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Abstract 

Dynamic voltage and frequency scaling (DVFS) has been 

widely used for energy reduction in the modern processors. 

How to select the optimal frequency that minimizes energy 

dissipation for the given performance constraint at runtime is 

a nontrivial problem. The problem becomes more complicated 

if temperature needs to be constrained (or minimized) 

simultaneously. The temperature, performance and energy 

have different nonlinear relationships with frequency/voltage 

scaling ratio and this relationship is closely related to the 

characteristics of hardware and applications. In this paper, we 

design a reinforcement learning algorithm to tackle the 

problem of simultaneous temperature, performance and 

energy management. The proposed approach allows 

continuous tradeoff among these three quality measurement of 

a computer system. It also enables us to set two of the 

measurements as constraints and optimize the third one. The 

proposed approach is validated on an Intel Core 2 processor 

running Linux system. 
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1. Introduction 

Dynamic voltage and frequency scaling (DVFS) has been 

widely used in modern processors for energy reduction or 

temperature control.  Traditionally, reducing the voltage and 

clock frequency of a digital IC is considered to give cubical 

reduction in its power consumption and linear reduction in its 

performance. However this trend has started to change. As 

semiconductor technology keeps scaling down, leakage power 

becomes more and more dominant in modern processors 

[1][3]. Although the DVFS technique effectively reduces the 

dynamic energy, it also increases the leakage energy because 

the system has to be kept active for a longer time [1][4]. On 

the other hand, as the CPU speed increases, the limited 

memory bandwidth has become the performance bottleneck 

for many applications with intensive memory access. For 

those memory bound applications, the DVFS technique incurs 

less performance penalty because the memory subsystem still 

works under a constant frequency [1][2][4][5]. 

DVFS technique is supported by many modern computing 

hardware and operating systems. For example, the Enhanced 

Intel SpeedStep [11] technology allows the user to 

dynamically adjust processor voltage and frequency. Modern 

OS usually provides several power management options to 
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meet different user performance requirement. For example, 

the Linux OS provides several processor frequency governors 

including Performance, Powersaver, Ondemand, and 

Conservative governors [19]. Similarly, the Windows OS also 

provides power management options such as “High 

performance”, “Power saver” and “Balanced” power 

management. The IBM Thinkpad [10] performs power 

management based on provided energy profiles. The above 

mentioned power management options give users certain 

flexibility to find trade-off between performance and energy 

saving. However the trade-off space is limited to those 

provided policies.  

Many research works have been proposed to find the optimal 

DVFS scheduling for energy and temperature reduction. 

Reference [5] uses runtime information on the statistics of the 

external memory access to perform CPU voltage and 

frequency scaling. Its goal is to minimize the energy 

consumption while translucently controlling the performance 

penalty. The authors of reference [1] take different 

frequencies of the processor as different experts. These 

experts are dynamically selected based on their weight, which 

is a function of the energy dissipation and performance 

penalty and is updated online. Reference [7] first presents a 

workload prediction model for MPEG decoder and the 

predicted workload is further used to guide the voltage and 

frequency scaling. Reference [6] presents a set of new job 

scheduling and power management policies for chip 

multiprocessors. Their impact on chip lifetime is evaluated. 

The authors of reference [8] use machine learning to 

adaptively change the frequency of the processor for the 

thermal management of multimedia applications. Reference [9] 

considers processors as producers and consumers and tunes 

their frequencies in order to minimize the stalls of the request 

queue while reducing the processors’ energy. 

All of the previously mentioned work focus on either energy 

or temperature control. In this paper, we target at 

simultaneous management of temperature, performance and 

energy (TPE) management. A low-overhead machine learning 

approach is proposed to dynamically select the processor’s 

voltage and frequency to achieve the required balance among 

energy, performance and temperature of the processor. The 

proposed controller is capable of achieving almost continuous 

tradeoff in the temperature, performance and energy space. 

The rest of the paper is organized as follows: Section 2 

discusses the impact of processor frequency/voltage scaling 

on its energy, performance and temperature. We will show the 

non-simple tradeoff space among energy, performance and 



temperature, which gives the motivation of learning based exploration. Section 3 introduces the proposed controller in 

detail and Section 4 provides the experimental results. We 

conclude the paper in Section 5.  

