
Learning Based DVFS for Simultaneous Temperature, Performance and Energy

Management

Hao Shen
†
, Jun Lu

*
 and Qinru Qiu

†

†EECS Department, Syracuse University

Syracuse, NY, USA

{hshen01, qiqiu}@syr.edu

*ECE Department, Binghamton University

Binghamton, NY, USA

jlu5@binghamton.edu

Abstract

Dynamic voltage and frequency scaling (DVFS) has been

widely used for energy reduction in the modern processors.

How to select the optimal frequency that minimizes energy

dissipation for the given performance constraint at runtime is

a nontrivial problem. The problem becomes more complicated

if temperature needs to be constrained (or minimized)

simultaneously. The temperature, performance and energy

have different nonlinear relationships with frequency/voltage

scaling ratio and this relationship is closely related to the

characteristics of hardware and applications. In this paper, we

design a reinforcement learning algorithm to tackle the

problem of simultaneous temperature, performance and

energy management. The proposed approach allows

continuous tradeoff among these three quality measurement of

a computer system. It also enables us to set two of the

measurements as constraints and optimize the third one. The

proposed approach is validated on an Intel Core 2 processor

running Linux system.

Keywords

DVFS, dynamic voltage and frequency scaling, temperature,

performance, energy, enhancement learning

1. Introduction

Dynamic voltage and frequency scaling (DVFS) has been

widely used in modern processors for energy reduction or

temperature control. Traditionally, reducing the voltage and

clock frequency of a digital IC is considered to give cubical

reduction in its power consumption and linear reduction in its

performance. However this trend has started to change. As

semiconductor technology keeps scaling down, leakage power

becomes more and more dominant in modern processors

[1][3]. Although the DVFS technique effectively reduces the

dynamic energy, it also increases the leakage energy because

the system has to be kept active for a longer time [1][4]. On

the other hand, as the CPU speed increases, the limited

memory bandwidth has become the performance bottleneck

for many applications with intensive memory access. For

those memory bound applications, the DVFS technique incurs

less performance penalty because the memory subsystem still

works under a constant frequency [1][2][4][5].

DVFS technique is supported by many modern computing

hardware and operating systems. For example, the Enhanced

Intel SpeedStep [11] technology allows the user to

dynamically adjust processor voltage and frequency. Modern

OS usually provides several power management options to

*This work is supported in part by NSF under grant CNS-0845947

meet different user performance requirement. For example,

the Linux OS provides several processor frequency governors

including Performance, Powersaver, Ondemand, and

Conservative governors [19]. Similarly, the Windows OS also

provides power management options such as “High

performance”, “Power saver” and “Balanced” power

management. The IBM Thinkpad [10] performs power

management based on provided energy profiles. The above

mentioned power management options give users certain

flexibility to find trade-off between performance and energy

saving. However the trade-off space is limited to those

provided policies.

Many research works have been proposed to find the optimal

DVFS scheduling for energy and temperature reduction.

Reference [5] uses runtime information on the statistics of the

external memory access to perform CPU voltage and

frequency scaling. Its goal is to minimize the energy

consumption while translucently controlling the performance

penalty. The authors of reference [1] take different

frequencies of the processor as different experts. These

experts are dynamically selected based on their weight, which

is a function of the energy dissipation and performance

penalty and is updated online. Reference [7] first presents a

workload prediction model for MPEG decoder and the

predicted workload is further used to guide the voltage and

frequency scaling. Reference [6] presents a set of new job

scheduling and power management policies for chip

multiprocessors. Their impact on chip lifetime is evaluated.

The authors of reference [8] use machine learning to

adaptively change the frequency of the processor for the

thermal management of multimedia applications. Reference [9]

considers processors as producers and consumers and tunes

their frequencies in order to minimize the stalls of the request

queue while reducing the processors’ energy.

All of the previously mentioned work focus on either energy

or temperature control. In this paper, we target at

simultaneous management of temperature, performance and

energy (TPE) management. A low-overhead machine learning

approach is proposed to dynamically select the processor’s

voltage and frequency to achieve the required balance among

energy, performance and temperature of the processor. The

proposed controller is capable of achieving almost continuous

tradeoff in the temperature, performance and energy space.

The rest of the paper is organized as follows: Section 2

discusses the impact of processor frequency/voltage scaling

on its energy, performance and temperature. We will show the

non-simple tradeoff space among energy, performance and

temperature, which gives the motivation of learning based exploration. Section 3 introduces the proposed controller in

detail and Section 4 provides the experimental results. We

conclude the paper in Section 5.

