

 Thermal-Aware Job Allocation and Scheduling for Three
Dimensional Chip Multiprocessor

Abstract - In this paper, we propose a thermal-aware job
allocation and scheduling algorithm for three-dimensional
(3D) chip multiprocessor (CMP). The proposed algorithm
assigns hot jobs to the cores close to the heat sink and cool
jobs to the cores far from the heat sink, subject to thermal
constraints. The direct effect of the proposed algorithm on a
3D-CMP system is that, the heat from hot jobs is removed
off the chip faster than temperature-aware methods.
Therefore we are able to keep the chip cooler and in better
thermal condition. Experimental results show that,
comparing to the temperature-aware method, our algorithm
achieves: 1) less hot spots; 2) better performance; 3)
smaller temporal temperature variation; 4) lower peak
temperature. The proposed algorithm reduces hot spots by
more than 95% when workload contains cool jobs; and by
36% when workload does not contain cool jobs. It also
boosts the system performance by 5% on average under
various workloads. The temporal temperature variation is
reduced by 60% and its standard deviation is decreased by
50%. In addition, the proposed algorithm achieves 1.8oC
~5oC reduction in peak temperature.

Keywords
Scheduling, thermal management, three dimensional, chip
multiprocessor, job allocation

I. Introduction
The design paradigm of processor architecture has been

recently evolving from uni-core, multi-core to many-core. It
is reported that up to hundreds of cores will be integrated
on a chip multi-processor (CMP) in the years to come [1].
In order to integrate more functionality and achieve high
performance, both low communication latency and high
integration density are critical to the CMP architecture.
However, the traditional two dimensional (2D) planar
COMS fabrication process shows poor scalability in
interconnect/wiring [2] and it faces challenge in
implementing CMP. Three dimensional (3D) planar CMOS
fabrication technology is recently proposed as a promising
approach to solve that problem. The 3D CMOS
fabrication technology vertically stacks two or more active
silicon layers together through inter-die vias, and hence
obtains high transistor integration density. 3D CMP
architecture also improves the communication latency
significantly by reducing the global and semi-global wiring
length [3-5].

However, the high transistor density leads to the high
power density; moreover, the overall power dissipation

almost scales up linearly with the number of cores. The
resultant on-chip temperature rise not only decreases
reliability, and degrades performance, but also
super-linearly increases packaging & cooling cost [6]. The
cooling cost increase directly leads to the increase of the
overall cost because the packaging and cooling cost amount
to a considerable portion of the total cost of computing
systems [7]. The elevated on-chip temperature also reduces
the lifetime and accelerates the permanent mechanical
failures of the chip [8]. The lifetime of the chip decreases
by half with a 10~15oC increase of operation temperature
[8]. The leakage current contributes a significant portion to
total power consumption beyond 45nm process node [9, 10];
large leakage power results in a higher power dissipation
and higher on-chip temperature. The increased on-chip
temperature will in turn results in the exponential increase
of leakage power [11]. The positive feedback between
leakage current and temperature can easily cause the
thermal runaway without proper thermal management.
The high operation temperature also decreases the carrier
mobility and degrades the performance of the circuit.

Another issue in 3D chip design is the temperature
fluctuation across the chip due to disparate heat transfer
efficiencies at different layers. The large spatial temperature
fluctuation results in degrading system reliability [12].
Hence it is important to regulate the on-chip temperature so
as 1) to keep 3D CMP chip operating at the moderate
temperature range; 2) to reduce the temperature fluctuation
across the chip.

The on-chip temperature is traditionally managed by
advance packaging and cooling solutions. As the power
density continues to double every 18 months, such
solutions for temperature management are becoming
prohibitively expensive [7]. In the past years researchers
have been actively exploring alternative techniques to
control on-chip temperature [13-15]. The majority of those
techniques are reactive. When the on-chip temperature is
over some predefined threshold, a proper technique is
applied to reduce the temperature or to keep the
temperature below the critical temperature of the chip. Such
techniques include dynamic power management (DPM),
dynamic voltage and frequency selection (DVFS), dynamic
thermal management (DTM), fetching throttling and task
migrations, etc. Those techniques are designed specifically
for managing the thermal behavior of 2D chips.

The ultimate goal of thermal management is to guarantee
that the operating temperature of the chip is not over its
critical temperature such that the stability, reliability and
performance are achieved. 3D integration complicates heat

Shaobo Liu, Jingyi Zhang, Qing Wu, and Qinru Qiu
Department of Electrical and Computer Engineering
Binghamton University, State University of New York

Binghamton, New York 13902, USA
{sliu5, jzhang5, qwu, qqiu}@binghamton.edu

transfer and new thermal management approaches for 3D
CMP architecture need to be explored. The on-chip
temperature is inherently controlled by the heat staying on
the chip. If the heat could transfer off chip instantly, then
the on-chip temperature would not go up at all. Similarly, if
more heat could transfer off chip at a given time interval,
the on-chip temperature will be lower. From this viewpoint,
we propose a novel thermal aware job allocation algorithm
in this paper. The proposed algorithm always assigns
power-intensive jobs to the core where the heat could be
removed off chip most quickly subject to the thermal
constraints.