 

2. Impact of DVFS on processor energy, temperature   

and performance 

In this section we will investigate the relation between 

processor’s voltage/frequency and its energy, performance 

and temperature. First order analysis of the tradeoff space 

among these three parameters is provided afterward.  

In the following analysis, we use Vmax (Fmax) and V (F) to 

represent the maximum voltage (frequency) and the scaled 

voltage (frequency) of the processor. We use v and f to 

represent normalized voltage and frequency, i.e.        ⁄  

and        ⁄ . Obviously, v and f are also the scaling ratios 

of CPU voltage and frequency. 

We adopt the convention of reference [1] and refer the time 

when the CPU is actively executing as Tcpu and the time when 

the CPU stalls (due to memory access and etc.) as Tstall. 

During Tcpu, the CPU has both dynamic power consumption 

(PD) and leakage power consumption (PL), while during Tstall 

there is only leakage power consumption. The total energy of 

the processor can be calculated as the following: 

                                                                 (1) 

Our study on many commercial processors’ voltage and 

frequency settings [2][4][5][20] shows that the scaling ratio of 

the voltage is usually less than the scaling ratio of frequency. 

In other words, the scaled voltage V is usually an increasing 

and concave function of scaled frequency F. In order to 

facilitate our following discussion, we use       to 

approximate the relation between F and V, where V is the 

minimum supply voltage that achieves frequency F, a and  

are hardware related parameters and   < 1.  It is easy to 

derive the following relation between v and f: 

         
    

⁄        
⁄                                         (2) 

As in [1], we define   as the percentage contribution of 

leakage power to the total power consumption at the highest 

v-f setting when processor is running, so (1-  ) is the 

percentage contribution of dynamic power consumption. We 

define   as the percentage of time that the application spends 

on CPU when the processor is configured at the highest 

voltage and frequency, so (1- ) is the percentage of time that 

the application spends on memory access and other CPU stall 

events. According to reference [1], the normalized dynamic 

power (pD) and leakage power (pL) can be calculated as: 

         ⁄           and          ⁄    , 

where Pmax is the total power consumption of the processor 

when it is running at the highest clock frequency.  

Using Equation(1), the normalized energy (ene) can be 

calculated as the following: 

    
   

        
 (           )
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where Tmax is the total execution time when the processor 

running at the maximum frequency. Note that the TCPU can be 

reduced by increasing the frequency f while the leakage power 

during Tstall has nothing to do with the CPU frequency. 

We replace v with f

 in Equation(2)  and rewrite the 

normalized energy as a function of frequency scaling ration f: 

    (             )
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The normalized execution time t can be calculated as: 

            ⁄  
 

 
                                           (5) 

The performance is inversely proportional to the execution 

time. Hence it can also be written as a function of frequency 

scaling ratio f: 

     
 

 
 

 

        
                                                      (6)                     

In order to obtain a close form expression of the relation 

between temperature and normalized frequency f, we use a 

rough approximation that assumes the temperature to be 

proportional to the average power [18] . Therefore, the 

temperature and clock scaling ratio satisfy the following 

relation: 

       
   

 
 

                         

 

 
      

 

  
                           

        
     (7)                 

Equations (4)(6)(7) gives the relations between the 

normalized frequency f and energy, performance and 

temperature. For example, given the parameters  =0.3,   
     and  =0.45, Figure 1 shows how these three design 

metrics change as clock frequency scales. 

 
Figure 1 T, P and E versus clock frequency 

 

Given equations (4)(6)(7) and the condition that ,  and  

are in the range (0, 1), the following can be proved: 

1. The processor energy is a convex function of normalized 

frequency. It first decreases and then increases as the 

frequency increases. 

2. The performance is a concave and increasing function of 

normalized frequency. 

3. The temperature is a convex and increasing function of 

normalized frequency. 
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4. The optimal frequency for minimal energy increases when 

 increases. 

5. The performance curve will shift to right when  increases. 

6. The temperature curve will shift to left when  increases. 

In the previous discussions, for simplicity, we didn’t consider 

the fact that leakage power will increase super-linearly with 

the increasing of temperature [12]. Intuitively, such relation 

between leakage power and temperature will shift the energy 

curve to the right and increase the curvature of the 

temperature curve. It will not affect the performance curve.    

