
 

 Thermal-Aware Job Allocation and Scheduling for Three 
Dimensional Chip Multiprocessor 

 
Abstract - In this paper, we propose a thermal-aware job 
allocation and scheduling algorithm for three-dimensional 
(3D) chip multiprocessor (CMP). The proposed algorithm 
assigns hot jobs to the cores close to the heat sink and cool 
jobs to the cores far from the heat sink, subject to thermal 
constraints. The direct effect of the proposed algorithm on a 
3D-CMP system is that, the heat from hot jobs is removed 
off the chip faster than temperature-aware methods. 
Therefore we are able to keep the chip cooler and in better 
thermal condition. Experimental results show that, 
comparing to the temperature-aware method, our algorithm 
achieves: 1) less hot spots; 2) better performance; 3) 
smaller temporal temperature variation; 4) lower peak 
temperature. The proposed algorithm reduces hot spots by 
more than 95% when workload contains cool jobs; and by 
36% when workload does not contain cool jobs. It also 
boosts the system performance by 5% on average under 
various workloads. The temporal temperature variation is 
reduced by 60% and its standard deviation is decreased by 
50%. In addition, the proposed algorithm achieves 1.8oC 
~5oC reduction in peak temperature. 
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I. Introduction 
The design paradigm of processor architecture has been 

recently evolving from uni-core, multi-core to many-core. It 
is reported that up to hundreds of cores will be integrated 
on a chip multi-processor (CMP) in the years to come [1]. 
In order to integrate more functionality and achieve high 
performance, both low communication latency and high 
integration density are critical to the CMP architecture. 
However, the traditional two dimensional (2D) planar 
COMS fabrication process shows poor scalability in 
interconnect/wiring [2] and it faces challenge in 
implementing CMP. Three dimensional (3D) planar CMOS 
fabrication technology is recently proposed as a promising 
approach to solve that problem.  The 3D CMOS 
fabrication technology vertically stacks two or more active 
silicon layers together through inter-die vias, and hence 
obtains high transistor integration density. 3D CMP 
architecture also improves the communication latency 
significantly by reducing the global and semi-global wiring 
length [3-5].  

However, the high transistor density leads to the high 
power density; moreover, the overall power dissipation 

almost scales up linearly with the number of cores. The 
resultant on-chip temperature rise not only decreases 
reliability, and degrades performance, but also 
super-linearly increases packaging & cooling cost [6]. The 
cooling cost increase directly leads to the increase of the 
overall cost because the packaging and cooling cost amount 
to a considerable portion of the total cost of computing 
systems [7]. The elevated on-chip temperature also reduces 
the lifetime and accelerates the permanent mechanical 
failures of the chip [8]. The lifetime of the chip decreases 
by half with a 10~15oC increase of operation temperature 
[8]. The leakage current contributes a significant portion to 
total power consumption beyond 45nm process node [9, 10]; 
large leakage power results in a higher power dissipation 
and higher on-chip temperature. The increased on-chip 
temperature will in turn results in the exponential increase 
of leakage power [11].  The positive feedback between 
leakage current and temperature can easily cause the 
thermal runaway without proper thermal management.  
The high operation temperature also decreases the carrier 
mobility and degrades the performance of the circuit.  

Another issue in 3D chip design is the temperature 
fluctuation across the chip due to disparate heat transfer 
efficiencies at different layers. The large spatial temperature 
fluctuation results in degrading system reliability [12].  
Hence it is important to regulate the on-chip temperature so 
as 1) to keep 3D CMP chip operating at the moderate 
temperature range; 2) to reduce the temperature fluctuation 
across the chip.  

The on-chip temperature is traditionally managed by 
advance packaging and cooling solutions. As the power 
density continues to double every 18 months, such 
solutions for temperature management are becoming 
prohibitively expensive [7]. In the past years researchers 
have been actively exploring alternative techniques to 
control on-chip temperature [13-15]. The majority of those 
techniques are reactive. When the on-chip temperature is 
over some predefined threshold, a proper technique is 
applied to reduce the temperature or to keep the 
temperature below the critical temperature of the chip. Such 
techniques include dynamic power management (DPM), 
dynamic voltage and frequency selection (DVFS), dynamic 
thermal management (DTM), fetching throttling and task 
migrations, etc. Those techniques are designed specifically 
for managing the thermal behavior of 2D chips.   