Based on the proposed algorithm, power-intensive jobs
are assigned to the cores sitting right behind the heat sink.
So the majority of heat transfers to the ambient going
through a very short heat conduction path. One of the direct
benefits is that few cores are passively heated up due to the
heat conduction.

The highlight of the proposed algorithm can be
summarized as follows:
1) Minimize the time of heat staying on the chip and the

resultant adverse impact.
2) Avoid detrimentally heating up the cores located on the

heat conduction path.
3) Reduce the temporal temperature fluctuation and

improve the reliability.
4) Maximize the performance by reducing the thermal

management event.
The rest of the paper is organized as follows. Section II

introduces the related work. The thermal model is presented
in Section III. Thermal-aware job assignment and
scheduling algorithm is explained in Section IV. The
experimental results and summaries are presented in
Sections V and VI, respectively.

II. Related Work
The high integration density in 3D CMP complicates the

thermal modeling and management; and the existing
thermal management techniques for 2D CMP cannot be
directly applied to 3D CMP. Therefore, new approaches
which focus on 3D CMP thermal management and thermal
optimization should be explored.

There are several techniques proposed targeting at design
stage optimization for 3D chips. A thermal-aware
floorplanning algorithm is proposed in [16]. Authors in [3]
further propose an algorithm, which also aims at
thermal-aware floorplanning, but takes into account the
interconnect power consumption. A thermal-aware
placement algorithm is proposed in [17] for 3D chips.
A “thermal herding” approach is proposed in [18] for 3D
chip in order to improve the efficiency of heat removal.
That approach puts the individual function units across the
multiple active silicon layers. The parts with high switch
activity are placed on the layer near to the heat sink; vice
versa.

A job allocation, scheduling and voltage & frequency
selection algorithm is proposed in [19]. The goal of that
algorithm is to reduce the power consumption subject to the
thermal constraints. Another thermal management

algorithm for 3D CMP is proposed in [20], where some
policies based on job migration and DVFS are discussed
and evaluated.

Most recently, two temperature aware job assignment
algorithms are present in [21, 22]. From the viewpoint of
statistics, Adapt3D approach [21] always assigns the
upcoming job to the coolest core to achieve thermal balance
across the chip. It is a temperature-aware scheduling policy
in essence. Authors in [22] claim that the temperature of
vertically aligned-cores has very strong correlation. Base on
that, the vertically aligned cores are wrapped up into super
cores. Accordingly, tasks are also wrapped into super tasks.
Then the hottest super job is assigned to the coolest super
core in order to achieve the thermal balance. In both
algorithms, however, the efficiency that the core removes
the heat off the chip is not considered. If the coolest core is
farthest from the heat sink, the heat of that core is
transferred off chip most inefficiently. In terms of those two
policies, the hottest job will be assigned to that coolest core;
the new hot spots will be easily generated; moreover, the
heat staying longer on chip will detrimentally heat up
neighboring cores too.

As opposite to the above two algorithms, in this paper we
propose a thermal-aware job allocation algorithm, which
assigns jobs to cores from where heat is always removed
off most quickly and efficiently subject to the thermal
constraints. Since the heat is removed off chip more quickly,
our algorithm reduces the hot spots, mitigates temporal
temperature variation, decreases the peak temperature and
also boosts the system performance, as shown in the
experimental results.

III. Thermal Model and Assumptions
In this section, we are going to introduce the thermal

model of a single core, the thermal model of 3D CMP, and
the thermal profile of a single job. We start with introducing
the thermal model of a single core, since it is the simplest
one.

A. Thermal Model of Single Core
There exists a duality between the first order electrical

RC model and the spatial one-dimensional thermal model.
We take a lumped RC model as the thermal model of a
single core [23], as shown in Figure 1. The power
dissipation is equivalent to the current source, and the
ambient temperature equivalent to voltage source.

Figure 1 A lumped RC thermal model.

Assume the ambient temperature is Tamb, and the initial
temperature of the core is Tinit, the average power

consumption of the core is P at the given time, then we
have:

R

TtT
P

dt
TtTd

C ambamb −
−=

−)())(((1)

By solving the above differential equation, we get the core
temperature at time t
 T(t) = P⋅R + Tamb – (P⋅R + Tamb – Tinit)e-t/RC (2)
where R and C represent the equivalent thermal resistance
and the equivalent thermal capacitance from the core to the
ambient, respectively.

B. Thermal Profile of Single Job
Once a job is in the job queue of the scheduler, we

assume that parameters of the job such as the worst case
execution time and the average power dissipation are given.
Consider a job Ji with average power dissipation Pi and
worst case execution time wi. If thermal model of the core
is given by equation (2); then we can calculate the
temperature of the core after Ji is executed,
 RCw

initambiambiii
ieTTRPTRPwT /)()(−−+×−+×= (3)

where Tinit is the temperature of the core right before it
executes Ji.