The relation among temperature, performance and energy 

determines the possible tradeoff space of the TPE 

management. From property 1 we know that there is an 

optimal frequency that minimizes the energy for the given  , 

 and α parameters. We denote this frequency as fE
*
. The user 

imposed performance and temperature constraints determine 

if such optimal frequency is achievable. Let fP denote the 

minimum frequency that satisfies the given performance 

constraint, and fT denote the maximum frequency that satisfies 

the given temperature constraint. A valid clock frequency f 

must be greater than fP and less than fT, i.e.        . 

Based on the relation among  fP , fT and fE
*
,
 
the following 4 

TPE management scenarios may happen. 

1.      : In this scenario, the performance and temperature 

constraints could never be fulfilled. 

 .         
 : In this scenario, selecting      gives the 

minimum energy while satisfying the performance and 

temperature constraints. 

3.   
       : In this scenario, selecting      gives the 

minimum energy while satisfying the performance and 

temperature constraints. 

4.      
    : In this scenario, selecting     

  gives the 

minimum energy while satisfying the performance and 

temperature constraints. 

The above analysis shows that the relative position of fP , fT 

and fE
* 
 determines how the optimal frequency will be selected. 

Such relation is specified by the user constraints. Furthermore, 

based on property 4~6 we know that the relative position of  

fP , fT and fE
* 

will change as  changes. This means that for 

different software applications and even for the same software 

application but at different time, different TPE management 

scenarios may occur. Finally, as different computing devices 

have different  and , the same set of performance and 

temperature constraints and the same software program will 

result in different relative positions of fP , fT and fE
*
 when 

running on different hardware systems, hence requires 

different TPE management policy. It is important to have an 

adaptive technique that automatically searches for the optimal 

clock frequency for TPE control when hardware and software 

changes. 

 

3. Learning based temperature, performance and 

energy (TPE) management 

3.1 General Q-learning algorithm 

Q-learning [21] is one of the most widely used reinforcement 

learning algorithms. It consists of a state space S and a set of 

actions A. Selecting an action     at state    , will lead 

the system to another state and result a reward (or penalty). A 

policy  is a mapping from the set of environment states to the 

set of actions, i.e. π: S   A. For each state action pair (s, a), it 

maintains a value function         represents the expected 

long-term reward if the system starts from state s, taking 

action a, and thereafter following policy π. Based on this 

value function, the agent decides which action should be taken 

in current state to achieve the maximum long-term rewards. 

The core of the Q-learning algorithm is the iterative update of 

the Q-value function. The Q-value for each state-action pair is 

initially chosen by the designer and later, it is updated each 

time an action is issued and a penalty is received, based on the 

following expression: 

                 ⏟    
         

          ⏟      
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]       (8)           

In the above expression,  st , at and pt are  the state, action and 

penalty at time t respectively, and                 is the 

learning rate. The discount factor γ is a value between 0 and 1 

which gives more weight to the penalties in the near future 

than the far future. The next time when state s is visited again, 

the action with the minimum Q-value will be chosen, i.e. 

                 . The value of          is updated at 

the beginning of cycle t+1, i.e., the Q-value for the state-

action pair of the previous cycle  is updated at the beginning 

of current cycle. 

 

3.2 States and actions of TPE management agent 

The environment state is a vector of four components, (f, T, 

IPS, ), they represent the clock frequency, the temperature, 

the instructions per second (IPS) and the CPU intensiveness 

respectively.    

Since our goal is to tune the processor frequency in order to 

find a balance among energy, performance and temperature, 

the current processor frequency f and temperature T must be 

selected as part of the state vector. Let N be the total number 

of clock frequencies supported by the processor, we use fi to 

denote the ith clock frequency, with f0 representing the 

minimum frequency. Similarly, we discretize the possible 

range of temperature into M levels, with T0 representing the 

ambient temperature and TM-1 representing the maximum 

temperature threshold.  

Although processor’s power consumption is also a critical 

information pertaining to the environment state, this 

information is usually not easy to obtain for many of the 

commercial processors. However, it can be inferred from 

other system information, such as IPS (instructions per 

second), clock frequency, and the workload CPU 

intensiveness[22].  