The ultimate goal of thermal management is to guarantee 
that the operating temperature of the chip is not over its 
critical temperature such that the stability, reliability and 
performance are achieved. 3D integration complicates heat 
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transfer and new thermal management approaches for 3D 
CMP architecture need to be explored. The on-chip 
temperature is inherently controlled by the heat staying on 
the chip.  If the heat could transfer off chip instantly, then 
the on-chip temperature would not go up at all. Similarly, if 
more heat could transfer off chip at a given time interval, 
the on-chip temperature will be lower. From this viewpoint, 
we propose a novel thermal aware job allocation algorithm 
in this paper. The proposed algorithm always assigns 
power-intensive jobs to the core where the heat could be 
removed off chip most quickly subject to the thermal 
constraints.  

Based on the proposed algorithm, power-intensive jobs 
are assigned to the cores sitting right behind the heat sink. 
So the majority of heat transfers to the ambient going 
through a very short heat conduction path. One of the direct 
benefits is that few cores are passively heated up due to the 
heat conduction.  

The highlight of the proposed algorithm can be 
summarized as follows: 
1) Minimize the time of heat staying on the chip and the 

resultant adverse impact. 
2) Avoid detrimentally heating up the cores located on the 

heat conduction path.  
3) Reduce the temporal temperature fluctuation and 

improve the reliability.  
4) Maximize the performance by reducing the thermal 

management event.   
The rest of the paper is organized as follows. Section II 

introduces the related work. The thermal model is presented 
in Section III. Thermal-aware job assignment and 
scheduling algorithm is explained in Section IV. The 
experimental results and summaries are presented in 
Sections V and VI, respectively. 
 

II. Related Work  
The high integration density in 3D CMP complicates the 

thermal modeling and management; and the existing 
thermal management techniques for 2D CMP cannot be 
directly applied to 3D CMP.  Therefore, new approaches 
which focus on 3D CMP thermal management and thermal 
optimization should be explored.   

There are several techniques proposed targeting at design 
stage optimization for 3D chips. A thermal-aware 
floorplanning algorithm is proposed in [16]. Authors in [3] 
further propose an algorithm, which also aims at 
thermal-aware floorplanning, but takes into account the 
interconnect power consumption. A thermal-aware 
placement algorithm is proposed in [17] for 3D chips. 
A “thermal herding” approach is proposed in [18] for 3D 
chip in order to improve the efficiency of heat removal. 
That approach puts the individual function units across the 
multiple active silicon layers. The parts with high switch 
activity are placed on the layer near to the heat sink; vice 
versa. 

A job allocation, scheduling and voltage & frequency 
selection algorithm is proposed in [19]. The goal of that 
algorithm is to reduce the power consumption subject to the 
thermal constraints. Another thermal management 

algorithm for 3D CMP is proposed in [20], where some 
policies based on job migration and DVFS are discussed 
and evaluated.  

Most recently, two temperature aware job assignment 
algorithms are present in [21, 22]. From the viewpoint of 
statistics, Adapt3D approach [21] always assigns the 
upcoming job to the coolest core to achieve thermal balance 
across the chip. It is a temperature-aware scheduling policy 
in essence. Authors in [22] claim that the temperature of 
vertically aligned-cores has very strong correlation. Base on 
that, the vertically aligned cores are wrapped up into super 
cores. Accordingly, tasks are also wrapped into super tasks. 
Then the hottest super job is assigned to the coolest super 
core in order to achieve the thermal balance. In both 
algorithms, however, the efficiency that the core removes 
the heat off the chip is not considered. If the coolest core is 
farthest from the heat sink, the heat of that core is 
transferred off chip most inefficiently. In terms of those two 
policies, the hottest job will be assigned to that coolest core; 
the new hot spots will be easily generated; moreover, the 
heat staying longer on chip will detrimentally heat up 
neighboring cores too.   

As opposite to the above two algorithms, in this paper we 
propose a thermal-aware job allocation algorithm, which 
assigns jobs to cores from where heat is always removed 
off most quickly and efficiently subject to the thermal 
constraints. Since the heat is removed off chip more quickly, 
our algorithm reduces the hot spots, mitigates temporal 
temperature variation, decreases the peak temperature and 
also boosts the system performance, as shown in the 
experimental results. 
 

III. Thermal Model and Assumptions 
In this section, we are going to introduce the thermal 

model of a single core, the thermal model of 3D CMP, and 
the thermal profile of a single job. We start with introducing 
the thermal model of a single core, since it is the simplest 
one. 

