
Copyright © 2014 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics
Vol. 10, 1–16, 2014

Distributed Task Migration in a Homogeneous
Many-Core System for Leakage and

Fan Power Reduction

Yang Ge1�∗, Yukan Zhang2, and Qinru Qiu2
1Broadcom Corporation, 5300 California Avenue, Irvine, CA, 92617, USA

2Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 13210, USA

(Received: 16 June 2014; Accepted: 3 October 2014)

In this paper we explore the tradeoff between the leakage power and fan power to dynamically
migrate tasks to minimize the overall power consumption in a homogeneous many-core processor.
Our analysis shows that the overall power can be minimized if a task allocation for minimum peak
temperature is adopted together with an intelligent fan speed adjustment that finds the optimal
tradeoff between fan power and leakage power. We propose a method to compute the lower bound
on the minimum peak temperature among all possible allocations of given a task set. We further
propose two global heuristic task mapping algorithms and a multi-agent distributed task migration
framework that minimizes the peak temperature during runtime. The proposed framework achieves
large fan power saving as well as overall power reduction. Experimental results show that, given a
tight temperature constraint, our distributed task migration policy can save up to 38.5% fan power
and 28.9% overall system power compared to the best random mapping policy. Our data also show
that the overall system power is insensitive to the task allocation when the temperature constraint
is loose.

Keywords: Low Power, Task Allocation, Thermal Aware, Multi-Agent Distributed Framework.

1. INTRODUCTION
The ever-increasing power consumption of the computing
device challenges the cooling system at different levels.
At data center level, the cooling infrastructure is becom-
ing a limiting factor. The annual cooling cost for a large
data center can reach up to tens of millions of dollars. At
micro-architecture level, increased power density has set
up a “Power Wall” which blocks the microprocessor’s per-
formance improvement, and the clock frequency growth is
restricted due to the thermal issue. To cool down the pro-
cessor, a typical cooling fan can consume up to 20%∼50%
power budget of a server.3�12�26

Multi-core architecture has recently become the dom-
inant design platform as it explores task and application
parallelism in a power efficient way and hence relieves the
power and thermal crisis. With the unprecedented num-
ber of transistors integrated on a single chip, the current
multi-core trend may soon progress to hundreds or thou-
sands of cores era. Examples of such system are the 80 tile

∗Author to whom correspondence should be addressed.
Email: yangge@broadcom.com

network-on-chip that has been fabricated and tested by
Intel,20 Tilera’s 64 core TILE64 processor,1 and Intel’s Sin-
gle Chip Cloud Computer (SCC).10

Even in a homogeneous multi-core system, highly het-
erogeneous workload on different cores can produce local
hotspot and create large thermal gradient. Elevated core
temperature increases leakage current and stresses the
cooling system. The cooling fan has to operate at a speed
to accommodate the worst case power density and guaran-
tee the chip temperature under a safe threshold anywhere
and anytime. This would require the fan operating at high
speed to maintain fast air flow and strong heat dissipation
ability. However, operating at high speed for long time
consume more energy and reduce fan life time.3

This work is an extension of our original research.22

In this paper, we focus on the overall power con-
sumption of a homogeneous multi-/many core processor.
This consists of three components, dynamic power, static
power, and fan power. The goal is to find the efficient
task mapping that minimizes the overall power. Due to
the homogeneity, task mapping has little impact on the
total dynamic power consumption. However, it changes

J. Low Power Electron. 2014, Vol. 10, No. 4 1546-1998/2014/10/001/016 doi:10.1166/jolpe.2014.1357 1

Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction Ge et al.

the temperature distribution across the system and can
potentially affect the leakage power and fan power. While
the leakage power is determined by the average tempera-
ture, the fan power is determined by the peak temperature.
Intuitively they require different optimization techniques.
However, for a given workload, the chip leakage power
can be approximated to a linear function of the convective
resistance of the cooling system while the fan power is
an inverse cubic function of the same parameter. As we
will show in Section 4 that the impact on leakage power
from task mapping is negligible if the fan speed is given.
Our analysis shows that the overall power can be mini-
mized if a task allocation for minimum peak temperature
is adopted together with an intelligent fan speed adjust-
ment that finds the best tradeoff between fan power and
leakage power.17 We also find that the impact of task allo-
cation on the overall system power is significant when the
temperature constraint is tight. When the temperature con-
straint is loose, the overall system power is insensitive to
task allocation.
We formulate the minimum peak temperature task allo-

cation problem as a zero-one linear programming and
study the lower bound of its solution. Two centralized
heuristic algorithms with linear complexity are proposed,
which produce peak temperature close to the lower bound.
In reality, the overhead for centralized monitor and con-
trol will be prohibitively large when the number of cores
increases. Therefore, we further propose an agent based
distributed task migration algorithm for peak temperature
reduction. Our agent based algorithm has good scalabil-
ity and achieves up to 28.9% power savings compare to a
random mapping policy.
The following summarizes the key contributions of this

work.
• We provide an algorithm that finds the lower bound of
the peak temperature for a given task set over all possible
task mappings. This consequently defines the lower bound
of the cooling fan power. The derivation procedure also
suggests an “ideal” (not necessarily feasible) task mapping
to reach the lower bound. Following the “ideal” mapping,
two low overhead task mapping heuristics, which achieve
near optimal peak temperature, are proposed.
• We also propose a distributed task mapping algorithm
that is equally powerful as the centralized approach in peak
temperature reduction. The disturbed algorithm does not
require any central control, so the communication cost and
task migration overhead for each core remain constant as
the number of cores in the system increases.