IPS (instructions per second) is an important value related to 

processor’s performance, power and temperature [8]. It is 

recorded by the performance counter of many commercial 

processors. Even if they are running under the same clock 

frequency, different programs usually have significantly 



different IPS due to events such as cache miss, branch 

prediction miss, etc. Therefore, the IPS does not fully 

represent the system performance, which in our definition, is 

the slowdown ratio of a system running at scaled frequency 

compared to the same system running at the maxim clock 

frequency.  In the Q-learning algorithm, we use both IPS and 

clock frequency to infer the state of system performance. 

Workload CPU intensiveness   is another critical feature that 

classifies environment states. As we can see from Equations 

(4)(6)(7), it directly determines the relation between T, P, E 

and the normalized frequency.  

The value of   can be calculated as the following [1]:  

      
                                     

                      
                  (9) 

                   and                    are the number 

of cycles during which instruction and data fetches are stalled. 

They can be recorded periodically in many commercial 

processors. Though there are other  architectural events that 

are related to  , such as the cycle of stalls due to TLB miss, 

branch prediction miss and etc., they are less dominant and 

cannot be monitored at the same time with the cache miss 

events in our experiment system.  

The value of IPS and  will also be discretized in order to 

obtain a finite state space. In general, the more frequency 

levels supported by the hardware, the more tradeoff we can 

achieve and the finer should the state space be partitioned. 

This is attributed to the fact that executing the same program 

using different frequency levels generally will lead to 

different levels of die temperature and CPU IPS.  Hence the 

more frequency levels supported by the hardware, the more 

detailed temperature and performance states should be divided. 

The actions of our Q-learning controller are decisions 

switching to each frequency level supported. 

 

3.3 Penalty function of learning based TPE controller 

In order to satisfy different user requirements in TPE 

management, here we propose two working modes of the 

learning based TPE controller: free mode and constrained 

mode. The TPE controller in free mode is designed for users 

that are interested in exploring the tradeoffs among 

temperature, performance and energy, while the TPE 

controller in constrained mode is designed for users that have 

specific constraints in two of these three quality 

measurements and would like to optimize the third one. The 

main difference of these two modes is in the calculation of the 

cost function (pt+1) of each state action pair, which will be 

introduced in the next. 

 

Cost function in free mode  

In this mode, in order to update the Q-value for the previous 

state-action pair (        ), we calculate the penalty      (in 

Equation (8)) in Q-learning as follows : 

                                             (10)                                                                                                                                                                        

pnltE, pnltP and pnltT are penalties associated to energy, 

performance and temperature respectively. Their definition 

will be given in the following paragraphs.    ,     and    

are the weight coefficients of the penalties which are exposed 

to the users. As we can see, pnltE, pnltP and pnltT are in 

different units and their values might not even be in the same 

order. It is very difficult to select the appropriate weight 

coefficients to achieve the desired tradeoffs. To conquer this 

problem, we normalize values of pnltE , pnltP and pnltT   with 

respect to the largest energy, performance and temperature 

penalties that can be achieved. Hence the weight coefficients 

are confined to the range (0, 1). It is easy to know that, the 

minimum temperature, maximum performance, or minimum 

energy policy can be found when the weight coefficient vector 

(wT, wP, wE) is set to (1, 0, 0), (0, 1, 0), or (0, 0, 1) respectively.  

From the discussion in Section 2 we can see that the 

normalized energy of an application is a function of f,  and . 

For the given ,  and α there is an optimal normalized clock 

frequency fE
* 
that minimizes the energy.  Deviating frequency 

from fE
* 

will increase energy dissipation. Because  and α are 

fixed for a given computing hardware, the value of fE
*
 only 

depends on the CPU intensiveness , which is an application 

specific parameter. We define the pnltE as the difference 

between f (i.e. current normalized frequency) and fE
*
. For 

discrete DVFS system, fE
* 
is rounded to the nearest frequency 

level supported by the system. Equation (11) gives the 

normalized energy penalty: 

      
     

  

         
,                                                              (11) 

where fmax and fmin are normalized maximum and minimum 

clock frequency. 