 

A. Thermal Model of Single Core 
There exists a duality between the first order electrical 

RC model and the spatial one-dimensional thermal model. 
We take a lumped RC model as the thermal model of a 
single core [23], as shown in Figure 1. The power 
dissipation is equivalent to the current source, and the 
ambient temperature equivalent to voltage source. 

Figure 1 A lumped RC thermal model. 

Assume the ambient temperature is Tamb, and the initial 
temperature of the core is Tinit, the average power 



 

consumption of the core is P at the given time, then we 
have: 
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By solving the above differential equation, we get the core 
temperature at time t  
   T(t) = P⋅R + Tamb – (P⋅R + Tamb – Tinit)e-t/RC              (2) 
where R and C represent the equivalent thermal resistance 
and the equivalent thermal capacitance from the core to the 
ambient, respectively. 
 

B. Thermal Profile of Single Job 
Once a job is in the job queue of the scheduler, we 

assume that parameters of the job such as the worst case 
execution time and the average power dissipation are given. 
Consider a job Ji with average power dissipation Pi and 
worst case execution time wi.  If thermal model of the core 
is given by equation (2); then we can calculate the 
temperature of the core after Ji is executed,  
   RCw

initambiambiii
ieTTRPTRPwT /)()( −−+×−+×=      (3) 

where Tinit is the temperature of the core right before it 
executes Ji.  

The temperature change of the core after the execution of 
job Ji is  
              initiii TwTT −=Δ )(                 (4) 
Plugging equation (2) into equation (3), we have 

       )1)(( / RCw
initambii

ieTTRPT −−−+×=Δ      (5) 
Assume the processor executes an infinite sequence of 

the same job Ji, then we have 
RC
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The above equation is reduced to  
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where Ti,steady is the steady state temperature of job Ji. 
Observing equation (7), we find that the smaller 

equivalent thermal resistance, the lower steady state 
temperature of the core.  Plugging equation (7) into 
equation (5), we have: 

)1)(( /
,

RCw
initsteadyii

ieTTT −−−=Δ         (8) 
RCwie /− is always less than 1; hence the temperature 

change direction is determined by Ti,steady – Tinit. If Ti,steady is 
larger than Tinit, then the temperature goes up; otherwise, 
goes down.  
 
C. Thermal Model of 3D Chip Multiprocessor  

Three-dimensional (3D) chip multiprocessor (CMP) 
contains multiple active silicon layers, as shown in Figure 2. 
Each active silicon layer contains processing units, which 
are also called cores. As we can see from Figure 2, the 
thermal interface material (TIM) is included in CMP 
package in order to improve heat transfer efficiency. The 
carrier layer is attached to one side of the 3D CMP so that 
the chip could be easily soldered on the printed circuit 
board (PCB); the heat sink to the other side helps remove 
the heat off the chip more quickly. 

Figure 2 Cross sectional view of a 3D chip. 

 
For the simplicity of thermal modeling, we ignore the 

horizontal lateral heat conduction and thermal interaction 
between any two cores. The distance from different cores to 
the heat sinks varies; hence the thermal resistances of cores 
are disparate. Considering a core located in silicon layer j, 
its equivalent thermal resistance to the ambient Rj can be 
calculated as,  

         ambhskhsk
j

k kkj RRRR ,,01 1, ++=∑ = −        (9) 

where Rk, k-1 represents the thermal resistance of between 
silicon layer k and k-1. R0,hsk represents the thermal 
resistance between silicon layer 0 and heat sink. Rhsk,amb the 
thermal resistance from the heat sink to the ambient. Then 
based on equations (1) and (2), we know the thermal 
behaviors of the given core j.  From equation (2), we 
know the thermal resistance plays a key role in the course 
of heat transferring off chip. For the given power 
dissipation, smaller thermal resistance will result in lower 
on-chip temperature. From the viewpoint of dynamic 
thermal management, the lower on-chip temperature is 
desired. Therefore it is important that job should be always 
assigned to cores with lower thermal resistance subject to 
the thermal constraints.  
 

