ൌ ܰఊ, ߛ   accounts ߛ ,1
for the context switching overhead [11]. If a mobile device ݅ 
offloads an amount of 10 seconds computation on a server with 
speed ݏ and shared by ܰ mobile devices, device ݅ will wait for 
10 ൈ ሺ2/ܯݏሻ ൈ ܰఊ time to get results. In our experiment, ߛ is set 
to 1.05. Please note that our optimization algorithm does not rely 
on any specific power or delay models. 

5.1 Results Analysis 
In the first set of experiments, we compare our policy with a 
policy which randomly assigns the mobile devices to cloud 
servers. We call this policy Random. The proposed policy that 
minimizes the overall energy is denoted as Nash-overall. We set 
10 servers and 60 mobile devices in the MCC system. The results 
are from the average of 10 runs.  

Table 1 Comparison between Nash-overall and Random 
Mobile weight (a) Nash overall (J) Random (J) Improvement (%)

1 3558.26 9319.07 61.83% 
1.5 5695.91 9319.07 38.92% 
2 6007.31 9319.07 35.55% 

2.5 6637.01 9319.07 28.79% 
Table 1 shows the energy comparison between Nash-overall 
policy and Random policy. We vary the mobile weight, i.e. ܽ in 
equation (3) from 1 to 2.5. As the ܽ goes bigger, the Nash-overall 
algorithm tries to complete more offloaded computation on the 
server side. The random policy is not affected by the weight. As 
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shown in this table, our Nash-overall policy could achieve large 
energy savings compare to the Random policy. This is because 
our policy tries to reduce the static energy consumption of the 
servers by conservatively waking them up and consolidating the 
offloaded computation to a small number of energy efficient 
servers, especially when the weight  is small. On the other hand, 
when  is big, the first component in equation (3) becomes 
dominant. Our policy tries to reduce the energy on mobile devices 
and turn on more servers to accommodate the offloaded 
computation. Therefore, the static energy increases which causes 
higher total energy consumption. 

This trend can be seen in Figure 1, which shows the energy 
components of each policy. The blue bar represents the dynamic 
energy when servers are running the offloaded computation and 
the red bars represent the static energy when servers. Because the 
Random policy will blindly turn on servers, it incurs most static 
energy. However, this behavior is beneficial for mobile devices 
because mobile devices can be uniformly distributed among all 
the servers, and each server is less congested. Servers could 
complete more offloaded computation under mobile devices’ 
performance constraints. Therefore, the Random policy results the 
minimum mobile devices energy consumption among all five 
groups. For our policy, when weight  is small, mobile device 
energy is dominant, when  is big, the server static energy is 
dominant. As shown, when , mobile devices’ energy is 
same as the Random policy. Further increasing  does not reduce 
the mobile devices’ energy anymore because all offloaded 
computation has been completed by the servers. In this case, we 
still achieve 28.79% total energy savings compare to Random 
policy, because each mobile device is aware of server static 
energy and will not turn on unnecessary servers. It is the unique 
feature of our algorithm to get energy tradeoff between mobile 
devices and cloud servers.  

 
Figure 1 Energy components of Nash-overall and Random 
policy 

Table 2 Comparison between Nash-overall and Greedy 
Mobile weight (a) Nash overall (J) Greedy (J) Improvement (%)

1 3659.28 6703.22 45.42% 
1.5 5779.22 6703.22 13.80% 
2 6153.47 6703.22 8.18% 

2.5 6575.44 6703.22 1.90% 
In the second set of experiments, we compare Nash-overall policy 
with a greedy policy which tries to reduce mobile devices energy. 
For a mobile device, this greedy policy first selects those servers 
which could mostly satisfy its offload computation within the 
performance constraint. Among these servers, the greedy policy 
then selects the server which could minimize its total energy. 
Table 2 shows the energy comparison between Nash-overall and 
Greedy policy as the weight  gradually increases. This table 
shows similar trend as in Table 1, because the greedy policy is 
also relatively aggressive in turning on servers. When  is small, 
the total energy reduction is most significant. When  increase to 
2.5, the reduction in total energy decrease from 45.42% to 1.9%, 
because the Nash-overall also become more aggressive in turning 
on new server and incurs larger server static energy. On the other 

hand, the energy consumption differences on mobile devices 
between these two policies decrease from 43.75% to only 1.64%. 

6. CONCLUSIONS 
In this paper, we propose a game-theoretic approach to optimize 
the energy consumption of the MCC systems. We formulate the 
mobile devices and cloud servers energy minimization problem as 
a congestion game. We prove that the Nash equilibrium always 
exists in this congestion game, and propose an efficient algorithm 
that could achieve the Nash equilibrium in polynomial time. 
Experimental results show that our approach is able to reduce the 
total energy compare to a random approach and an approach 
which only tries to reduce mobile devices energy. 
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