The temperature change of the core after the execution of
job Ji is
 initiii TwTT −=Δ)((4)
Plugging equation (2) into equation (3), we have

)1)((/ RCw
initambii

ieTTRPT −−−+×=Δ (5)
Assume the processor executes an infinite sequence of

the same job Ji, then we have
RC

initambiambii eTTRPTRPT /)()(−∞−+×−+×=∞ (6)
The above equation is reduced to

ambiisteadyi TRPTT +×=∞=)(, (7)

where Ti,steady is the steady state temperature of job Ji.
Observing equation (7), we find that the smaller

equivalent thermal resistance, the lower steady state
temperature of the core. Plugging equation (7) into
equation (5), we have:

)1)((/
,

RCw
initsteadyii

ieTTT −−−=Δ (8)
RCwie /− is always less than 1; hence the temperature

change direction is determined by Ti,steady – Tinit. If Ti,steady is
larger than Tinit, then the temperature goes up; otherwise,
goes down.

C. Thermal Model of 3D Chip Multiprocessor

Three-dimensional (3D) chip multiprocessor (CMP)
contains multiple active silicon layers, as shown in Figure 2.
Each active silicon layer contains processing units, which
are also called cores. As we can see from Figure 2, the
thermal interface material (TIM) is included in CMP
package in order to improve heat transfer efficiency. The
carrier layer is attached to one side of the 3D CMP so that
the chip could be easily soldered on the printed circuit
board (PCB); the heat sink to the other side helps remove
the heat off the chip more quickly.

Figure 2 Cross sectional view of a 3D chip.

For the simplicity of thermal modeling, we ignore the

horizontal lateral heat conduction and thermal interaction
between any two cores. The distance from different cores to
the heat sinks varies; hence the thermal resistances of cores
are disparate. Considering a core located in silicon layer j,
its equivalent thermal resistance to the ambient Rj can be
calculated as,

 ambhskhsk
j

k kkj RRRR ,,01 1, ++=∑ = − (9)

where Rk, k-1 represents the thermal resistance of between
silicon layer k and k-1. R0,hsk represents the thermal
resistance between silicon layer 0 and heat sink. Rhsk,amb the
thermal resistance from the heat sink to the ambient. Then
based on equations (1) and (2), we know the thermal
behaviors of the given core j. From equation (2), we
know the thermal resistance plays a key role in the course
of heat transferring off chip. For the given power
dissipation, smaller thermal resistance will result in lower
on-chip temperature. From the viewpoint of dynamic
thermal management, the lower on-chip temperature is
desired. Therefore it is important that job should be always
assigned to cores with lower thermal resistance subject to
the thermal constraints.

IV. Scheduling Algorithms
The majority of heat is transferred off chip through

conduction; hence the thermal resistance is a decisive factor
on how quickly the heat could be removed off chip. The
chip temperature is inherently decided by the amount of
heat staying on chip. The more the heat spreads to the
ambient in a given time interval, the cooler the chip. In
another word, the chip will keep cooler if the heat is always
removed off the chip more quickly. Base on that, we
propose a job assignment algorithm taking into account the
thermal resistance of cores. The basic idea of our algorithm
is that hot jobs are assigned to cores with lower thermal
resistance; and cool jobs assigned to cores with high
thermal resistance. Heat from hot jobs dominates the
temperature of the chip. Base on the proposed algorithm,
the heat from hot jobs is easily removed and there should
be fewer hot spots generated on chip.

A. Thermal-Aware Scheduling
As shown in Section III.C, the core closer to the heat

sink has smaller thermal resistance and the core farther
away has larger one. With the same workload, cores having
smaller thermal resistance will get the lower steady

temperature, which has been proven by equation (7).
Therefore, in order to achieve thermal balance across the
chip, it is of great importance to assign hot tasks to cores
with smaller thermal resistance and vice versa.

Let set C = {Cm|m=1,2,…,M} represent all cores of a 3D
chip, where M is the total number of cores. Without loss of
generality, assume Cm has smaller thermal resistance than
Cm+1; C1 has the smallest thermal resistance and CM has the
largest one. Let set J ={Jn|n=1,2,…,N} represent jobs in
the scheduler waiting for the assignment, where N is the
total number of jobs. The jobs in J are dispatched to the
cores by the scheduler upon the scheduling interval. In
order to simplify the discussion, let M equal N first.
Later on, this constraint will be relaxed.
Before dispatching any job to the core, all jobs in J are
sorted in the descending order based on their power
dissipation and we get a sorted job
sequence

1nJ ,
2nJ , …,

NnJ , where },,2,1{ Nnk L∈ . Then the
first job

1nJ in J is tentatively assigned to C1. We need to
predict the temperature)(

111, nCn wT of core C1 after it finishes
job

1nJ based on equation (3);
111

11111111

/

,,)()(
CCn CRw

CinitambCnambCnnCn eTTRPTRPwT
−

−+×−+×=
(10)

where
1CR ,

1CC are the thermal resistance and capacitance
of C1, respectively; and

1,CinitT is the initial temperature of
C1 before running job

1nJ . It’s important to point out that,

1,CinitT is the actual core temperature that is monitored by
on-chip temperature sensors. Therefore a temperature
reading must be performed before the prediction using
equation (10).