2. Impact of DVFS on processor energy, temperature

and performance

In this section we will investigate the relation between

processor’s voltage/frequency and its energy, performance

and temperature. First order analysis of the tradeoff space

among these three parameters is provided afterward.

In the following analysis, we use Vmax (Fmax) and V (F) to

represent the maximum voltage (frequency) and the scaled

voltage (frequency) of the processor. We use v and f to

represent normalized voltage and frequency, i.e. ⁄

and ⁄ . Obviously, v and f are also the scaling ratios

of CPU voltage and frequency.

We adopt the convention of reference [1] and refer the time

when the CPU is actively executing as Tcpu and the time when

the CPU stalls (due to memory access and etc.) as Tstall.

During Tcpu, the CPU has both dynamic power consumption

(PD) and leakage power consumption (PL), while during Tstall

there is only leakage power consumption. The total energy of

the processor can be calculated as the following:

 (1)

Our study on many commercial processors’ voltage and

frequency settings [2][4][5][20] shows that the scaling ratio of

the voltage is usually less than the scaling ratio of frequency.

In other words, the scaled voltage V is usually an increasing

and concave function of scaled frequency F. In order to

facilitate our following discussion, we use to

approximate the relation between F and V, where V is the

minimum supply voltage that achieves frequency F, a and 

are hardware related parameters and  < 1. It is easy to

derive the following relation between v and f:

⁄
⁄ (2)

As in [1], we define as the percentage contribution of

leakage power to the total power consumption at the highest

v-f setting when processor is running, so (1-) is the

percentage contribution of dynamic power consumption. We

define as the percentage of time that the application spends

on CPU when the processor is configured at the highest

voltage and frequency, so (1-) is the percentage of time that

the application spends on memory access and other CPU stall

events. According to reference [1], the normalized dynamic

power (pD) and leakage power (pL) can be calculated as:

 ⁄ and ⁄ ,

where Pmax is the total power consumption of the processor

when it is running at the highest clock frequency.

Using Equation(1), the normalized energy (ene) can be

calculated as the following:

 ()

 (3)

where Tmax is the total execution time when the processor

running at the maximum frequency. Note that the TCPU can be

reduced by increasing the frequency f while the leakage power

during Tstall has nothing to do with the CPU frequency.

We replace v with f

 in Equation(2) and rewrite the

normalized energy as a function of frequency scaling ration f:

 ()

 (4)

The normalized execution time t can be calculated as:

 ⁄

 (5)

The performance is inversely proportional to the execution

time. Hence it can also be written as a function of frequency

scaling ratio f:

 (6)

In order to obtain a close form expression of the relation

between temperature and normalized frequency f, we use a

rough approximation that assumes the temperature to be

proportional to the average power [18] . Therefore, the

temperature and clock scaling ratio satisfy the following

relation:

 (7)

Equations (4)(6)(7) gives the relations between the

normalized frequency f and energy, performance and

temperature. For example, given the parameters =0.3,
 and =0.45, Figure 1 shows how these three design

metrics change as clock frequency scales.

Figure 1 T, P and E versus clock frequency

Given equations (4)(6)(7) and the condition that ,  and 

are in the range (0, 1), the following can be proved:

1. The processor energy is a convex function of normalized

frequency. It first decreases and then increases as the

frequency increases.

2. The performance is a concave and increasing function of

normalized frequency.

3. The temperature is a convex and increasing function of

normalized frequency.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Performance

Temperature

EnergyfT

Normarlized frequency

P
er

fo
rm

an
ce

,t
em

p
er

at
u

re
 a

n
d

en

er
g
y

fE
*
 fP

4. The optimal frequency for minimal energy increases when

 increases.

5. The performance curve will shift to right when  increases.

6. The temperature curve will shift to left when  increases.

In the previous discussions, for simplicity, we didn’t consider

the fact that leakage power will increase super-linearly with

the increasing of temperature [12]. Intuitively, such relation

between leakage power and temperature will shift the energy

curve to the right and increase the curvature of the

temperature curve. It will not affect the performance curve.

The relation among temperature, performance and energy

determines the possible tradeoff space of the TPE

management. From property 1 we know that there is an

optimal frequency that minimizes the energy for the given  ,

 and α parameters. We denote this frequency as fE
*
. The user

imposed performance and temperature constraints determine

if such optimal frequency is achievable. Let fP denote the

minimum frequency that satisfies the given performance

constraint, and fT denote the maximum frequency that satisfies

the given temperature constraint. A valid clock frequency f

must be greater than fP and less than fT, i.e. .