IV. Scheduling Algorithms 
The majority of heat is transferred off chip through 

conduction; hence the thermal resistance is a decisive factor 
on how quickly the heat could be removed off chip. The 
chip temperature is inherently decided by the amount of 
heat staying on chip. The more the heat spreads to the 
ambient in a given time interval, the cooler the chip. In 
another word, the chip will keep cooler if the heat is always 
removed off the chip more quickly. Base on that, we 
propose a job assignment algorithm taking into account the 
thermal resistance of cores. The basic idea of our algorithm 
is that hot jobs are assigned to cores with lower thermal 
resistance; and cool jobs assigned to cores with high 
thermal resistance. Heat from hot jobs dominates the 
temperature of the chip. Base on the proposed algorithm, 
the heat from hot jobs is easily removed and there should 
be fewer hot spots generated on chip.  
 

A. Thermal-Aware Scheduling 
As shown in Section III.C, the core closer to the heat 

sink has smaller thermal resistance and the core farther 
away has larger one. With the same workload, cores having 
smaller thermal resistance will get the lower steady 



 

temperature, which has been proven by equation (7). 
Therefore, in order to achieve thermal balance across the 
chip, it is of great importance to assign hot tasks to cores 
with smaller thermal resistance and vice versa.  

Let set C = {Cm|m=1,2,…,M} represent all cores of a 3D 
chip, where M is the total number of cores. Without loss of 
generality, assume Cm has smaller thermal resistance than 
Cm+1; C1 has the smallest thermal resistance and CM has the 
largest one. Let set J ={Jn|n=1,2,…,N} represent jobs in 
the scheduler waiting for the assignment, where N is the 
total number of jobs. The jobs in J are dispatched to the 
cores by the scheduler upon the scheduling interval.  In 
order to simplify the discussion, let M equal N first.   
Later on, this constraint will be relaxed.   
Before dispatching any job to the core, all jobs in J are 
sorted in the descending order based on their power 
dissipation and we get a sorted job 
sequence

1nJ ,
2nJ , …,

NnJ , where },,2,1{ Nnk L∈ . Then the 
first job 

1nJ in J is tentatively assigned to C1. We need to 
predict the temperature )(

111, nCn wT of core C1 after it finishes 
job 

1nJ based on equation (3);  
111

11111111

/
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where
1CR ,

1CC are the thermal resistance and capacitance 
of C1, respectively; and 

1,CinitT is the initial temperature of 
C1 before running job 

1nJ . It’s important to point out that, 

1,CinitT is the actual core temperature that is monitored by 
on-chip temperature sensors. Therefore a temperature 
reading must be performed before the prediction using 
equation (10).  

It is also important to point out that, equation (10) is a 
temperature predictor which estimates the temperature of a 
given core after a specific job is executed. In order to reduce 
the computation overhead, the lateral thermal interactions 
among adjacent cores are not considered in (10). We don’t 
need high accuracy at this stage because the temperature 
predictor is used as the temperature threshold check in our 
algorithm. But in our experiments, we use Hotspot4.1 [23] 
with an accurate thermal model that includes both lateral 
and vertical thermal interactions among different cores. 
If the predicted temperature )(

111, nCn wT is no more than the 
chip critical temperature Tcritical, then the assignment of job 
Jn1 to core C1 is finalized. However, if )(

111, nCn wT is over the 
chip critical temperature, its indication is interpreted as one 
of the followings, 
1) The temperature of core C1 has already been high, and 

the assignment of new job Jn1 to it will generate new hot 
spot on core C1.  

2) The power dissipation of job Jn1 is too high for the 
current thermal situation of core C1, and we should 
assign a job with lower power dissipation to core C1.  

In either case, job Jn1 cannot be assigned to core C1 in order 
to avoid the new hot spots to generate.  Instead, the 
scheduler tentatively assigns job Jn1 to core C2 at next place.  
If the assignment of job Jn1 to core C2 can be not finalized 
either, then the scheduler tentatively assigns job Jn1to core 
C3 and so on.  Generally if a job is waiting for allocation, 

then the scheduler always tries to assign the job to the cores 
who have not been assigned any job before in the given 
order of the core’s thermal resistance until the assignment is 
finalized. Say job Jn1 is finally assigned to core Ck, then 
cores indexed from 1 to k-1 have been tentatively assigned 
job Jn1 to by the scheduler; however, none of tentative 
assignments could be finalized due to the thermal 
constraints.   