It is also important to point out that, equation (10) is a
temperature predictor which estimates the temperature of a
given core after a specific job is executed. In order to reduce
the computation overhead, the lateral thermal interactions
among adjacent cores are not considered in (10). We don’t
need high accuracy at this stage because the temperature
predictor is used as the temperature threshold check in our
algorithm. But in our experiments, we use Hotspot4.1 [23]
with an accurate thermal model that includes both lateral
and vertical thermal interactions among different cores.
If the predicted temperature)(

111, nCn wT is no more than the
chip critical temperature Tcritical, then the assignment of job
Jn1 to core C1 is finalized. However, if)(

111, nCn wT is over the
chip critical temperature, its indication is interpreted as one
of the followings,
1) The temperature of core C1 has already been high, and

the assignment of new job Jn1 to it will generate new hot
spot on core C1.

2) The power dissipation of job Jn1 is too high for the
current thermal situation of core C1, and we should
assign a job with lower power dissipation to core C1.

In either case, job Jn1 cannot be assigned to core C1 in order
to avoid the new hot spots to generate. Instead, the
scheduler tentatively assigns job Jn1 to core C2 at next place.
If the assignment of job Jn1 to core C2 can be not finalized
either, then the scheduler tentatively assigns job Jn1to core
C3 and so on. Generally if a job is waiting for allocation,

then the scheduler always tries to assign the job to the cores
who have not been assigned any job before in the given
order of the core’s thermal resistance until the assignment is
finalized. Say job Jn1 is finally assigned to core Ck, then
cores indexed from 1 to k-1 have been tentatively assigned
job Jn1 to by the scheduler; however, none of tentative
assignments could be finalized due to the thermal
constraints.

If job Jn1 cannot be assigned to any core due to the
thermal constraints, then the allocation of job Jn1 is delayed
to the next scheduling interval. In the similar way, the
scheduler assigns jobs

2nJ , …,
NnJ . The thermal aware

job assignment algorithm is presented in Algorithm 1. The
input of Algorithm 1 is sort_direction, which has two
possible values: ascendingly and descendingly. Initially
sort_direction has value ascendlingly. Later on we will
explain how to obtain the value of sort_direction.

Line 15 of Algorithm 1 indicates that job

knJ is removed
from job set J since it cannot be assigned to any core. Job

knJ will be put back into job set J at the next scheduling
interval for assignment.

As long as the thermal constraints are not violated,
Algorithm 1 always assigns the hottest job to the core with
smallest thermal resistance, the second hottest job to the
core with second smallest thermal resistance, and so on.
In the simplest case, job

knJ is assigned to core Ck, where
1≤k≤N. However, when mismatch happens between

knJ
and Ck due to the thermal constraints, the scheduler then
assigns job

knJ to the core which has not been assigned
any job and also has the smallest thermal resistance among
Ck, Ck+1, CM subject to the thermal constraints. Based on
this job assignment policy, we guarantee that hot jobs are

Algorithm 1 Thermal aware job assignment
Input: sort_direction
1. sort all cores in set C ascendingly based on thermal

resistance, and get sequence C1, C2, …., CM
2. sort all jobs in set J <sort_direction> in terms of power

dissipation, and get job sequence Jn1, Jn2, …, JnN
3. while J not empty do
4. for m = 1:M do
5. if Cm is not assigned any job do
6. tentatively assign the first job Jnk in J to Cm
7. calculate Tnk,Cm(wnk)
8. if Tnk,Cm(wnk) ≤ Tcritical do
9. officially assign job Jnk to Cm
10. remove Jnk from J
11. break;
12. end if
13. end if
14. if m == M do
15. remove Jnk from J // Jnk cannot be assigned

// to any core
16. end if
17. end for
18. end while

assigned to the cores with small thermal resistance and the
cool jobs to the cores with large thermal resistance. As a
consequence, the large amount of heat from hot jobs can be
easily transferred off chip; and the small amount of heat
from cool jobs will not elevate the on-chip temperature too
much. The complexity of Algorithm 1 is O(M2) in worst
case and O(M) in best case.
As discussed before, some jobs cannot be assigned to any
core due to the thermal constraints. Accordingly, some
cores will not get any job. From the algorithm 1, we know
that the reason the core cannot be assigned with any job is
that the temperature of the core is already high. Even the
job with lowest power dissipation will cause temperature
over the critical temperature of the chip. Hence it is
necessary that the hot core be idle for one scheduling
interval to cool itself down and reduce its temperature.