Based on the relation among fP , fT and fE
*
,

the following 4

TPE management scenarios may happen.

1. : In this scenario, the performance and temperature

constraints could never be fulfilled.

 .
 : In this scenario, selecting gives the

minimum energy while satisfying the performance and

temperature constraints.

3.
 : In this scenario, selecting gives the

minimum energy while satisfying the performance and

temperature constraints.

4.
 : In this scenario, selecting

 gives the

minimum energy while satisfying the performance and

temperature constraints.

The above analysis shows that the relative position of fP , fT

and fE
*
 determines how the optimal frequency will be selected.

Such relation is specified by the user constraints. Furthermore,

based on property 4~6 we know that the relative position of

fP , fT and fE
*

will change as  changes. This means that for

different software applications and even for the same software

application but at different time, different TPE management

scenarios may occur. Finally, as different computing devices

have different  and , the same set of performance and

temperature constraints and the same software program will

result in different relative positions of fP , fT and fE
*
 when

running on different hardware systems, hence requires

different TPE management policy. It is important to have an

adaptive technique that automatically searches for the optimal

clock frequency for TPE control when hardware and software

changes.

3. Learning based temperature, performance and

energy (TPE) management

3.1 General Q-learning algorithm

Q-learning [21] is one of the most widely used reinforcement

learning algorithms. It consists of a state space S and a set of

actions A. Selecting an action at state , will lead

the system to another state and result a reward (or penalty). A

policy  is a mapping from the set of environment states to the

set of actions, i.e. π: S A. For each state action pair (s, a), it

maintains a value function represents the expected

long-term reward if the system starts from state s, taking

action a, and thereafter following policy π. Based on this

value function, the agent decides which action should be taken

in current state to achieve the maximum long-term rewards.

The core of the Q-learning algorithm is the iterative update of

the Q-value function. The Q-value for each state-action pair is

initially chosen by the designer and later, it is updated each

time an action is issued and a penalty is received, based on the

following expression:

 ⏟

 ⏟

[⏟

 ⏟

 ⏟

⏞

 ⏞

] (8)

In the above expression, st , at and pt are the state, action and

penalty at time t respectively, and is the

learning rate. The discount factor γ is a value between 0 and 1

which gives more weight to the penalties in the near future

than the far future. The next time when state s is visited again,

the action with the minimum Q-value will be chosen, i.e.

 . The value of is updated at

the beginning of cycle t+1, i.e., the Q-value for the state-

action pair of the previous cycle is updated at the beginning

of current cycle.

3.2 States and actions of TPE management agent

The environment state is a vector of four components, (f, T,

IPS, ), they represent the clock frequency, the temperature,

the instructions per second (IPS) and the CPU intensiveness

respectively.

Since our goal is to tune the processor frequency in order to

find a balance among energy, performance and temperature,

the current processor frequency f and temperature T must be

selected as part of the state vector. Let N be the total number

of clock frequencies supported by the processor, we use fi to

denote the ith clock frequency, with f0 representing the

minimum frequency. Similarly, we discretize the possible

range of temperature into M levels, with T0 representing the

ambient temperature and TM-1 representing the maximum

temperature threshold.

Although processor’s power consumption is also a critical

information pertaining to the environment state, this

information is usually not easy to obtain for many of the

commercial processors. However, it can be inferred from

other system information, such as IPS (instructions per

second), clock frequency, and the workload CPU

intensiveness[22].

IPS (instructions per second) is an important value related to

processor’s performance, power and temperature [8]. It is

recorded by the performance counter of many commercial

processors. Even if they are running under the same clock

frequency, different programs usually have significantly

different IPS due to events such as cache miss, branch

prediction miss, etc. Therefore, the IPS does not fully

represent the system performance, which in our definition, is

the slowdown ratio of a system running at scaled frequency

compared to the same system running at the maxim clock

frequency. In the Q-learning algorithm, we use both IPS and

clock frequency to infer the state of system performance.

Workload CPU intensiveness is another critical feature that

classifies environment states. As we can see from Equations

(4)(6)(7), it directly determines the relation between T, P, E

and the normalized frequency.

The value of can be calculated as the following [1]:

 (9)

 and are the number

of cycles during which instruction and data fetches are stalled.

They can be recorded periodically in many commercial

processors. Though there are other architectural events that

are related to , such as the cycle of stalls due to TLB miss,

branch prediction miss and etc., they are less dominant and

cannot be monitored at the same time with the cache miss

events in our experiment system.

The value of IPS and  will also be discretized in order to

obtain a finite state space. In general, the more frequency

levels supported by the hardware, the more tradeoff we can

achieve and the finer should the state space be partitioned.