Similar to energy, the performance is also a function of f,  

and. In general, if the CPU intensiveness   is low, 

decreasing the CPU frequency will not degrade the 

performance a lot since more time will be spent on the 

memory subsystem whose frequency is fixed. We define the 

performance penalty as the extra execution time compared to 

the system running at the highest clock frequency, i.e. 

         . It is normalized with the respect of the 

maximum possible execution delay, which happens when f = 

fmin and  = 1. The normalized performance penalty is 

calculated as: 

      
        

           
                                                        (12) 

We need to point out that, today’s commercial computing 

system has architectural advances that enable out-of-order 

execution and minimize CPU stall. In all of our experiments, 

the performance penalty is almost equal to the ratio of 

frequency change. 

Lastly, we use the change of the temperature as temperature 

penalty: 

      
      

                
.                                                      (13) 

If T > Told, a positive temperature penalty will be given and if 

T < Told, a negative temperature penalty, in other words, a 

reward will be given.                  is the maximum 

temperature change in two adjacent time intervals. It is about 

2C in our experiment system.  

 

Cost function for constrained mode 



 In the free mode, the users has the freedom to tune the weight 

coefficients     ,     and    from 0 to 1 to explore the 

tradeoffs in energy, performance and temperature. In the 

constrained mode, there are user constraints on energy, 

performance or temperature which must be met. Previous 

work [15] tries to solve the performance constrained energy 

optimization problem by dynamically adjusting the weight 

coefficient in the penalty function to find minimum energy 

policy that exactly meet the performance constraint. The 

rationale of this approach is that energy is a decreasing 

function of performance. However, this is not true if we 

consider the leakage power. Furthermore, this approach will 

not work if we have more than one constraint. For example, as 

shown in Figure 1，assume that the minimum frequency that 

satisfies the performance constraint is fP and the maximum 

frequency that satisfies the temperature constraint is fT. Our 

goal is to constrain the performance and temperature, while at 

the same time minimizing the energy. As we can see, it is not 

possible to find a frequency that satisfies both performance 

and temperature constraints exactly. To make things worse, 

because we keeps increasing the value of   and    to ensure 

the satisfaction of performance and temperature constraints, 

the value of    will become relatively smaller and smaller 

compared to   and   . Hence, we may find a 

frequency/voltage setting that satisfies both 

performance/temperature constraints, but it is not guaranteed 

to be energy optimal (f=fE
*
). 

In this work, we modify the penalty function to decouple the 

two constraints. To simplify the discussion, we use the 

average T, P, and E penalties of a system to constrain its 

temperature, performance and energy. The constraints are 

denoted as conE, conP, conT. We use E, P, and T to denote 

the difference between the constraint and the actual average 

penalty during a history window for energy, performance and 

temperature respectively. The value of  will be positive if the 

system has been outperforming the user constraint during the 

history window, otherwise it will be negative. Because we are 

interested in constraining only the average performance 

(energy or temperature), we consider the system to be 

bounded when                              , otherwise, 

the system is unbounded. This basically says that if the system 

has been outperforming the user constraint during the past, 

then the penalty of the current cycle can be a little higher than 

the constraint. 

We consider the general scenario that the user may set 

constraints on any two of the T, P and E and try to optimize 

the third one, and the problem can be written as: 

        , s.t. 

          , and            . 

Here the subscripts 1, 2, and 3 can be any permutation of the 

symbols T, P and E. We refer pnlt3 as the objective penalty 

and pnlt1 and pnlt2 as constrained penalties.  

The modified penalty function considers 4 scenarios: 

     {

                                                                       

                                                  

                                                   
                                                                           

 

                                                                                                                    (14) 

In the above equation, C is a large constant. Based on the 

modified penalty function, when the system is bounded, the 

Q-learning algorithm will search for policies that minimize 

the objective penalty. As soon as the system becomes 

unbounded in one or both of the constrains, the penalty 

function will be modified and the Q-learning algorithm will 

search for policies that balances the objective penalty and 

constrained penalty (or penalties). During this procedure, it 

puts more emphasis on improving the constrained penalty.  

 We need to point out that, if the objective is to minimize the 

energy dissipation with the performance and temperature 

constraint, it can be proved that as long as the performance 

and temperature constraints are feasible, scenario 4 in the 

penalty function is not reachable. In other words, performance 

and temperature constraints will not be violated at the same 

time. However, if the constraints are in any other two metrics, 

all of the 4 scenarios are reachable. 