If sort_direction always has value ascendingly in
Algorithm 1, then hot jobs are always first assigned to the
cores with small thermal resistance; accordingly, the cores
with small thermal resistance may become very hot, which
can result in the unbalanced temperature distribution across
the chip.
Before we introduce the solution to the issue of unbalanced
temperature distribution, several notations are needed in
order to simplify the discussions.
Tub the critical point indicating whether or not the

spatial temperature distribution is balanced
B the number of cores used for evaluating if the

temperature distribution is balanced
Ts, avg the average temperature of B cores with smallest

thermal resistance
Tl,agv the average temperature of B cores with largest

thermal resistance
ΔTS,L the different between Tl,agv and Ts, avg .

If the temperature difference ΔTS,L between Tl,agv and Ts,

avg is over Tub , then the temperature distribution is regarded
as unbalanced. In order to reduce the spatial temperature
variation, the scheduler will dispatch jobs with low power
dissipation to the core with small thermal resistance until
ΔTS,L decreases to zero. In others words, sort_direction in
Algorithm 1 should be ascendingly before the scheduler
dispatches jobs to the cores, which is determined by the line
5 of Algorithm 2. Note that we calculate the average
temperature on B cores so that ΔTS,L excludes the
disturbance to some degree and reflects the unbalanced
temperature distribution across the chip more accurately. B

should be set to a proper value based on the floorplanning.
In our experiments, B is set to 4.

Algorithm 2 shows how to obtain the value of
sort_direction, which is needed in Algorithm 1 when the
scheduler dispatches jobs. Putting Algorithm 1 and
Algorithm 2 together, we get the proposed job allocation
and scheduling algorithm, as presented in Algorithm 3,
which is self-explanatory.

Algorithm 3 the proposed job allocation algorithm
1. initially set sort_direction to decendingly
2. while scheduler dispatches jobs do
3. run Algorithm 2 to get the value of sort_direction
4. run Algorithm 1 to allocate jobs to the different cores
5. end while

Note that when deriving Algorithm 1, we assume the

number of jobs N is equal to the number of M. If N is
fewer than M, the jobs can be scheduled based on
Algorithm 1 without any problem. However, if N is larger
than M, then Algorithm 1 cannot be directly. In that case, N
jobs should be grouped into M super jobs.
First we need to sort N jobs; and then group the first M jobs
into first super job, the second M jobs into the second super
job, and the ⎣ ⎦MN / th M jobs into the super job, where
symbol “ ⎣ ⎦x ” indicates the largest integer which is no more
than x. If N is not the multiple of M,
let ⎣ ⎦ rMMNM +×= / , where r is an integer ranging from 1
to M-1. There are r jobs left after we get ⎣ ⎦MN / super
jobs. Put the first left job into the first super job, the
second left job into the second super job, …, and the rth left
job into the rth super job. After that, we will obtain M super
jobs, and Algorithm 1 can be used to schedule each super
job.

Finally, we need to point out that DVFS policy can be
easily integrated into the proposed algorithm to further
reduce the peak temperature of the chip and save energy if
needed.
In summary, we have proposed a thermal aware job
assignment algorithm for 3D CMP. The framework of the
proposed algorithm consists of two steps:
1) Assign hot job to the core with small thermal resistance

and cool job to the core with large thermal resistance, as
presented in Algorithm 1.

2) If the temperature distribution across the 3D chip is
unbalanced, the jobs with low power dissipation are
assigned to the cores with small thermal resistance so
that the spatial temperature variation could be reduced.

V. Experimental Results
In this section, we will first introduce the experiment

setup and the benchmarks used in our experiments. Then
the simulation results for the proposed scheduling
algorithm are presented.

We have developed a discrete event-driven simulator in
C/C++ and implement the proposed algorithm through
integrating Hotspot4.1 [23] into our simulator. The lateral
and vertical thermal interactions among adjacent cores are

Algorithm 2 get_sort_direction()
1. calculate the average temperature Ts, avg of B cores with

smallest thermal resistance
2. calculate the average temperature Tl,agv of B cores with largest

thermal resistance
3. ΔTS,L = Tl,agv - Ts, avg
4. if ΔTS,L > Tub do // temperature distribution unbalanced
5. sort_direction = ascendingly
6. else if ΔTS,L < 0 do
7. sort_direction = decendingly
8. else do
9. keep the value of sort_direction
10. end if
11. return sort_direction

all accurately modeled in our experiments when we use
Hotspot4.1 to emulate the thermal behavior of different
cores. As comparison, a temperature-aware job scheduling
algorithm is implemented as the benchmark algorithm. This
temperature-aware algorithm is similar to the one in [21]
except that we use one temperature for the whole core. We
adopt the similar floorplans in [20, 22] which do not
separate the cores from L2 cache. For a given core, we
assume that there is a sensor for the hot-spot temperature,
instead of the average temperature across the core.

All experiments are conducted on Linux workstation
equipped with an Intel Xeon X5472 processor and 4GB of
RAM. The proposed algorithm requires less than 60
seconds of CPU time for each benchmark used in our
experiments.