This is attributed to the fact that executing the same program

using different frequency levels generally will lead to

different levels of die temperature and CPU IPS. Hence the

more frequency levels supported by the hardware, the more

detailed temperature and performance states should be divided.

The actions of our Q-learning controller are decisions

switching to each frequency level supported.

3.3 Penalty function of learning based TPE controller

In order to satisfy different user requirements in TPE

management, here we propose two working modes of the

learning based TPE controller: free mode and constrained

mode. The TPE controller in free mode is designed for users

that are interested in exploring the tradeoffs among

temperature, performance and energy, while the TPE

controller in constrained mode is designed for users that have

specific constraints in two of these three quality

measurements and would like to optimize the third one. The

main difference of these two modes is in the calculation of the

cost function (pt+1) of each state action pair, which will be

introduced in the next.

Cost function in free mode

In this mode, in order to update the Q-value for the previous

state-action pair (), we calculate the penalty (in

Equation (8)) in Q-learning as follows :

 (10)

pnltE, pnltP and pnltT are penalties associated to energy,

performance and temperature respectively. Their definition

will be given in the following paragraphs. , and

are the weight coefficients of the penalties which are exposed

to the users. As we can see, pnltE, pnltP and pnltT are in

different units and their values might not even be in the same

order. It is very difficult to select the appropriate weight

coefficients to achieve the desired tradeoffs. To conquer this

problem, we normalize values of pnltE , pnltP and pnltT with

respect to the largest energy, performance and temperature

penalties that can be achieved. Hence the weight coefficients

are confined to the range (0, 1). It is easy to know that, the

minimum temperature, maximum performance, or minimum

energy policy can be found when the weight coefficient vector

(wT, wP, wE) is set to (1, 0, 0), (0, 1, 0), or (0, 0, 1) respectively.

From the discussion in Section 2 we can see that the

normalized energy of an application is a function of f,  and .

For the given ,  and α there is an optimal normalized clock

frequency fE
*
that minimizes the energy. Deviating frequency

from fE
*

will increase energy dissipation. Because  and α are

fixed for a given computing hardware, the value of fE
*
 only

depends on the CPU intensiveness , which is an application

specific parameter. We define the pnltE as the difference

between f (i.e. current normalized frequency) and fE
*
. For

discrete DVFS system, fE
*
is rounded to the nearest frequency

level supported by the system. Equation (11) gives the

normalized energy penalty:

, (11)

where fmax and fmin are normalized maximum and minimum

clock frequency.

Similar to energy, the performance is also a function of f, 

and. In general, if the CPU intensiveness is low,

decreasing the CPU frequency will not degrade the

performance a lot since more time will be spent on the

memory subsystem whose frequency is fixed. We define the

performance penalty as the extra execution time compared to

the system running at the highest clock frequency, i.e.

 . It is normalized with the respect of the

maximum possible execution delay, which happens when f =

fmin and  = 1. The normalized performance penalty is

calculated as:

 (12)

We need to point out that, today’s commercial computing

system has architectural advances that enable out-of-order

execution and minimize CPU stall. In all of our experiments,

the performance penalty is almost equal to the ratio of

frequency change.

Lastly, we use the change of the temperature as temperature

penalty:

. (13)

If T > Told, a positive temperature penalty will be given and if

T < Told, a negative temperature penalty, in other words, a

reward will be given. is the maximum

temperature change in two adjacent time intervals. It is about

2C in our experiment system.

Cost function for constrained mode

 In the free mode, the users has the freedom to tune the weight

coefficients , and from 0 to 1 to explore the

tradeoffs in energy, performance and temperature. In the

constrained mode, there are user constraints on energy,

performance or temperature which must be met. Previous

work [15] tries to solve the performance constrained energy

optimization problem by dynamically adjusting the weight

coefficient in the penalty function to find minimum energy

policy that exactly meet the performance constraint. The

rationale of this approach is that energy is a decreasing

function of performance. However, this is not true if we

consider the leakage power. Furthermore, this approach will

not work if we have more than one constraint. For example, as

shown in Figure 1，assume that the minimum frequency that

satisfies the performance constraint is fP and the maximum

frequency that satisfies the temperature constraint is fT. Our

goal is to constrain the performance and temperature, while at

the same time minimizing the energy. As we can see, it is not

possible to find a frequency that satisfies both performance

and temperature constraints exactly. To make things worse,

because we keeps increasing the value of and to ensure

the satisfaction of performance and temperature constraints,

the value of will become relatively smaller and smaller

compared to and . Hence, we may find a

frequency/voltage setting that satisfies both

performance/temperature constraints, but it is not guaranteed

to be energy optimal (f=fE
*
).