Another point need to be mentioned is that the temperature 

penalty is calculated based on temperature changes as shown 

in Equation (13) rather than the absolute temperature. So 

when the temperature constraint is violated, the action leading 

to the reducing of the temperature will lead to a negative 

penalty (i.e. reward) to reinforce the corresponding action. 

 

4. Experimental results 

4.1 Experiment setup 

We carried experiments on Dell Precision T3400 workstation 

with Intel Core 2 Duo E8400 Processor. The processor 

supports 4 frequency levels: 2GHz, 2.33GHZ, 2.67GHz, 

3GHz. The Linux kernel we use is version 2.6.29.  

We used coretemp driver in the Linux kernel to read the 

temperature sensor of the processors. The default driver 

updates temperature readings once every second and we 

modified it to be every 10ms to achieve our required 

granularity. We used cpufreq driver in Linux based on 

Enhanced SpeedStep[11] technology of Intel Core 2 processor 

to adjust the processor’s frequency. We used Perform2 tool 

[13]  to monitor performance events of the processors. 

We used benchmarks from MiBench [17] and MediaBench 

[16] to form the workload of the evaluation system. Our goal 

is to generate workloads with changing CPU intensiveness. 

The benchmarks we selected are: bitcount_small, 

basicmath_small, qsort_large, tiff2rgba, mpeg4dec, and 

jpeg200dec together with a simple custom application with 

only CPU busy loops. Their CPU intensiveness varies from 11% 

to almost 100% with an average of 82% according to our 

measurement. Each benchmark running a little more than 0.2s 

under minimum frequency is a running unit. We serialized 

100 running units of different benchmarks in 4 different 

random orders to construct 4 ‘workloads’. Every experiment 

result reported here is the average of the 4 ‘workloads’.  

Since the proposed algorithm considers the TPE management 

of only one core, we ran the experiments on one core and 

fixed the frequency of the other core to be the minimum. The 

Q-learning controller was triggered every 20ms. Empirically, 

this interval will not exert too much overhead to the processor 



while still capable of tracking the change of workload. The 

overhead of frequency change is only about 20us. 

As mentioned in Section 3, we represent the environment state 

using a state vector (f, T, IPS, µ). Since the processor supports 

4 frequency levels, f has 4 states. We further partition the 

CPU intensiveness  into 4 states, so that fi is corresponding 

to the ideal frequency fE
*
 when  = µi, 1≤i≤4. Such partition 

enables us to measure the energy penalty using the deviations 

from the ideal frequency. Our goal is to evaluate our TPE 

controller’s ability of tracking the CPU intensiveness for the 

energy reduction. The temperature and IPS are also 

empirically partitioned into 4 states as there are 4 frequency 

levels. 

 

4.2 Results and analysis  

4.2.1 Free mode TPE management 

In the first set of experiments, we swept the value of wE, wP, 

and wT from 0 to 1 and recorded the average temperature, 

performance and energy penalty. In order to compare the 

performance of the proposed learning algorithm with the 

state-of-art approach, we modified the expert-based algorithm 

in [1] based on our best understanding to achieve tradeoff 

among T, P and E. We also ran the Linux Ondemand 

governor for comparison. We swept the up_threshold of 

Ondemand governor [19] to achieve tradeoff between 

performance and energy.  

Since we have three features, including energy, performance 

and temperature, two figures are presented in the next to show 

the relation between energy and performance (Figure 2) as 

well as the relation between temperature and performance 

(Figure 3). 

In both figures, the X-axis gives the normalized execution 

time (performance) of the workloads. The Y-axis in Figure 2 

gives normalized energy while the Y-axis in Figure 3 gives 

the normalized temperature. Our experiment data show that, 

the test case that has the best performance is 7.5 seconds 

faster than the test case that has the worst performance. In 

general, the former executes the entire workload at the highest 

clock frequency while the latter at the lowest frequency. In 

terms of the die temperature, the test case that has the lowest 

temperature is 7C cooler than the test case that has the 

highest temperature. Because we cannot measure the real 

energy dissipation, we use Equation (11) to estimate the 

average energy penalty during the workload execution. Its 

value varies from 0.13 to 0.58 in best case and worst case 

respectively.  