Comparing to our original work in Ref. [22], the first
major extension of this paper is a thorough study of the
problem of peak temperature minimization with fixed task
set. The lower bound of peak temperature is derived by
relaxing the original binary linear programming problem
to a standard convex linear programming problem. A con-
structive technique is proposed that leads to the optimal

task allocation for minimum peak temperature. Two task
mapping heuristics are further presented. Both of them
convert the original problem to a Linear Sum Assignment
Problem (LSAP).
The second major extension of this paper is the enriched

experimental results section. We compare the lower bound
of the peak temperature with the actual peak temperature
obtained using centralized task allocation, distributed task
allocation and random allocation. Our experimental results
show that distributed policy achieves similar peak tem-
perature reduction as centralized policies. We also discuss
how to improve the distributed policy for extreme cases in
which all high power tasks are initially mapped close to
each other.
The rest of the paper is organized as follows: Section 2

reviews the previous work. Section 3 introduces the
multi-/many-core system model, the system power, ther-
mal model and cooling system model. We formulate the
task allocation problem in Section 4. In Section 5 we
present the global and distributed temperature aware task
migration algorithm. Experimental results are reported in
Section 6. Finally, we conclude the paper in Section 7.

2. RELATED WORK
Various dynamic thermal management (DTM) techniques
have been studied at different levels.6�8�14 Most of these
works rely on a widely used thermal modeling tool
Hotspot18 for fast thermal analysis. At micro-architecture
level, DTM techniques such as clock gating, dynamic volt-
age and frequency scaling (DVFS), thread migration has
been thoroughly explored.8

At system level, different approaches have been taken to
tackle the issues of high processor operating temperature.
Thermal aware task allocation and task migration has been
studied in Refs. [6,15]. A multiple-input-multiple-output
optimal control theory based power and thermal control
algorithm has been proposed in Ref. [21]. The algorithm
can control the power of the chip to a specific set point and
maintain the chip temperature under a threshold. All these
works use a centralized controller to monitor and manage
system dynamics. Centralized control does not scale very
well as the number of processors increases, because the
complexity of the optimization problem and the communi-
cation overhead could grow exponentially. Several proac-
tive thermal management scheme has been proposed.7�23

They utilized different temperature prediction model to
accurately estimate the future temperature in different sce-
narios and take actions in advance to prevent thermal emer-
gencies. However, these works only focus on temperature
optimization without considering its impact on cooling fan
power.
The problem of reducing peak power and tempera-

ture for many-core chips has also been addressed in
some recent works.24�25 Ref. [24] proposes a space/timing-
division multiplexing based technique to reduce the peak

2 J. Low Power Electron. 10, 1–16, 2014

Ge et al. Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction

power consumption of a 3D many-core chip. The authors
tackle the peak power reduction problem using two steps.
In the first step, they determine the minimum number of
power converters needed to satisfy the power demands
of all cores and classify converters and cores into differ-
ent subgroups based on their voltage level. In the sec-
ond step, workload is further balanced among cores within
a subgroup and across timing slots. Ref. [25] proposes
a three-level thermal aware task scheduler to reduce the
NoC temperature. The global level scheduler determines
the priority and dependency among tasks. The cluster level
scheduler performs thermal aware task mapping. And the
local scheduler executes the tasks based on their priori-
ties. While Ref. [24] aims at peak power reduction, our
goal is to achieve lower peak temperature, which helps to
reduce the fan power and overall system power. This work
also differs from Ref. [25] in several aspects. First, it takes
advantage of the variation in the heat dissipation ability
of cores during task mapping. Second, our task mapping
algorithm is truly distributed, whereas Ref. [25] still needs
a central scheduler.

At higher level, power and temperature management
techniques for servers, for ensembles and even for data
centers have been proposed in the previous works.
In Ref. [14], a model for data center air conditioner cool-
ing efficiency has been proposed. In Ref. [19], the heat
transfer in data center has been studied thoroughly and a
linear heat recirculation model has been introduced. Based
on these works, an online workload allocation algorithm
for data center has been proposed in Ref. [16]. They pre-
dict the future incoming requests and solve an integer lin-
ear programming problem online to allocate the workload
and optimally turn on or turn off those servers in a data
center.

Recently, the cooling fan power optimization has
received noticeable attention. In Ref. [17], a joint fan
power and processor leakage power consumption opti-
mization has been considered. They formulate the problem
as a convex optimization problem and solve it to obtain the
optimum fan speed. Yet this work assumes fixed task map-
ping, while our work exploiting the benefits of task map-
ping on temperature reduction. In Ref. [3], fan cooling cost
minimization for a multi-machine system has been stud-
ied. The authors intelligently adjust the workload at virtual
machine level and CPU socket level to achieve large fan
energy savings.