In this work, we modify the penalty function to decouple the

two constraints. To simplify the discussion, we use the

average T, P, and E penalties of a system to constrain its

temperature, performance and energy. The constraints are

denoted as conE, conP, conT. We use E, P, and T to denote

the difference between the constraint and the actual average

penalty during a history window for energy, performance and

temperature respectively. The value of  will be positive if the

system has been outperforming the user constraint during the

history window, otherwise it will be negative. Because we are

interested in constraining only the average performance

(energy or temperature), we consider the system to be

bounded when , otherwise,

the system is unbounded. This basically says that if the system

has been outperforming the user constraint during the past,

then the penalty of the current cycle can be a little higher than

the constraint.

We consider the general scenario that the user may set

constraints on any two of the T, P and E and try to optimize

the third one, and the problem can be written as:

 , s.t.

 , and .

Here the subscripts 1, 2, and 3 can be any permutation of the

symbols T, P and E. We refer pnlt3 as the objective penalty

and pnlt1 and pnlt2 as constrained penalties.

The modified penalty function considers 4 scenarios:

 {

 (14)

In the above equation, C is a large constant. Based on the

modified penalty function, when the system is bounded, the

Q-learning algorithm will search for policies that minimize

the objective penalty. As soon as the system becomes

unbounded in one or both of the constrains, the penalty

function will be modified and the Q-learning algorithm will

search for policies that balances the objective penalty and

constrained penalty (or penalties). During this procedure, it

puts more emphasis on improving the constrained penalty.

 We need to point out that, if the objective is to minimize the

energy dissipation with the performance and temperature

constraint, it can be proved that as long as the performance

and temperature constraints are feasible, scenario 4 in the

penalty function is not reachable. In other words, performance

and temperature constraints will not be violated at the same

time. However, if the constraints are in any other two metrics,

all of the 4 scenarios are reachable.

Another point need to be mentioned is that the temperature

penalty is calculated based on temperature changes as shown

in Equation (13) rather than the absolute temperature. So

when the temperature constraint is violated, the action leading

to the reducing of the temperature will lead to a negative

penalty (i.e. reward) to reinforce the corresponding action.

4. Experimental results

4.1 Experiment setup

We carried experiments on Dell Precision T3400 workstation

with Intel Core 2 Duo E8400 Processor. The processor

supports 4 frequency levels: 2GHz, 2.33GHZ, 2.67GHz,

3GHz. The Linux kernel we use is version 2.6.29.

We used coretemp driver in the Linux kernel to read the

temperature sensor of the processors. The default driver

updates temperature readings once every second and we

modified it to be every 10ms to achieve our required

granularity. We used cpufreq driver in Linux based on

Enhanced SpeedStep[11] technology of Intel Core 2 processor

to adjust the processor’s frequency. We used Perform2 tool

[13] to monitor performance events of the processors.

We used benchmarks from MiBench [17] and MediaBench

[16] to form the workload of the evaluation system. Our goal

is to generate workloads with changing CPU intensiveness.

The benchmarks we selected are: bitcount_small,

basicmath_small, qsort_large, tiff2rgba, mpeg4dec, and

jpeg200dec together with a simple custom application with

only CPU busy loops. Their CPU intensiveness varies from 11%

to almost 100% with an average of 82% according to our

measurement. Each benchmark running a little more than 0.2s

under minimum frequency is a running unit. We serialized

100 running units of different benchmarks in 4 different

random orders to construct 4 ‘workloads’. Every experiment

result reported here is the average of the 4 ‘workloads’.

Since the proposed algorithm considers the TPE management

of only one core, we ran the experiments on one core and

fixed the frequency of the other core to be the minimum. The

Q-learning controller was triggered every 20ms. Empirically,

this interval will not exert too much overhead to the processor

while still capable of tracking the change of workload. The

overhead of frequency change is only about 20us.

As mentioned in Section 3, we represent the environment state

using a state vector (f, T, IPS, µ). Since the processor supports

4 frequency levels, f has 4 states. We further partition the

CPU intensiveness  into 4 states, so that fi is corresponding

to the ideal frequency fE
*
 when  = µi, 1≤i≤4. Such partition

enables us to measure the energy penalty using the deviations

from the ideal frequency. Our goal is to evaluate our TPE

controller’s ability of tracking the CPU intensiveness for the

energy reduction. The temperature and IPS are also

empirically partitioned into 4 states as there are 4 frequency

levels.