If job Jn1 cannot be assigned to any core due to the 
thermal constraints, then the allocation of job Jn1 is delayed 
to the next scheduling interval.  In the similar way, the 
scheduler assigns jobs

2nJ , …,
NnJ .  The thermal aware 

job assignment algorithm is presented in Algorithm 1. The 
input of Algorithm 1 is sort_direction, which has two 
possible values: ascendingly and descendingly. Initially 
sort_direction has value ascendlingly. Later on we will 
explain how to obtain the value of sort_direction.  
 

 
Line 15 of Algorithm 1 indicates that job

knJ  is removed 
from job set J since it cannot be assigned to any core. Job 

knJ will be put back into job set J at the next scheduling 
interval for assignment.   

As long as the thermal constraints are not violated, 
Algorithm 1 always assigns the hottest job to the core with 
smallest thermal resistance, the second hottest job to the 
core with second smallest thermal resistance, and so on.  
In the simplest case, job 

knJ is assigned to core Ck, where 
1≤k≤N.  However, when mismatch happens between 

knJ  
and Ck due to the thermal constraints, the scheduler then 
assigns job 

knJ to the core which has not been assigned 
any job and also has the smallest thermal resistance among 
Ck, Ck+1, CM subject to the thermal constraints.  Based on 
this job assignment policy, we guarantee that hot jobs are 

Algorithm 1 Thermal aware job assignment 
Input: sort_direction 
1. sort all cores in set C ascendingly based on thermal 

resistance, and get sequence C1, C2, …., CM 
2. sort all jobs in set J <sort_direction> in terms of power 

dissipation, and get job sequence Jn1, Jn2, …, JnN 
3. while J not empty do  
4.    for m = 1:M do 
5.       if Cm is not assigned any job do 
6.          tentatively assign the first job Jnk in J to Cm 
7.          calculate Tnk,Cm(wnk)  
8.          if Tnk,Cm(wnk) ≤  Tcritical  do 
9.             officially assign job Jnk to Cm 
10.             remove Jnk from J 
11.             break; 
12.          end if 
13.       end if 
14.       if m == M do 
15.          remove Jnk from J   // Jnk cannot be assigned  

// to any core  
16.       end if 
17.    end for  
18. end while 



 

assigned to the cores with small thermal resistance and the 
cool jobs to the cores with large thermal resistance. As a 
consequence, the large amount of heat from hot jobs can be 
easily transferred off chip; and the small amount of heat 
from cool jobs will not elevate the on-chip temperature too 
much. The complexity of Algorithm 1 is O(M2) in worst 
case and O(M) in best case. 
As discussed before, some jobs cannot be assigned to any 
core due to the thermal constraints. Accordingly, some 
cores will not get any job. From the algorithm 1, we know 
that the reason the core cannot be assigned with any job is 
that the temperature of the core is already high. Even the 
job with lowest power dissipation will cause temperature 
over the critical temperature of the chip.  Hence it is 
necessary that the hot core be idle for one scheduling 
interval to cool itself down and reduce its temperature. 

If sort_direction always has value ascendingly in 
Algorithm 1, then hot jobs are always first assigned to the 
cores with small thermal resistance; accordingly, the cores 
with small thermal resistance may become very hot, which 
can result in the unbalanced temperature distribution across 
the chip.  
Before we introduce the solution to the issue of unbalanced 
temperature distribution, several notations are needed in 
order to simplify the discussions. 
Tub the critical point indicating whether or not the 

spatial temperature distribution is balanced  
B the number of cores used for evaluating if the 

temperature distribution is balanced 
Ts, avg  the average temperature of B cores with smallest 

thermal resistance 
Tl,agv the average temperature of B cores with largest 

thermal resistance 
ΔTS,L  the different between Tl,agv and Ts, avg .  

If the temperature difference ΔTS,L between Tl,agv and Ts, 

avg is over Tub , then the temperature distribution is regarded 
as unbalanced.  In order to reduce the spatial temperature 
variation, the scheduler will dispatch jobs with low power 
dissipation to the core with small thermal resistance until 
ΔTS,L decreases to zero.  In others words, sort_direction in 
Algorithm 1 should be ascendingly before the scheduler 
dispatches jobs to the cores, which is determined by the line 
5 of Algorithm 2.  Note that we calculate the average 
temperature on B cores so that ΔTS,L excludes the 
disturbance to some degree and reflects the unbalanced 
temperature distribution across the chip more accurately. B 

should be set to a proper value based on the floorplanning. 
In our experiments, B is set to 4.  