3. SYSTEM MODEL
3.1. Processor Model
In this paper, we consider a tile-based network-on-chip
many-core architecture.20 Each tile is a processor with ded-
icated memory and an embedded router. It will also be
referred to as core in this paper. All the processors and
routers are connected by an on-chip network where infor-
mation is communicated via packet transmission. We refer

to the cores that can reach to each other via one-hop com-
munication as the nearest neighbors.
We assume the existence of a temperature sensor on

each core. A temperature sensor can be a simple diode
with reasonably fast and accurate response.8 We also
assume that a dedicated OS layer is running on each core
that provides functions for scheduling, resource manage-
ment as well as communication with other cores.

3.2. Processor Thermal Model
Due to the duality between heat transfer and RC circuits,
we abstract the many-core system as an RC network. Let
n denote the number of all thermal nodes in the system,
including those in the heat sink layer and heat spread layer.
Let N denote the number of processors in the system. The
relation between n and N is determined by the equation
n= 4×N +12�18 Let TSSi and Pi denote the steady state
temperature and average power consumption of node i.
Let TSS and P denote vector of TSSi and Pi, 1 ≤ i ≤ n.
When the system reaches the steady state, the temperature
of each thermal node is a linear function of power con-
sumptions P1� P2� � � � � Pn. The relation can be represented
by the following equation

TSS =G−1P (1)

where G−1 = �gij � is the inverse matrix of thermal conduc-
tance matrix G. We simplify Eq. (1) by keeping only the
thermal nodes related to the processors:⎛

⎜⎜⎜⎝
T1

���

TN

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

g11 · · · g1N

���
� � �

���

gN 1 · · · gNN

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

P1

���

PN

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

D1

���

DN

⎞
⎟⎟⎟⎠ (2)

where N is the number of processors, and Di =∑n
j=N+1 gij ·Pj . In this equation, gij are thermal RC net-

work related parameters. They depend on the chip physical
layout, thermal parameters of the material, etc. They are
constants for a given chip. Pj� j ∈ �N +1� n� are the power
consumption of the thermal nodes correspond to heat sink
and heat spreader and they does not change. Please note
that heat sink and heat spreader does not really consume
power, but Hotspot thermal modeling tool converts the
ambient temperature to the equivalent power consumption
of these nodes. The coefficients gij and Di� 1 ≤ i� j ≤ N
can be obtained by offline analysis. Equation (2) shows
that the steady state temperature of each processor is a
linear function of the average power consumptions on all
processors and increasing/decreasing the power consump-
tion of one processor will have an impact on the steady
state temperature of all other processors.

3.3. Processor Cooling Model
Using TILERA TILE64 processor1 and Intel SCC10 as ref-
erence, we assume that there is only one standard heat

J. Low Power Electron. 10, 1–16, 2014 3

Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction Ge et al.

sink and one cooling fan for the entire many-core system.
Our cooling system model follows the previous works in
Refs. [3 and 17].
The heat generated in the die layer is transferred through

the heat sink layer to the ambient environment and is
brought away by the cool air flow provided by the fan.
The speed of the air flow determines how efficiently the
heat can be dissipated and thus determines the temperature
of the die. This heat dissipation ability is characterized by
a convective thermal resistance Rconv. The faster of the air
flow speed, the more easily the heat can be dissipated, and
the lower the convective resistance will be. According to
Ref. [3] the convective resistance Rconv is proportional to
V −�, where V is the airflow speed and � is a constant
between 0.8 and 1.0. The airflow speed is determined by
the fan speed, which in turn controls the fan power con-
sumption. It has been pointed out in Ref. [17] that the fan
power has cubic relation with the fan speed, i.e., Pfan ∝ V 3.
With all this information, we obtained the relation between
the fan power consumption Pfan and convective thermal
resistance Rconv.

Pfan ∝ R
− 3

�
conv (3)

We next model the relation between the convective resis-
tance and the die temperature. Although the Hotspot18

provides a detailed and accurate thermal model at micro-
architecture level, its complexity is too high to be used
analytically. And it does not directly reveal the relation
between convective resistance and the die temperature.
Therefore, we adopted a simple yet accurate model3 as
shown in Figure 1. In this model, Pi, Ci, and Ri are the
power consumption, thermal capacitance and die to pack-
age thermal resistance of processor i respectively. Rhs is
the thermal resistance of heat spreader and heat sink, and
Rconv is the convective resistance.
Similar to Refs. [3 and 17], we are only interested in

the temperature at steady state when the system reaches
the equilibrium. This is because the time constant of heat
sink is much larger than the time constant of the core.
Therefore all the capacitors in the system are open circuit

Fig. 1. Simplified multiprocessor thermal model.

and only thermal resistances will be considered. Then the
die temperature Ti of core i can be computed as

Ti = PiRi+Rhs

N∑
i=1

Pi+Rconv

N∑
i=1

Pi (4)

If the power consumption of core i does not change, the
die temperature of core i is a linear function of Rconv. To
verify the simple model, we run the simulation in Hotspot
to obtain the die temperature of core by varying the con-
vective thermal resistance. Figure 2 shows that the simu-
lated core temperature and the core temperature predicted
by the linear model matches very well.