A. Experimental Setup
In this subsection we will introduce the experimental

setup and the benchmark used in the experiments.
 We choose a two-layer 16-core 3D CMP architecture.
The floorplan similar to the one in [20, 22] is adopted,
where L2 cache is not separated from the core. Each active
silicon layer contains 8 Alpha microprocessor-like cores
[24]. Cores in the top layer are indexed from 1 to 8; cores in
the bottom layer indexed from 9 to 16. Each core has a size
of 4mm×8mm. The thickness of the top layer silicon is
50μm; the thickness of the bottom layer 500μm. As shown
in Figure 2, the bottom silicon layer needs provide the
support to mount the chip on the PCB board; and it is 10X
times thicker than the top silicon layer. The bottom silicon
layer is closer to the copper heat sink. There exists a
thermal interface material layer between two active silicon
layers. Other parameters used in our experiments are listed
in Table 1 [23].

The critical temperature of the chip is set to 85 oC. The
scheduler dispatch jobs to the core every 8ms; accordingly
the temperature of each core is read once by the scheduler
every 8ms so that the scheduler has the latest temperature
information every time it schedules jobs.

 Table 1. Thermal model parameters for Hotspot 4.1.

Parameter Value
Thermal conductivity (silicon) 100 W/(m•K)
Thermal conductivity (copper) 400 W/(m•K)

Thermal conductivity(TIM) 4 W/(m•K)
Thermal capacitance per unit volume(silicon) 1.75×106 J/(m3•K)
Thermal capacitance per unit volume(copper) 3.55×106 J/(m3•K)
Thermal capacitance per unit volume(TIM) 4.0×106 J/(m3•K)

The benchmarks we used are chosen from MediaBench

and SPEC2000 benchmark suites, as shown in Table 2.
Only the power-intensive applications impose the challenge
to the thermal management; so workload type is critical to
evaluate the performance of the proposed algorithm. In
terms of the power dissipation, the benchmarks are grouped
into three categories: hot (power-hungry), cool
(non-power-hungry), and warm. The workload patterns
used in our experiments is shown in Table 3. The workload
is duplicated if needed to continue the simulation. We use

M5 simulator [25] to convert each workload
pattern/benchmarks into task graphs and extract the
execution time and power profile of each job, which is used
in equation (10).

Table 2. Benchmarks from Benchmak Suites.

Benchmark Suite Benchmark
MediaBench jpegenc, jpegdec mpeg2enc, mpeg2dec
SPEC2000 applu, gcc, bzip2, crc32, mcf, mesa, swim

Table 3. Workload Patterns.

Workload Pattern Benchmark
HC jpegdec, gcc

HHM mpeg2dec, jpegdec, bzip
HHC jpeg2enc, mpeg2enc, gcc
HMC jpegenc, applu, gcc
HCC crc32, mcf, bzip2

HHMM jpegdec, crc32, mesa, applu
HHCC jpegenc, jpegdec, bzip2, mcf

HMCHMC crc32, mesa, gcc, mpeg2enc, applu, mcf
HHMMCC jpegdec, crc32, mesa swim, mcf, gcc
HHHCCC jpegdec, jpegenc, crc32, mcf, bzip2, gcc

B. Results and Discussion
In this subsection, we will present our experimental

results from five aspects: 1) hot spot; 2) performance; 3)
peak temperature; 4) temperature variation; and 5) average
temperature. The experimental results with various
workload patterns show similar trends in peak temperature,
temperature variation and average temperature. Due to
space limitation, we only show the results based on
workload patterns HMC and HHMMCC.

Figure 3. Hot spot comparison.

Hot spot
One of the most important goals for thermal management

is to reduce the time of chip operating above the critical
temperature. In this part, we evaluate the effectiveness of
the proposed algorithm in reducing hot spots. If the
on-chip temperature is over the critical temperature, then
the chip is regarded as overheated. We report the chip
overheated time which is normalized with regards to its
total operation time under various workload patterns in
Figure 3. When workload contains cool jobs, the proposed
algorithm generates negligible hot spots. When workload
pattern is either HHM or HHMM, the proposed algorithm
generates more hot spots because warm jobs are assigned to
the cores with high thermal resistance, which results in hot
spots. However, no matter what workload pattern is, the

proposed algorithm beats the benchmark algorithm by large
margin, as shown in Figure 3.

Performance

In this part, we will evaluate the performance of the
proposed algorithm. Performance is measured based on the
throughput. Figure 4 presents the normalized throughput of
the system based on two algorithms: the proposed
algorithm and temperature-aware algorithm. The
throughput of the proposed algorithm is normalized with
regards to the one of temperature-aware algorithm. Results
show that the system boosts throughput up to 7.9% based
on our algorithm, compared to Temperature-aware. Heat is
easily removed off the chip in our algorithm, and the cores
are rarely stalled due to overheating. That is the
fundamental reason that our algorithm has higher
performance no matter what workload the system executes.

Figure 4. Performance comparison.