4.2 Results and analysis

4.2.1 Free mode TPE management

In the first set of experiments, we swept the value of wE, wP,

and wT from 0 to 1 and recorded the average temperature,

performance and energy penalty. In order to compare the

performance of the proposed learning algorithm with the

state-of-art approach, we modified the expert-based algorithm

in [1] based on our best understanding to achieve tradeoff

among T, P and E. We also ran the Linux Ondemand

governor for comparison. We swept the up_threshold of

Ondemand governor [19] to achieve tradeoff between

performance and energy.

Since we have three features, including energy, performance

and temperature, two figures are presented in the next to show

the relation between energy and performance (Figure 2) as

well as the relation between temperature and performance

(Figure 3).

In both figures, the X-axis gives the normalized execution

time (performance) of the workloads. The Y-axis in Figure 2

gives normalized energy while the Y-axis in Figure 3 gives

the normalized temperature. Our experiment data show that,

the test case that has the best performance is 7.5 seconds

faster than the test case that has the worst performance. In

general, the former executes the entire workload at the highest

clock frequency while the latter at the lowest frequency. In

terms of the die temperature, the test case that has the lowest

temperature is 7C cooler than the test case that has the

highest temperature. Because we cannot measure the real

energy dissipation, we use Equation (11) to estimate the

average energy penalty during the workload execution. Its

value varies from 0.13 to 0.58 in best case and worst case

respectively.

The results shown in Figure 2 and Figure 3 in general agree

with our analysis in Section 2. When the execution time

increases (i.e. the performance reduces), the energy will first

decrease then increase. The minimum energy is achieved

when the normalized execution time is around 0.4. We believe

that this is approximately the average fE
*
 of the testing

workloads under the given hardware characteristics (i.e.  and

α) and the workload’s average CPU intensiveness (i.e. µ). We

also need to point out that the TPE controller sometimes gives

policy with higher energy and longer execution time

compared to the energy optimal policy. These policies are

corresponding to the data points located in the upper right

corner in Figure 2. This is because, for those test cases, the

weight coefficient of temperature is much larger than the

weight coefficients of performance and energy. Therefore, the

TPE controller slows down the performance to reduce

temperature. As the clock frequency drops below fE
*
, the

energy dissipation increases.

Figure 2 Energy versus performance tradeoffs

Figure 3 Temperature versus performance tradeoffs

As we can see from the figures, the proposed TPE controller

generally achieves lower energy dissipation than the expert-

based controller for the same performance level. And it

performs better on the temperature control at low performance

level.

The Linux default Ondemand governor can only achieve very

limited tradeoffs. The rightmost point in Figure 2 and Figure 3

is achieved by setting up_threshold to 100. This makes the

processor running at the lowest frequency all the time. Setting

up_threshold to any other values results in very similar energy

performance tradeoffs. The corresponding energy delay points

are located in the upper left corner in Figure 2 and Figure 3.

This is because the Ondemand governor will provide the

highest frequency as long as there are applications running, no

matter what kind of application it is.

Figure 4, Figure 5 and Figure 6 show the how the

temperature, delay and energy change when the corresponding

weight coefficients vary from 0 to 1. In all experiments, the

other two weight coefficients are both fixed to 0, 0.4 and 1

separately. The points when (wT, wP, wE) equals to (0, 0, 0) are

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Q-learning

Expert-based

Ondemand

Normalized execution time

N
o

rm
al

iz
ed

 e
n

er
g
y

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Q-learning

Expert-based

Ondemand

Normalized execution time

N
o

rm
al

iz
ed

 t
em

p
er

at
u

re

ignored in the figure because those weight coefficient settings

give random policies. As we can see, in general, increasing

the T, P, and E weight coefficient, the learning algorithm will

find policy with smaller energy, higher performance and

lower temperature respectively. However, the actual

performance, energy and temperature are determined by the

relative value of the weight coefficients. For example, Figure

5 shows that increasing wP from 0 to 1 with (wT, wE) setting to

(0, 0) does not reduce the execution time because the relative

value of wP (compared to wT and wE) does not change. On the

other hand, increasing wP from 0 to 1 with (wT, wE) setting to

(0.4, 0.4) can significantly reduce the execution time because

now the relative value of wP increases notably. However, if

(wT, wE) is set to (1,1)，then the potential of performance

improvement reduces again because with energy and

temperature being the first optimization priority, there is much

less flexibility for performance optimization. The same trend

can be observed for the temperature and energy as shown in

Figure 4 and Figure 6.