3.4. Leakage Power Model
The leakage power consumption of a processor depends
on the die temperature, supply voltage and a number of
other factors. If the supply voltage is constant, the leakage
power consumption can be expressed as follows:17

Pleak = A1T
2
d e

A2/Td +A3 (5)

Where A1, A2 and A3 are constants that depend on pro-
cessing technology and supply voltage, and Td is the die
temperature. It has been pointed out in Ref. [13] that the
leakage power can be approximated using a linear model
with less than 5% error over a large temperature range
from 20 �C to 120 �C. We approximate the leakage power
using its first order Taylor expansion at 80 �C and compare
the linear approximation model with the original model in
Figure 3. The green line is the linear approximation while
the red line is the original model given by Eq. (5). Figure 3
shows that the linear model has very small error compared
to the original model over the range of normal operating
temperature, which is between 60 �C and 100 �C.
Based on the above results, we approximate the

leakage power of the ith core using a linear model

Fig. 2. Linear approximation of relation between die temperature and
convective resistance.

4 J. Low Power Electron. 10, 1–16, 2014

Ge et al. Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction

330 340 350 360 370 380
10

10.5

11

11.5

12

12.5

13

13.5

Temperature (K)

Le
ak

ag
e

po
w

er
 (

m
W

)

Accurate model

Linear approxiamation

Fig. 3. Linear approximation of leakage power model.

Pleak� i = aTd� i+b, where Td� i is the average die temper-
ature of the core, a and b are two scalars. The total
leakage power consumption can be simply calculated as
Pleaktotal = a

∑
Td� i+Nb = NaTd−avg+Nb, where Td−avg =∑N

i=1 Td� i/N is the average temperature of N cores. Thus
the total chip leakage power can be approximated as a lin-
ear function of average die temperature. Because Td� i is
linearly proportional to Rconv, the leakage power Pleaktotal is
also a linear function of the convective resistance.

4. PROBLEM FORMULATION AND
ANALYSIS

In this section, we study the impact of task allocation on
the overall system power. The overall power consumption
is the sum of the CPU power consumption and the fan
power consumption while the CPU power consumption
consists of dynamic power and leakage power. Therefore
the overall power consumption model can be written as
follows.

Ptotal = Pdyn+Pleak+Pfan (6)

In a homogeneous multi-core system, task allocation has
little impact on the dynamic power consumption because
all cores are identical. However, because task allocation
changes the temperature distribution across the system, it
has the potential to change the leakage power and fan
power, which are temperature related.

To show the relation between task allocation and leak-
age power consumption, we randomly generate 100 groups
of task allocation for a given workload and compare their
leakage power consumption on a 36-core multiprocessor.
The workload consists of 36 tasks whose power consump-
tion varies from 10 mW to 20 mW (details about workload
generation are described in Section 6). Figure 4 shows
the leakage power for all 100 groups as the convective
resistance increases. The leakage power consumption for

0.01 0.011 0.012 0.013

410

415

420

Convective resistance (ºC/W)

F
ul

l c
hi

p
le

ak
ag

e
co

ns
um

pt
io

n
(m

w
)

Fig. 4. The relation between full chip leakage power consumption and
different task allocations.

the worst mapping and the best mapping differs only by
less than 1% for a given convective resistance. This is
intuitively correct. The leakage power is linearly propor-
tional to the average die temperature, which is determined
by the average power density across the chip. Since the
task allocation has little impact on the processor’s dynamic
power consumption, which is still the dominant part of
the CPU power consumption when it is actively running,
it does not significantly change the average chip tempera-
ture either. Consequently, the leakage power remains sta-
ble. Figure 5(a) shows the average die temperature for
those 100 different random mappings as the convective
resistance increases. (The blue line that lies at the bot-
tom corresponds to the task allocation that is found by
our multi-agent distributed task migration framework that
will be introduced in the next section.) As we can see,
the maximum difference in average die temperature is less
than 1 �C.
From the experimental results we have two observations,

(1) for a given Rconv, the leakage power can be consid-
ered to be independent of the task allocation, (2) when
the workload is given, the only parameter that controls
the leakage power is the fan speed which is reflected by
Rconv. Their relation can be represented by a linear func-
tion: Pleak = c1Rconv+ c2.
On the other hand, different task allocations signifi-

cantly affect the peak temperature. In order to bring the
peak temperature below the constraint, the fan speed needs
to be adjusted accordingly, which in turn leads to different
Rconv. For example, Figure 5(b) shows the maximum chip
temperature of 100 different mappings as the convective
resistance increases. (Again, the blue line that lies at the
bottom corresponds to the task allocation that is found by
our multi-agent distributed task migration framework.) We
can see that the difference in peak temperature is more
than 10 �C. Note that because the average temperatures
for different allocations are almost the same, the task allo-
cation that gives the lowest peak temperature is the one

J. Low Power Electron. 10, 1–16, 2014 5

Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction Ge et al.