The results shown in Figure 2 and Figure 3 in general agree 

with our analysis in Section 2. When the execution time 

increases (i.e. the performance reduces), the energy will first 

decrease then increase. The minimum energy is achieved 

when the normalized execution time is around 0.4. We believe 

that this is approximately the average fE
*
 of the testing 

workloads under the given hardware characteristics (i.e.  and 

α) and the workload’s average CPU intensiveness (i.e. µ). We 

also need to point out that the TPE controller sometimes gives 

policy with higher energy and longer execution time 

compared to the energy optimal policy. These policies are 

corresponding to the data points located in the upper right 

corner in Figure 2. This is because, for those test cases, the 

weight coefficient of temperature is much larger than the 

weight coefficients of performance and energy. Therefore, the 

TPE controller slows down the performance to reduce 

temperature. As the clock frequency drops below fE
*
, the 

energy dissipation increases.  

 
Figure 2 Energy versus performance tradeoffs 

 

 
Figure 3 Temperature versus performance tradeoffs 

 

As we can see from the figures, the proposed TPE controller 

generally achieves lower energy dissipation than the expert-

based controller for the same performance level. And it 

performs better on the temperature control at low performance 

level.  

The Linux default Ondemand governor can only achieve very 

limited tradeoffs. The rightmost point in Figure 2 and Figure 3 

is achieved by setting up_threshold to 100. This makes the 

processor running at the lowest frequency all the time. Setting  

up_threshold to any other values results in very similar energy 

performance tradeoffs. The corresponding energy delay points 

are located in the upper left corner in Figure 2 and Figure 3. 

This is because the Ondemand governor will provide the 

highest frequency as long as there are applications running, no 

matter what kind of application it is. 

Figure 4, Figure 5 and Figure 6  show the how the 

temperature, delay and energy change when the corresponding 

weight coefficients vary from 0 to 1. In all experiments, the 

other two weight coefficients are both fixed to 0, 0.4 and 1 

separately. The points when (wT, wP, wE) equals to (0, 0, 0) are 
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ignored in the figure because those weight coefficient settings 

give random policies. As we can see, in general, increasing 

the T, P, and E weight coefficient, the learning algorithm will 

find policy with smaller energy, higher performance and 

lower temperature respectively. However, the actual 

performance, energy and temperature are determined by the 

relative value of the weight coefficients.  For example, Figure 

5 shows that increasing wP  from 0 to 1 with (wT, wE) setting to 

( 0, 0) does not reduce the execution time  because the relative 

value of wP (compared to wT and wE) does not change. On the 

other hand, increasing wP  from 0 to 1 with (wT, wE) setting to 

(0.4, 0.4) can significantly reduce the execution time because 

now the relative value of wP increases notably. However, if 

(wT, wE) is set to (1,1)，then the potential of performance 

improvement reduces again because with energy and 

temperature being the first optimization priority, there is much 

less flexibility for performance optimization. The same trend 

can be observed for the temperature and energy as shown in 

Figure 4 and Figure 6. 

 

Figure 4. Controlling temperature using     

 

 

Figure 5. Controlling performance using     

 

 
Figure 6. Controlling energy using     

 

4.2.2 Constrained mode TPE management 

In the second set of experiments, we set two constraints 

among temperature, performance and energy, and try to 

optimize the third one. 

 

            Performance                                                                     

                              

Temperature 

 0.34 

(constraint) 

0.67 

(constraint) 

       1 

(constraint) 

0.34(constraint)        0.27 

0.45 

   0.42 

0.31 

       0.64 

0.25 

0.67(constraint)         0.24 

0.48 

      0.37 

0.42 

       0.61           

0.31 

  1  (constraint)        0.26 

0.49 

        0.38 

0.44 

        0.60 

0.35 

Table 1 Constraining performance and temperature 

 

        Energy 

 

Performance 

 0.34 

(constraint) 

0.67 

(constraint) 

       1 

(constraint) 

0.34(constraint)         0.41 

0.30 

         0.40 

0.33 

         0.41 

0.30  

0.67(constraint)         0.31 

0.53 

         0.41 

0.59 

         0.43 

0.59 

  1    (constraint)          0.21    

0.69 

         0.35 

0.90 

          0.45 

0.99 

Table 2 Constraining energy and performance 

 