Algorithm 2 shows how to obtain the value of 
sort_direction, which is needed in Algorithm 1 when the 
scheduler dispatches jobs. Putting Algorithm 1 and 
Algorithm 2 together, we get the proposed job allocation 
and scheduling algorithm, as presented in Algorithm 3, 
which is self-explanatory.  

Algorithm 3 the proposed job allocation algorithm 
1. initially set sort_direction to decendingly 
2. while scheduler dispatches jobs do  
3.     run Algorithm 2 to get the value of sort_direction 
4.     run Algorithm 1 to allocate jobs to the different cores 
5. end while 

 
Note that when deriving Algorithm 1, we assume the 

number of jobs N is equal to the number of M.  If N is 
fewer than M, the jobs can be scheduled based on 
Algorithm 1 without any problem.  However, if N is larger 
than M, then Algorithm 1 cannot be directly. In that case, N 
jobs should be grouped into M super jobs.  
First we need to sort N jobs; and then group the first M jobs 
into first super job, the second M jobs into the second super 
job, and the ⎣ ⎦MN / th M jobs into the super job, where 
symbol “ ⎣ ⎦x ” indicates the largest integer which is no more 
than x.  If N is not the multiple of M, 
let ⎣ ⎦ rMMNM +×= / , where r is an integer ranging from 1 
to M-1.  There are r jobs left after we get ⎣ ⎦MN / super 
jobs.  Put the first left job into the first super job, the 
second left job into the second super job, …, and the rth left 
job into the rth super job. After that, we will obtain M super 
jobs, and Algorithm 1 can be used to schedule each super 
job.  

Finally, we need to point out that DVFS policy can be 
easily integrated into the proposed algorithm to further 
reduce the peak temperature of the chip and save energy if 
needed. 
In summary, we have proposed a thermal aware job 
assignment algorithm for 3D CMP. The framework of the 
proposed algorithm consists of two steps: 
1) Assign hot job to the core with small thermal resistance 

and cool job to the core with large thermal resistance, as 
presented in Algorithm 1. 

2) If the temperature distribution across the 3D chip is 
unbalanced, the jobs with low power dissipation are 
assigned to the cores with small thermal resistance so 
that the spatial temperature variation could be reduced.  

 

V. Experimental Results 
In this section, we will first introduce the experiment 

setup and the benchmarks used in our experiments. Then 
the simulation results for the proposed scheduling 
algorithm are presented.  

We have developed a discrete event-driven simulator in 
C/C++ and implement the proposed algorithm through 
integrating Hotspot4.1 [23] into our simulator. The lateral 
and vertical thermal interactions among adjacent cores are 

Algorithm 2  get_sort_direction()  
1. calculate the average temperature Ts, avg of B cores with 

smallest thermal resistance  
2. calculate the average temperature Tl,agv of B cores with largest

thermal resistance  
3. ΔTS,L = Tl,agv - Ts, avg 
4. if ΔTS,L > Tub do     // temperature distribution unbalanced 
5.     sort_direction = ascendingly 
6. else if ΔTS,L < 0 do   
7.     sort_direction = decendingly 
8. else do 
9.     keep the value of sort_direction 
10. end if 
11. return sort_direction 



 

all accurately modeled in our experiments when we use 
Hotspot4.1 to emulate the thermal behavior of different 
cores. As comparison, a temperature-aware job scheduling 
algorithm is implemented as the benchmark algorithm. This 
temperature-aware algorithm is similar to the one in [21] 
except that we use one temperature for the whole core. We 
adopt the similar floorplans in [20, 22] which do not 
separate the cores from L2 cache. For a given core, we 
assume that there is a sensor for the hot-spot temperature, 
instead of the average temperature across the core. 

All experiments are conducted on Linux workstation 
equipped with an Intel Xeon X5472 processor and 4GB of 
RAM. The proposed algorithm requires less than 60 
seconds of CPU time for each benchmark used in our 
experiments. 
 

A. Experimental Setup 
In this subsection we will introduce the experimental 

setup and the benchmark used in the experiments. 
  We choose a two-layer 16-core 3D CMP architecture. 
The floorplan similar to the one in [20, 22] is adopted, 
where L2 cache is not separated from the core. Each active 
silicon layer contains 8 Alpha microprocessor-like cores 
[24]. Cores in the top layer are indexed from 1 to 8; cores in 
the bottom layer indexed from 9 to 16. Each core has a size 
of 4mm×8mm. The thickness of the top layer silicon is 
50μm; the thickness of the bottom layer 500μm. As shown 
in Figure 2, the bottom silicon layer needs provide the 
support to mount the chip on the PCB board; and it is 10X 
times thicker than the top silicon layer. The bottom silicon 
layer is closer to the copper heat sink. There exists a 
thermal interface material layer between two active silicon 
layers. Other parameters used in our experiments are listed 
in Table 1 [23]. 