(a)

(b)

Fig. 5. Comparison of average and maximum temperature of different
task allocations.

that generates the most balanced temperature distribution.
A task allocation that generates highly unbalanced temper-
ature distribution will put more stress on the cooling fan,
thus increase the fan power consumption. However, as the
speed of cooling fan increases, the average chip temper-
ature will decrease and therefore bring down the leakage
power. When searching for the optimal task mapping, we
need to consider the tradeoff between fan power and leak-
age power.
Because Pdyn is independent of thermal convective

resistance, Pleak is linearly proportional to convective resis-
tance and Pfan is an inverse cubic function of the con-
vective resistance, the overall power consumption is a
convex function of the convective resistance. There will
be an optimal convective resistance R∗

conv (corresponding
to the optimal fan speed) which minimizes the overall
system power. Furthermore, because task allocation has

little impact on Pdyn and Pleak for a given workload, the
same relation between the overall power consumption and
the convective resistance can be applied to different task
allocations.
Figure 6 shows the overall power consumption and the

peak temperature under different task allocations as func-
tions of the convective resistance. Figure 6(a) shows the
scenario when the temperature constraint is strict and the
convective resistance (i.e., r1�max and r2�max� that exactly
bring the peak temperature to the constraint are located to
the left of R∗

conv. In this case the overall power is domi-
nated by the fan power. Increasing the fan speed can only
increase the overall power consumption. The best task allo-
cation that minimizes the overall system power is alloca-
tion 2 which has lower peak temperature than allocation
1 under the same Rconv. Figure 6(b) shows the scenario
when the temperature constraint is loose and the convec-
tive resistance that could bring the peak temperature to the
constraint are located to the right of R∗

conv. With a loose
temperature constraint, the fan power does not dominate
the overall power alone; leakage power plays an important
role as well. Increase the fan speed will increase the fan
power but also reduce the temperature and leakage power.
In this case, the leakage power reduction surpasses the
fan power increase. For both allocation 1 and 2, setting
the convective resistance to R∗

conv can minimize the overall
power while satisfying the temperature constraint. In this
scenario, power consumption is not sensitive to task allo-
cation. Any allocation scheme whose rmax is greater than
R∗

conv could be used together with a fan speed adjustment
method to find the optimal tradeoff between the fan power
and the leakage power. Obviously, among all possible task
allocations, the allocation that minimizes the peak temper-
ature is most likely to satisfy this property.
Based on these observations, we concluded that, to opti-

mize the overall power consumption, there are two steps.
First is to find the task allocation that minimizes the peak
temperature. Second is to adjust the fan speed to find the
optimal tradeoff between fan power and leakage power
such that the overall power consumption is minimized and
the temperature constraint is satisfied. The second step
could be achieved by using feedback control or the method
proposed in Ref. [17] while the first step will be discussed
in detail in the following sections. Please note that in the
first step, we fix the fan speed/convective resistance and
use the temperature model in Section 3.2 while in the
second step, we fix the task mapping and use the cool-
ing model in Section 3.3. Our task allocation algorithm
can also be combined with other active cooling methods,
e.g., micro-fluidic cooling. Micro-fluidic cooling pumps
the coolant into the micro-channels. Its cooling ability as
well as the pumping power depends on the fluid flow
rate.28 This is conceptually similar to the relation between
cooling fan’s power consumption and the fan speed.

6 J. Low Power Electron. 10, 1–16, 2014

Ge et al. Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction

(ºC/W)

(ºC/W)

Overall power (W)(a)

allocation 2
opt power

allocation 1
opt power

R*
conv

Peak temperature (ºC)

Temperature
constraint

allocation 1

allocation 2

r1max r2max

(ºC/W)

(ºC/W)

(b)

allocation 2
opt power

allocation 1
opt power

R*
conv

Peak temperature (ºC)

Temperature
constraint

r1max r2max

Overall power (W)

allocation 1

allocation 2

Fig. 6. The overall power consumption depend on convective resistance.

5. TASK ALLOCATION FOR MINIMAL
PEAK TEMPERATURE

Based on the analysis in the previous section, we will
focus on searching for the optimal task allocation that min-
imizes the peak temperature among all cores.

In the following subsections, we first present an exact
formulation of this problem, which is a zero-one min-
max problem. Because the exact solution of the zero-one
min-max problem is hard to find, we do not try to solve
it directly. Instead, we will prove a sufficient condition
for the optimal task allocation. Based on the sufficient
condition, we derive a lower bound for the optimization
problem. We then present two heuristics for centralized
management of task allocation. At the end, we present
a distributed multi-agent task migration framework that
searches for the best task allocation during runtime.

5.1. An Exact Formulation
Given a floorplan of a multi-processor system with N cores
integrated on a chip, we assume that the thermal con-
ductance matrix can be characterized by offline training.
We further assume that the given workload consist of N
different tasks ��1� �2� � � � � �N 	 whose power consumption
{P1� P2� � � � � PN } can be obtained through offline training
or online estimation by observing the event counters. We
assume that the power consumption is a constant for each
task, because we are only concerned about the steady
state temperature. If a processor runs more than one task,

we use the average power of the task set. On the other
hand, if the number of tasks is less than the number of
cores, we simply add some dummy tasks with zero power
consumption.
Our goal is to obtain a mapping between the N tasks

and the processors such that the resulting maximum tem-
perature among all the cores is minimized. For each task
k and processor j , there is a variable xjk. Variable xjk is
1 when task k is mapped to processor j , otherwise it is 0.
We formulate the problem as a zero-one min-max linear
programming as follows:

min
i

max
i

(N∑
j=1

N∑
k=1

gijxjkPk

)
+Di (7)

Subject to:
N∑
j=1

xjk = 1� ∀k = 1� � � � �N (8)

N∑
k=1

xjk = 1� ∀ j = 1� � � � �N (9)

xjk ∈ �0� 1	 (10)