                Energy 

 

Temperature 

 0.34 

(constraint) 

0.67 

(constraint) 

        1 

(constraint) 

0.34(constraint)          0.38 

0.36 

        0.41 

0.37 

          0.46 

0.40 

0.67(constraint)          0.39 

0.43 

         0.42 

0.46 

          0.51 

0.55 

  1  (constraint)           0.37 

0.44 

         0.42 

0.49 

           0.56 

0.65 

Table 3 Constraining energy and temperature 

 

The results are shown in Table 1,Table 2 and Table 3. In these 

tables, the performance is represented by average normalized 

performance penalty calculated based on Equation (12). 

Therefore, a large number corresponds to poor performance. 

The energy is the average energy penalty calculated based on 

Equation (11). The temperature is the average normalized 

temperature of the CPU. Each row and column in those tables 

associates to a user constraint in either temperature, 
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performance or energy. Because our platform only supports 4 

frequency levels and the frequency increases linearly at an 

equal step from level 1 to level 4, the corresponding 

normalized temperature and performance for those frequency 

levels should also change at an equal step. To better show our 

results, we set the constraints to be 0.34, 0.67 and 1 as shown 

in the tables. Each cell in those tables has two fields. They 

give the actual achieved value in those two quality 

measurements with user constraints. For example, the cell in 

row 1 and column 1 of Table 1 shows that the actual 

normalized temperature and performance of the system is 0.45 

and 0.27 respectively when the performance and temperature 

constraint are both set to 0.34. 

Each cell is shaded differently according to the results of the 

third metric (i.e. the objective penalty). The lighter the cell is, 

the better the optimization we achieve.  As we can see, in all 3 

tables, the upper left cell has the darkest color because it 

corresponds to the most stringent user constraints and hence 

leaves almost no room for the optimization of the 3
rd

 metrics. 

On the contrary, the bottom right cell has the lightest color 

because it corresponds to the most relaxed constraints. 

We can see that sometimes TPE controller cannot find a 

policy that satisfies both user constraints. For example, the 

entries (1,1) in all 3 tables have constraint violations. 

Sometime, the TPE controller finds policies that exactly 

satisfies one of the constraints and outperforms the other. 

These cases include: entry (1, 2) in Table 1, entries (1, 2), (1, 

3), (2, 1), (3, 1), (3, 2) and (3, 3) in Table 2. For the rest of 

times, the TPE controller finds policies that outperform both 

user constraints. This clearly shows that the relation among T, 

P and E are not monotonic. We cannot optimize one metric by 

setting the other (one or two) metrics exactly to the given user 

constraints. For example, consider cell (2,2) in Table 1. The 

user set a loose performance and temperature constraint 

(conP=conT=0.67) in order to optimize the energy. However 

the result shows that the policy that minimizes the energy 

actually does not have to work so slowly and will not generate 

so much heat. Clearly in this test case, we have      
     

which corresponds to the last category presented in Section 2. 

The experimental results also show that, generally without the 

prior knowledge of the values of , α, and µ, (which 

correspond to the knowledge of hardware and software), our 

TPE controller can correctly learn the TPE tradeoff space and 

give effective control policies. The only information we need 

to know related to the hardware is the mapping of different 

workload CPU intensiveness to the ideal working frequency 

  
  for the energy optimization purpose. This requirement can 

be removed if there is a way to measure the processor’s power 

online. 

 

5. Conclusion 

In this paper, we first discuss the impact of voltage and 

frequency scaling on processor’s temperature, performance 

and energy. And then we present a Q-learning based 

controller to dynamically adjust the processor’s clock 

frequency to get the desired tradeoff among temperature, 

performance and energy. The proposed TPE controller works 

at two modes. At the free mode, it controller allows the user to 

explore the tradeoff by tuning the weight coefficients in the 

penalty function. At the constrained mode, the controller 

allows the user to set constraints to two out of the three 

parameters in T, P and E, while optimizes the third one. The 

experimental results show that the proposed controller learns 

the temperature, performance and energy tradeoff space of the 

experiment system and performs effect control without priori 

knowledge of hardware and software. 
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