Figure 4. Controlling temperature using

Figure 5. Controlling performance using

Figure 6. Controlling energy using

4.2.2 Constrained mode TPE management

In the second set of experiments, we set two constraints

among temperature, performance and energy, and try to

optimize the third one.

 Performance

Temperature

 0.34

(constraint)

0.67

(constraint)

 1

(constraint)

0.34(constraint) 0.27

0.45

 0.42

0.31

 0.64

0.25

0.67(constraint) 0.24

0.48

 0.37

0.42

 0.61

0.31

 1 (constraint) 0.26

0.49

 0.38

0.44

 0.60

0.35

Table 1 Constraining performance and temperature

 Energy

Performance

 0.34

(constraint)

0.67

(constraint)

 1

(constraint)

0.34(constraint) 0.41

0.30

 0.40

0.33

 0.41

0.30

0.67(constraint) 0.31

0.53

 0.41

0.59

 0.43

0.59

 1 (constraint) 0.21

0.69

 0.35

0.90

 0.45

0.99

Table 2 Constraining energy and performance

 Energy

Temperature

 0.34

(constraint)

0.67

(constraint)

 1

(constraint)

0.34(constraint) 0.38

0.36

 0.41

0.37

 0.46

0.40

0.67(constraint) 0.39

0.43

 0.42

0.46

 0.51

0.55

 1 (constraint) 0.37

0.44

 0.42

0.49

 0.56

0.65

Table 3 Constraining energy and temperature

The results are shown in Table 1,Table 2 and Table 3. In these

tables, the performance is represented by average normalized

performance penalty calculated based on Equation (12).

Therefore, a large number corresponds to poor performance.

The energy is the average energy penalty calculated based on

Equation (11). The temperature is the average normalized

temperature of the CPU. Each row and column in those tables

associates to a user constraint in either temperature,

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.4

1

wT

N
o

rm
al

iz
ed

 t
em

p
er

at
u

re

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.4

1

wP

N
o

rm
al

iz
ed

 e
x
ec

u
ti

o
n

 t
im

e

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.4

1

wE

N
o

rm
al

iz
ed

 e
n

er
g
y

performance or energy. Because our platform only supports 4

frequency levels and the frequency increases linearly at an

equal step from level 1 to level 4, the corresponding

normalized temperature and performance for those frequency

levels should also change at an equal step. To better show our

results, we set the constraints to be 0.34, 0.67 and 1 as shown

in the tables. Each cell in those tables has two fields. They

give the actual achieved value in those two quality

measurements with user constraints. For example, the cell in

row 1 and column 1 of Table 1 shows that the actual

normalized temperature and performance of the system is 0.45

and 0.27 respectively when the performance and temperature

constraint are both set to 0.34.

Each cell is shaded differently according to the results of the

third metric (i.e. the objective penalty). The lighter the cell is,

the better the optimization we achieve. As we can see, in all 3

tables, the upper left cell has the darkest color because it

corresponds to the most stringent user constraints and hence

leaves almost no room for the optimization of the 3
rd

 metrics.

On the contrary, the bottom right cell has the lightest color

because it corresponds to the most relaxed constraints.

We can see that sometimes TPE controller cannot find a

policy that satisfies both user constraints. For example, the

entries (1,1) in all 3 tables have constraint violations.

Sometime, the TPE controller finds policies that exactly

satisfies one of the constraints and outperforms the other.

These cases include: entry (1, 2) in Table 1, entries (1, 2), (1,

3), (2, 1), (3, 1), (3, 2) and (3, 3) in Table 2. For the rest of

times, the TPE controller finds policies that outperform both

user constraints. This clearly shows that the relation among T,

P and E are not monotonic. We cannot optimize one metric by

setting the other (one or two) metrics exactly to the given user

constraints. For example, consider cell (2,2) in Table 1. The

user set a loose performance and temperature constraint

(conP=conT=0.67) in order to optimize the energy. However

the result shows that the policy that minimizes the energy

actually does not have to work so slowly and will not generate

so much heat. Clearly in this test case, we have

which corresponds to the last category presented in Section 2.

The experimental results also show that, generally without the

prior knowledge of the values of , α, and µ, (which

correspond to the knowledge of hardware and software), our

TPE controller can correctly learn the TPE tradeoff space and

give effective control policies. The only information we need

to know related to the hardware is the mapping of different

workload CPU intensiveness to the ideal working frequency

 for the energy optimization purpose. This requirement can

be removed if there is a way to measure the processor’s power

online.