Constraint (8) guarantees that a processor is only occu-
pied by one task and constraint (9) ensures that a task can
only be mapped to one processor. The item within the min-
max operator in the objective function is the temperature

J. Low Power Electron. 10, 1–16, 2014 7

Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction Ge et al.

of the ith core. To see this, we rewrite the Eq. (2) as
follows:⎛

⎜⎜⎜⎝
T1

���

TN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

g11 · · · g1N

���
� � �

���

gN 1 · · · gNN

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

x11 · · · x1N

���
� � �

���

xN 1 · · · xNN

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

P1

���

PN

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

D1

���

DN

⎞
⎟⎟⎟⎠ (11)

where X = �xij � is a permutation matrix which assigns
the N tasks to the processors. Expanding the right hand
side of the equation, we can have Ti =

∑N
j=1

∑N
k=1 gijxjkPk.

Then the objective function min-max(Ti� is to minimize
the maximum temperature among all N processors.
By simple transformation, the min-max problem can be

converted to traditional linear programming:

min u (12)

Subject to:
(N∑

j=1

N∑
k=1

gijxjkPk

)
+Di ≤ u�

∀ i= 1� � � � �N (13)
N∑
j=1

xjk = 1� ∀k = 1� � � � �N (14)

N∑
k=1

xjk = 1� ∀ j = 1� � � � �N (15)

xjk ∈ �0� 1	 (16)

Solving the above zero-one min-max linear programming
is very time consuming. For example, for a problem with
36 cores there will be 1296 binary variables, it would take
more than two days to solve this problem using the open
source linear programming solver lp_solver2 on a 3.2 GHz
Quad core Xeon processor. It cannot be used for online
power and thermal optimization in large size many-core
systems where the core counts could go up to hundreds
and thousands.4

5.2. A Sufficient Condition for
Optimum Task Allocation

From the analysis in Section 4, we observe that the aver-
age chip temperature is hardly affected by different task
allocations but the peak temperature of the chip could
have significant difference. This observation implies that
the minimum peak temperature task allocation is the one
that makes the temperatures evenly distributed. Therefore
we have the following proposition:

Proposition 1. If there is one task allocation such that
the core temperatures are the same for all cores on the

chip, then this allocation is an optimum solution for the
optimization problem (12)∼(16).

In order to prove the above proposition, we rewrite the
linear relation between temperature and power consump-
tion in Eq. (2) as following⎛
⎜⎜⎜⎝

b11 · · · b1N

���
� � �

���

bN 1 · · · bNN

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

T1

���

TN

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

C1

���

CN

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

P1

���

PN

⎞
⎟⎟⎟⎠ (17)

The thermal conductance matrix B= �bij � has some special
properties. Firstly, it is a sparse matrix. An entry bij in the
matrix is non-zero if and only if core i and core j are phys-
ically adjacent or i= j . Secondly, the diagonal elements in
the matrix B are positive. Thirdly, the matrix B is a strictly
diagonally dominant matrix, which means bii >

∑
j �=i 	bji	.

These three properties of the thermal conductance matrix
are guaranteed by the Hotspot thermal modeling tool.18

We prove the Proposition 1 by using contradiction.
Assume P∗ =
P ∗

1 � � � � � P
∗
N � is a task allocation such that all

cores have the same temperatures, i.e., T∗ =
T ∗
1 � � � � � T

∗
N �,

where T ∗
1 = · · ·= T ∗

N . We further assume that there is a task
allocation P′ =
P ′

1� � � � � P
′
N � such that the core temperature

vector T′ =
T ′
1� � � � � T

′
N � are strictly smaller than T∗, i.e.,

T ′
i < T ∗

i � ∀ i = 1� � � � �N . Because P∗, T∗ and P′, T′ are
satisfying Eq. (17), we insert them into the equation and
subtract one from the other and get the following equation⎛

⎜⎜⎜⎝
b11 · · · b1N

���
� � �

���

bN 1 · · · bNN

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

�T 1

���

�T N

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

�P1

���

�PN

⎞
⎟⎟⎟⎠ (18)

Where �T i = T ∗
i −T ′

i > 0. We multiply both sides of the
equation by the vector I =
1�1� � � � �1� and obtain

B1� � � �BN �

⎛
⎜⎜⎜⎝

�T 1

���

�T N

⎞
⎟⎟⎟⎠=

N∑
i=1

�Pi = 0 (19)

Where Bi =
∑N

i=1 bji. Because B is strictly diagonally dom-
inant, Bi > 0� ∀ i = 1� � � � �N , and because�T i > 0� ∀ i =
1� � � � �N , the left side of (19) is strictly greater than 0
and the equation cannot hold. Therefore the task alloca-
tion P′ =
P ′

1� � � � � P
′
N� does not exist, which means the

task allocation P∗ is the optimum task allocation which
minimizes the peak temperature.
From this proposition, we immediately have the follow-

ing corollary.

Corollary 2. There is no two task allocations P′ and
P′′, such that T′ is completely cooler than T′′, i.e., �T i =
T ′
i −T ′′

i < 0, ∀ i = 1� � � � �N .

The proof of the corollary can be obtained in the exactly
the same way as Proposition 1.