The critical temperature of the chip is set to 85 oC. The 
scheduler dispatch jobs to the core every 8ms; accordingly 
the temperature of each core is read once by the scheduler 
every 8ms so that the scheduler has the latest temperature 
information every time it schedules jobs.  
 
 Table 1. Thermal model parameters for Hotspot 4.1. 

Parameter Value 
Thermal conductivity (silicon) 100 W/(m•K) 
Thermal conductivity (copper) 400 W/(m•K) 

Thermal conductivity(TIM) 4 W/(m•K) 
Thermal capacitance per unit volume(silicon) 1.75×106 J/(m3•K)
Thermal capacitance per unit volume(copper) 3.55×106 J/(m3•K)
Thermal capacitance per unit volume(TIM) 4.0×106 J/(m3•K)

 
The benchmarks we used are chosen from MediaBench 

and SPEC2000 benchmark suites, as shown in Table 2. 
Only the power-intensive applications impose the challenge 
to the thermal management; so workload type is critical to 
evaluate the performance of the proposed algorithm. In 
terms of the power dissipation, the benchmarks are grouped 
into three categories: hot (power-hungry), cool 
(non-power-hungry), and warm. The workload patterns 
used in our experiments is shown in Table 3. The workload 
is duplicated if needed to continue the simulation. We use 

M5 simulator [25] to convert each workload 
pattern/benchmarks into task graphs and extract the 
execution time and power profile of each job, which is used 
in equation (10). 
 

Table 2. Benchmarks from Benchmak Suites. 

Benchmark Suite Benchmark 
MediaBench jpegenc, jpegdec mpeg2enc, mpeg2dec 
SPEC2000 applu, gcc, bzip2, crc32, mcf, mesa, swim 

 
Table 3. Workload Patterns.  

Workload Pattern Benchmark 
HC jpegdec, gcc 

HHM mpeg2dec, jpegdec, bzip 
HHC jpeg2enc, mpeg2enc, gcc 
HMC jpegenc, applu, gcc 
HCC crc32, mcf, bzip2 

HHMM jpegdec, crc32, mesa, applu 
HHCC jpegenc, jpegdec, bzip2, mcf 

HMCHMC crc32, mesa, gcc, mpeg2enc, applu, mcf 
HHMMCC jpegdec, crc32, mesa swim, mcf, gcc 
HHHCCC jpegdec, jpegenc, crc32, mcf, bzip2, gcc 

B. Results and Discussion 
In this subsection, we will present our experimental 

results from five aspects: 1) hot spot; 2) performance; 3) 
peak temperature; 4) temperature variation; and 5) average 
temperature. The experimental results with various 
workload patterns show similar trends in peak temperature, 
temperature variation and average temperature. Due to 
space limitation, we only show the results based on 
workload patterns HMC and HHMMCC. 

 
Figure 3. Hot spot comparison. 

Hot spot 
One of the most important goals for thermal management 

is to reduce the time of chip operating above the critical 
temperature.  In this part, we evaluate the effectiveness of 
the proposed algorithm in reducing hot spots.  If the 
on-chip temperature is over the critical temperature, then 
the chip is regarded as overheated.  We report the chip 
overheated time which is normalized with regards to its 
total operation time under various workload patterns in 
Figure 3. When workload contains cool jobs, the proposed 
algorithm generates negligible hot spots. When workload 
pattern is either HHM or HHMM, the proposed algorithm 
generates more hot spots because warm jobs are assigned to 
the cores with high thermal resistance, which results in hot 
spots. However, no matter what workload pattern is, the 



 

proposed algorithm beats the benchmark algorithm by large 
margin, as shown in Figure 3. 
 
Performance 

In this part, we will evaluate the performance of the 
proposed algorithm. Performance is measured based on the 
throughput. Figure 4 presents the normalized throughput of 
the system based on two algorithms: the proposed 
algorithm and temperature-aware algorithm. The 
throughput of the proposed algorithm is normalized with 
regards to the one of temperature-aware algorithm. Results 
show that the system boosts throughput up to 7.9% based 
on our algorithm, compared to Temperature-aware. Heat is 
easily removed off the chip in our algorithm, and the cores 
are rarely stalled due to overheating. That is the 
fundamental reason that our algorithm has higher 
performance no matter what workload the system executes. 