Peak temperature

Figure 5 presents the peak temperature of each core
under two workload patterns. By observing Figure 5, we
find that cores far from the heat sink have high peak
temperature in both algorithms; but our algorithm generates
lower peak temperature, compared to temperature-aware.
The peak temperature of each core in the top silicon layer is
about 85oC based on our algorithm and is about 90oC based
on benchmark algorithm. We observed a peak temperature
reduction of 5oC on average for the cores far from the heat
sink and 1.8 oC for the cores close to the heat sink,
compared to the benchmark algorithm. We also take the
average core-level peak temperature over all the 10
workloads. Compared to the temperature-aware algorithm,
our algorithm has average peak temperature of 85.4 oC, and
achieves an average of 4.4 oC reduction for cores far from
the heat sink, and 1.1 oC reduction for cores close to heat
sink.

(a) HMC (b) HHMMCC

Figure 5. Core-level peak temperature comparison.

Temporal temperature variation
Temporal temperature variation leads to the transient

system performance deduction and reliability degrading. To
reduce the temperature variation is one of the key issues in
the chip design. In this part, we show how the temperature
of each core varies based on different scheduling policies.
As shown in Figure 6, based on our algorithm the
temperature variation magnitude is about 6oC for the core 1
to core 8 and 4.5 oC for core 9 to 16. Based on the
benchmark algorithm, the variation is much larger. The
variation magnitude is around 15oC for the cores 1 to 8; and
9oC for core 9 to 16. Temperature variation that our
algorithm generates is about 40% as much as that
Temperature-aware does for the core far from the heat sink;
about 50% for the cores close to the heat sink. The similar
observation exists for the standard deviation of the
temperature variation, as shown in Figure 6. In another
word, our algorithm generates less temperature variation.

In our algorithm, workload assignment always follows
the same pattern: hot jobs go to the cores closer to the heat
sink; cool jobs go to the cores farther from the heat sink.
Hence the temperature variation is not drastic. In
temperature-aware algorithm, hot jobs can go to any core as
long as its temperature is low. In the case the hot job is
assigned to the core farther from the heat sink, then the
temperature of the core goes up quickly, which leads to the
large variation, as shown in Figure 6.

Also note that in both algorithms the cores in the top
silicon layer have larger temperature variation than the
cores in the bottom layer. That is because those cores in the
top silicon layer are subject to larger thermal resistance to
remove heat off chip.

(a) HMC (b) HHMMCC
Figure 6. Core-level temperature variation and standard

deviation.

Average temperature

In this part, we present the average temperature of each
core. The experimental results show that in our algorithm
the core usually has higher average temperature as shown in
Figure 7. That is because the system executes more jobs at
the same time interval based on our algorithm, as
demonstrated by Figure 4. The execution of more jobs
produces more heat, which pushes up the average
temperature of each core. However, the proposed algorithm
is able to control the on-chip temperature below the critical
temperature. And the higher average temperature does not
generate more hot spots, as shown in Figure 3.

2 4 6 8 10 12 14 16
75

80

85

90

Core index

P
ea

k
te

m
pe

ra
tu

e
(o C

)

Temp-aware
Our algoritm

2 4 6 8 10 12 14 16

76

78

80

82

84

86

88

90

92

Core index

P
ea

k
te

m
pe

ra
tu

e
(o C

)

Temp-aware
Our algoritm

2 4 6 8 10 12 14 16
0

5

10

15

20

Core index

Te
m

pe
ra

tu
e

va
ria

tio
n/

S
ta

nd
ar

d
de

vi
at

io
n

(o C
)

Temp-aware(var)
Our algoritm(var)
Temp-aware(std)
Our algoritm(std)

2 4 6 8 10 12 14 16
0

5

10

15

20

Core index

Te
m

pe
ra

tu
e

va
ria

tio
n/

S
ta

nd
ar

d
de

vi
at

io
n

(o C
)

Temp-aware(var)
Our algoritm(var)
Temp-aware(std)
Our algoritm(std)

(a) HMC (b) HHMMCC
Figure 7. Core-level average temperature.

VI. Conclusions
In this paper, we have proposed a thermal aware job

assignment algorithm for 3D CMP system. In order to
transfer heat off the chip more efficiently, the proposed
algorithm always assigns hot jobs to the cores closer to the
heat sink, and cool jobs to the cores farther from the heat
sink. By taking the proposed job assignment strategy, heat
stays less time on chip and the chip is able to keep cooler.
The experimental results show that the proposed algorithm
beats the benchmark algorithm by large margin from four
aspects: hot pot, performance, peak temperature and
temporal temperature variation. The average temperature of
each core in our algorithm is higher because each core
executes more jobs at the given time interval, which brings
in higher throughput and performance.

References
[1] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H.,

“Platform 2015: Intel processor and platform evolution for
the next decade”, Intel Corporation, Tech. Rep., Mar. 2005

[2] P. Kapur, G. Chandra, K. C. Saraswat, “Power estimation in
global interconnects and its reduction using a novel repeater
optimization methodology”, Design Automation Conference,
2002

[3] W.-L. Hung, G. M. Link, Y.Xie, N. Vijaykrishnan, M. J.
Irwin, “Interconnect and thermal-aware floorplanning for 3D
microprocessors”, International Symposium on Quality of
Electronic Design, Mar. 2006.