8 J. Low Power Electron. 10, 1–16, 2014

Ge et al. Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction

5.3. A Lower Bound for the Optimum Task
Allocation Problem

Proposition 1 is only a sufficient condition for the opti-
mality but not a necessary condition. In fact, there might
not be a task allocation such that the temperatures of all
cores are exactly the same. In this subsection, we consider
a relaxed Linear Programming (LP) and derive a lower
bound for the original task allocation problem.

In the original problem, Pi cannot be selected arbitrarily
and could only be the power of one task. Now, we relax
this constraint, allowing Pi to be any real number between
0 and P . And we formulate the following LP problem.

min u (20)

Subject to:

⎛
⎜⎜⎜⎝

g11 · · · g1N

���
� � �

���

gN 1 · · · gNN

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

P1

���

PN

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝

D1

���

DN

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
u

���

u

⎞
⎟⎟⎟⎠ (21)

Pi ≥ 0� ∀ i = 1� � � � �N (22)
N∑
i=1

Pi = P (23)

P is the total power consumption of all tasks. If there
is a task allocation that satisfies the above LP problem,
then according to Proposition 1 it gives the minimum peak
temperature. It also gives the lower bound of the original
task allocation problem.

The above LP program (20)∼(23) can be readily solved
by a LP solver because the object function and the con-
straints are all affine functions. The invertibility of the
matrix B = �bij � = G−1 = �gij �

−1 makes the LP problem
analytically solvable. The optimum temperature can be
expressed in the following equation

T ∗
i = P −∑N

i=1Ci∑
i� j bij

� ∀ i ∈ �1�N � (24)

And the optimum power distribution can immediately
obtained by (17).

5.4. A Heuristic Task Allocation Algorithm for
Average Temperature Minimization

In this section, we present a heuristic algorithm to find
an approximate task allocation that gives the result close
to the lower bound. We first transform the objective func-
tion (20) to the following format.

minu= 1
N

N∑
i=1

(
N∑
j=1

gijPj +Di

)
(25)

Because Di and N are constants, they could be dropped
in (25). The new objective function is reduced to:

min
N∑
i=1

(
N∑
j=1

gijPj

)
(26)

We transform the objective function in (26) by switching
the order of summation as following

N∑
i=1

(
N∑
j=1

gijPj

)
=

N∑
j=1

(
N∑
i=1

gijPj

)

=
N∑
j=1

Pj

(
N∑
i=1

gij

)
=

N∑
j=1

PjGj (27)

where Gj =
∑N

i=1 gij is a set of constants. As we can see,
for arbitrary k and l in �1� � � � �N �. If Gl ≤Gk and Pl ≤ Pk,
then

Gl−Gk�
Pl−Pk�≥ 0 (28)

Thus
GlPl+GkPk ≥GlPk+GkPl (29)

Equation (30) indicates that, to reduce
∑N

j=1 PjGj , we
should map task k (which has greater power consumption)
to core l (which has lower thermal resistance), and task l
with core k.
Therefore, we further sort the tasks according to the

descending order of their power consumptions and sort
the Gj in based on the ascending order of their value,
i.e., P =
P1� � � � � PN � such that P1 ≥ · · · ≥ PN and G =

G1� � � � �GN � such that G1 ≤ � � � ≤ GN . The tasks are
mapped to cores accordingly.
This is actually a Linear Sum Assignment Problem

(LSAP). Therefore, we name the first heuristic algorithm
as LSAP-1.

5.5. A Heuristic Task Allocation Algorithm Based on
Optimum Power Distribution

In this section, we present the second heuristic task allo-
cation algorithm. The LP specified in (21)∼(23) gives a
lower bound of peak temperature for a given workload. It
also provides an ideal task allocation, which may serve as
a reference. The goal of our second heuristic algorithm is
to find a task allocation which minimizes the difference
between the current workload distribution and the optimal
workload distribution.
Let us denote the reference workload distribution

obtained by Section 5.3 as Pr =
P r
1 � � � � � P

r
N �, and we for-

mulate our optimization problem as following.

min
N∑
i=1

P r
i −Pi�

2 (30)

Subject to P=
P1� � � � � PN � is a task allocation (31)

Here, we use the Squared Euclidean Distance to repre-
sent the difference between current power distribution and

J. Low Power Electron. 10, 1–16, 2014 9

Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction Ge et al.

the optimal power distribution. At the first look, it is a
Quadratic Programming (QP) problem. However, similar
as the optimization problem in last section, the solution of
this problem can be determined analytically without using
any quadratic programming solver.
We again start by transforming the objective function.

By expanding the Eq. (31), we obtain
N∑
i=1

P r
i −Pi�

2 =
N∑
i=1

P r2
i −2×P r

i ×Pi+P 2
i

=
N∑
i=1

P r2
i +

N∑
i=1

P 2
i −2

N∑
i=1

P r
i Pi (32)

Please note that the first two terms in the above equation
does not change for any task allocation given the constraint
(32). Following the analysis in Section 5.4, we also know
that if we arrange the P r

i and Pi in ascending order, then∑N
i=1 P

r
i Pi will be maximized. Again, this problem can be

solved by linear sum assignment and we name the algo-
rithm as LSAP-2.