 
Figure 4. Performance comparison. 

 
Peak temperature 

Figure 5 presents the peak temperature of each core 
under two workload patterns. By observing Figure 5, we 
find that cores far from the heat sink have high peak 
temperature in both algorithms; but our algorithm generates 
lower peak temperature, compared to temperature-aware. 
The peak temperature of each core in the top silicon layer is 
about 85oC based on our algorithm and is about 90oC based 
on benchmark algorithm. We observed a peak temperature 
reduction of 5oC on average for the cores far from the heat 
sink and 1.8 oC for the cores close to the heat sink, 
compared to the benchmark algorithm. We also take the 
average core-level peak temperature over all the 10 
workloads. Compared to the temperature-aware algorithm, 
our algorithm has average peak temperature of 85.4 oC, and 
achieves an average of 4.4 oC reduction for cores far from 
the heat sink, and 1.1 oC reduction for cores close to heat 
sink. 

  
 
 
 
 
 
 

 
(a) HMC (b) HHMMCC 

Figure 5. Core-level peak temperature comparison.  

Temporal temperature variation 
Temporal temperature variation leads to the transient 

system performance deduction and reliability degrading. To 
reduce the temperature variation is one of the key issues in 
the chip design. In this part, we show how the temperature 
of each core varies based on different scheduling policies. 
As shown in Figure 6, based on our algorithm the 
temperature variation magnitude is about 6oC for the core 1 
to core 8 and 4.5 oC for core 9 to 16. Based on the 
benchmark algorithm, the variation is much larger. The 
variation magnitude is around 15oC for the cores 1 to 8; and 
9oC for core 9 to 16.  Temperature variation that our 
algorithm generates is about 40% as much as that 
Temperature-aware does for the core far from the heat sink; 
about 50% for the cores close to the heat sink.  The similar 
observation exists for the standard deviation of the 
temperature variation, as shown in Figure 6. In another 
word, our algorithm generates less temperature variation.  

In our algorithm, workload assignment always follows 
the same pattern: hot jobs go to the cores closer to the heat 
sink; cool jobs go to the cores farther from the heat sink. 
Hence the temperature variation is not drastic. In 
temperature-aware algorithm, hot jobs can go to any core as 
long as its temperature is low. In the case the hot job is 
assigned to the core farther from the heat sink, then the 
temperature of the core goes up quickly, which leads to the 
large variation, as shown in Figure 6.  

Also note that in both algorithms the cores in the top 
silicon layer have larger temperature variation than the 
cores in the bottom layer. That is because those cores in the 
top silicon layer are subject to larger thermal resistance to 
remove heat off chip.  

 

 
 
 
 
 
 
 
 
 

(a) HMC (b) HHMMCC 
Figure 6. Core-level temperature variation and standard 

deviation.  
 
Average temperature 

In this part, we present the average temperature of each 
core. The experimental results show that in our algorithm 
the core usually has higher average temperature as shown in 
Figure 7. That is because the system executes more jobs at 
the same time interval based on our algorithm, as 
demonstrated by Figure 4. The execution of more jobs 
produces more heat, which pushes up the average 
temperature of each core. However, the proposed algorithm 
is able to control the on-chip temperature below the critical 
temperature. And the higher average temperature does not 
generate more hot spots, as shown in Figure 3. 
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(a) HMC (b) HHMMCC 
Figure 7. Core-level average temperature.  

 

VI. Conclusions  
In this paper, we have proposed a thermal aware job 

assignment algorithm for 3D CMP system. In order to 
transfer heat off the chip more efficiently, the proposed 
algorithm always assigns hot jobs to the cores closer to the 
heat sink, and cool jobs to the cores farther from the heat 
sink. By taking the proposed job assignment strategy, heat 
stays less time on chip and the chip is able to keep cooler. 
The experimental results show that the proposed algorithm 
beats the benchmark algorithm by large margin from four 
aspects: hot pot, performance, peak temperature and 
temporal temperature variation. The average temperature of 
each core in our algorithm is higher because each core 
executes more jobs at the given time interval, which brings 
in higher throughput and performance. 
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