5. Conclusion

In this paper, we first discuss the impact of voltage and

frequency scaling on processor’s temperature, performance

and energy. And then we present a Q-learning based

controller to dynamically adjust the processor’s clock

frequency to get the desired tradeoff among temperature,

performance and energy. The proposed TPE controller works

at two modes. At the free mode, it controller allows the user to

explore the tradeoff by tuning the weight coefficients in the

penalty function. At the constrained mode, the controller

allows the user to set constraints to two out of the three

parameters in T, P and E, while optimizes the third one. The

experimental results show that the proposed controller learns

the temperature, performance and energy tradeoff space of the

experiment system and performs effect control without priori

knowledge of hardware and software.

6. References

[1] G.Dhiman and T.S.Rosing, “System-Level Power Management

Using Online Learning,” TCAD,vol28,pp.678-698, Apr.2009.

[2] P.Langen and B.Juurlink, “Leakage-Aware Multiprocessor

Scheduling for Low Power,” IPDPS’06, pp.60,2006

[3] ITRS: http://www.itrs.net/

[4] R.Jejurikar,C.Pereira and R.Gupta, “Leakage Aware Dynamic

Voltage Scaling for Real-Time Embedded Systems,” DAC’04,

pp.275-280,2004

[5] K.Choi, R.Soma and M.Pedram, “Fine-Grained Dynamic

Voltage and Frequency Scaling for Precise Energy and Performance

Trade-off based on the Ration of Off-chip Access to On-chip

Computation Times,” TCAD’2004, vol.24,pp.18-28,Dec.2004.

[6] A.Coskun, R.Strong, D.Tullsen and T.Rosing, “Evaluating the

Impact of Job Scheduling and Power Management on Processor

Lifetime for Chip Multiprocessor,” SIGMETRICS '09, pp.169-

180,2009.

[7] Y.Tan, P.Malani,Q.Qiu and Q.Wu “Workload Prediction and

Dynamic Voltage Scaling for MPEG Decoding,” ASP-DAC

'06,pp.911-916,2006

[8] Y.Ge and Q.Qiu, “Dynamic Thermal Management for

Multimedia Application Using Machine Leaning,” DAC’11,

Jun.2011.

[9] P.Choudhary and D.Marculescu, “Power Management of

Voltage/Frequency Island-Based System Using Hardware-Based

Methods,” TVLSI, vol.17, issue3, pp.427-438,2009

[10] Lenovo : http://www.lenovo.com/us/en/

[11] “Enhanced Intel SpeedStep® Technology - How To Document,”

http://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htm

[12] Y.Liu, R.Dick, L.Shang, H.Yang, “Accurate Temperature-

Dependent Integrated Circuit Leakage Power Estimation is Easy,”

DATE’07, pp.1526-1531,2007

[13] Perfmon2:

http://perfmon2.sourceforge.net/pfmon_userguide.html

[14] Y.Tan, W.Liu and Q.Qiu, “Adaptive Power Management Using

Reinforcement Learning,” ICCAD’09,pp461-467,2009

[15] W.Liu, Y.Tan, Q.Qiu, “Enhanced Q-learning Algorithm for

Dynamic Power Management with Performance Constraint,”

DATE’10, pp602-605, 2010

[16] MediaBench: http://euler.slu.edu/~fritts/mediabench/

[17] Mibench: http://www.eecs.umich.edu/mibench/

[18] “Intel® Core™2 Duo Processor E8000 and E7000 Series”:

http://download.intel.com/design/processor/datashts/318732.pdf

[19] V.Pallipadi, A.Starikovskiy, “The Ondemand Governor: Past,

Present and Future,” Ottawa Linux Symposium, 2006

[20] B.Lin,A.Mallik,P.Dinda,G.Memik, R.Dick,“User- and Process-

Driven Dynamic Voltage and Frequency Scaling,”

ISPASS’2009,pp.11-22,Apr.2009

[21] Q-learning: http://en.wikipedia.org/wiki/Q-learning

[22] R.Joseph and M.Martonosi, “Run-time Power Estimation in

High Performance Microprocessors”, ISLPED’01,pp.135-140,2001

http://www.itrs.net/
http://conferences.sigmetrics.org/sigmetrics/2009/
http://www.lenovo.com/us/en/
http://www.intel.com/cd/channel/reseller/asmo-na/eng/203838.htm
http://perfmon2.sourceforge.net/pfmon_userguide.html
http://euler.slu.edu/~fritts/mediabench/
http://www.eecs.umich.edu/mibench/
http://download.intel.com/design/processor/datashts/318732.pdf
http://en.wikipedia.org/wiki/Q-learning