[4] W. Topol, D.C. La Tulipe Jr., L. Shi, D. J. Frank, K.
Bernstein, S. E. Steen, A. Kumar, G. U. Singco, A. M. Young,
K.W. Guarini, M. Leong, “Three-dimensional integrated
circuits”, IBM J. Research and Development, vol. 4, 2006.

[5] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L.
Jiang, G. H. Loh, D. McCaule, P. Morrow, D. W. Nelson, D.
Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen, C. Webb,
“Die stacking (3d) microarchitecture”, International.
Symposium on Microarchitecture, Dec. 2006, pp.

[6] S. Borkar, “Design Challenges of Technology Scaling”,
IEEE Micro, 19(4), 1999.

[7] S. Gunther, F. Binns, D. M. Carmean, J. C. Hall, “Managing
the Impact of Increasing Microprocessor Power
Consumption”, Intel Technology Journal, 2001

[8] Failure mechanisms and models for semiconductor devices,
JEDEC publication JEP122C. http://www.jedec.org

[9] S. Liu, et al, “Full-chip leakage current estimation based on
statistical sampling techniques,“ in Proc of GLSVLSI, 2008

[10] S. Liu, et al, “A probabilistic technique for full-chip leakage
estimation, “ in Proc of ISLPED, 2008

[11] R. Rao, A. Srivastava, D. Blaauw, D. Sylvester “Statistical
estimation of leakage current considering inter- and intra-die
process variation”, International Symposium on Low Power
Electronics and Design, 2003.

[12] C. J. Lasance, “Thermally driven reliability issues in
microelectronic systems: status-quo and challenges”,
Microelectronics Reliability, 2003.

[13] D. Brooks, M. Martonosi, “Dynamic Thermal Management
for High-Performance Microprocessors”, International
Symposium on High-Performance Computer Architecture,
2001.

[14] A. Kumar, L. Shang, L. S. Peh, N. K. Jha, “HybDTM: A
Coordinated Hardware-Software Approach for Dynamic
Thermal Management,” Design Automation Conference,
2006.

[15] J. Donald, M. Martonosi, “Techniques for multicore thermal
management: Classification and new exploration,”
International Symposium on Computer Architecture, 2006.

[16] J. Cong, J. Wei, and Y. Zhang, “A thermal-driven
floorplanning algorithm for 3D ICs”, International
Conference on. Computer-Aided Design, 2004,

[17] B. Goplen, S. Sapatnekar, “Efficient thermal placement of
standard cells in 3D ICs using a force directed approach”,
International Conference on Computer-Aided Design, 2003.

[18] K. Puttaswamy, G. H. Low., “Thermal Herding:
Microarchitecture Techniques for Controlling HotSpots in
High-Performance 3D-Integrated Processors”, IEEE
International Symposium on High Performance Computer
Architecture, Feb. 2007.

[19] C. Zhu, C. Zhu; Z. Gu, L. Shang, R.P. Dick, R. Joseph,
“Three-dimensional chip-multiprocessor run-time thermal
management”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2008.

[20] C. Sun, L. Shang, R. P. Dick, “3d multiprocessor
system-on-chip thermal optimization”, International
Conference on Hardware Software Codesign, 2007.

[21] A. K. Coskun, J. L. Ayala, D. Atienza, T. Simunic, Y.
Leblebici, “Dynamic Thermal Management in 3D Multicore
Architectures”, Design, Automation & Test in Europe, Apr.
2009.

[22] X. Zhou, Y. Xu, Y. Du, Y. Zhang, J. Yang , “ Thermal
Management for 3D Processors via Task Scheduling”,
International Conference on Parallel Processing, Sep. 2008:

[23] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S.
Velusamy, D. Tarjan, “Temperature-aware microarchitecture:
Modeling and implementation”, ACM Transactions on
Architecture and Code Optimization, 2004

[24] K. A. Bowman, B. L. Austin, J.C. Eble, X. Tang, J. D.
Meindl, “A physical alpha-power law MOSFET model”,
IEEE J. Solid-State Circuits, vol. 34, Oct. 1999.

[25] N. L. Binkert, R.G. Dreslinski, L.R. Hsu, K. T. Lim, A. G..
Saidi, and S. K. Reinhardt, “The M5 simulator: Modeling
networked systems”, Proc. IEEE Micro Special issue on
Architecture Simulation and Modeling, Jul. 2006

2 4 6 8 10 12 14 16
75

80

85

Core index

A
ve

ra
ge

 te
m

pe
ra

tu
e

(o C
)

Temp-aware
Our algoritm

2 4 6 8 10 12 14 16
75

80

85

Core index

A
ve

ra
ge

 te
m

pe
ra

tu
e

(o C
)

Temp-aware
Our algoritm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