5.6. Distributed Task Migration
Both LSAP-1 and LSAP-2 are centralized approaches.
They require a central controller that monitors the tem-
perature and workload distribution of all cores on the
entire chip and make global decisions of task alloca-
tion. Even though both algorithms have linear complex-
ity, they do not have good scalability when applied to
large systems because they require a centralized monitor-
ing and commanding framework across the entire chip.
Such framework will suffer from synchronization errors,
unpredictable delays and high power consumption as the
number of cores scales.9

To improve the scalability for multi-/many-core system,
in this section, we present a distributed task migration
framework that searches the optimal task allocation during
runtime.
We denote our multi-agent task migration algorithm as

MATM. The framework has a low cost agent residing in
each core. It is part of OS based resource management pro-
gram, which performs thermal-aware task migration. The
agent observes the workload and temperature of local pro-
cessor while communicating and exchanging tasks with its
nearest neighbors. The agent based distributed framework
has better scalability compared to the centralized method
as the communication cost and migration overhead for
each core does not increase when the number of cores in
the system increases.
The proposed MATM adopts a task exchange based

migration scheme. By exchanging tasks, the processors can
maintain a balanced temperature distribution and hence
reduce the peak temperature.

5.6.1. Communication Protocol
Each core running a MATM agent can be in two phases:
execution phase and scheduling phase. These two phases

are interleaved. During the execution phase the core
executes the current computing task, while during the
scheduling interval it initiates task migration request to
its nearest neighbor or responds to the task migration
request from its nearest neighbor. The scheduling inter-
val can further be divided into four sub-phases: broadcast-
ing self-workload to neighbor cores, receiving workload
information from neighbors, sending migration requests
to neighbors, exchanging tasks with neighbors. Figure 7
shows the diagram of the communication protocol. We
assume that a MPI (Message Passing Interface) based com-
munication is adopted. Therefore two cores do not have
to enter the scheduling interval synchronously in order to
communicate to each other.
At the beginning of each scheduling interval, an agent

on a processor would broadcast its own workload to
neighbors and request them sending back their workload.
Because the scheduling intervals in all processors are not
synchronized, the request is not likely to be checked and
responded by neighbor agents right away. On the other
hand, because all processors adopt the same execution and
scheduling interval, it is guaranteed that all neighboring
agents will respond before the next scheduling interval
after the request is issued.
After receiving the response of neighbor workloads, the

agent performs the MATM algorithm to decide whether
to exchange task with neighbors and select which neigh-
bor to exchange task with. Then it will send a migration
request to the selected processor. For all other neighboring
processors, the agent will also send an acknowledgement
to them, which indicates no task exchange. After that, the
agent waits for the migration response from the selected
processor. Please note that this communication will only
be established with its nearest neighbors in a neighborhood

Broadcast self workload

Receive neighbor workload
perform MATM algorithm
make migration decisions

Send migration request

Receive migration response

Migrate tasks

Broadcast self workload

Receive migration requests

Make migration decisions

Migrate tasks

Core i

Core j

Fig. 7. Diagram of communication protocol.

10 J. Low Power Electron. 10, 1–16, 2014

Ge et al. Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction

when a core has workload changes. Therefore the commu-
nication overhead is low. Because communication distance
is very short (only between nearest neighbors) and the
processor does not need to receive the migration response
right away, the scheduling interval can be kept very short.
We assume that the duration of the scheduling interval is
negligible compared to the execution interval and will have
little impact on the system thermal characteristics.

5.6.2. MATM Distributed Migration Algorithm
The MATM algorithm can be viewed as a distributed ver-
sion of the LSAP-1 algorithm proposed in Section 5.4.
It distributes the tasks among processors based on their
heat dissipation ability. It moves high power tasks to pro-
cessors with strong heat dissipation capability and low
power tasks to processors with weak heat dissipation capa-
bility in a neighborhood. By distributing tasks in this way,
local hotspots can be mitigated and thus peak temperature
of the chip can be reduced.

To determine if an exchange of tasks between two pro-
cessors is beneficial to the whole system, we consider
Eq. (2) again. Assume that core i and j exchange tasks,
and their average power consumptions are altered by �Pi

and �Pj respectively. Using Eq. (2), the total die tem-
perature change of all processors in the system after task
migration can be calculated as:

N∑
k=1

�Tk =Gi ·�Pi+Gj ·�Pj (33)

where Gi (or Gj� is the parameter that characterizes the
heat dissipation ability of core i (or j� as defined in
Section 5.4, i.e., Gi =

∑N
m=1 gmi, Gj =

∑N
n=1 gnj . The tem-

perature contributed by core i running task k can be
calculated as GiPk. If Gi < Gj and Pi < Pj , after switch-
ing Pi and Pj we will have �Pi > 0 and �Pj < 0. This
leads to

∑N
k=1�Tk< in (34). If a task exchange between

two neighbor processors leads to
∑N

k=1�Tk < 0, then this
task exchange is beneficial for the system and the task
exchange should be carried out.

If an agent found that it is beneficial to exchange task
with several neighbor agent, the agent will select a neigh-
bor that leads to maximum temperature reduction, i.e.,
the minimum

∑N
k=1�Tk (because it is negative), and send

migration request to the selected neighbor. If an agent
received several migration requests from neighbors, it will
follow the same criterion to select a neighbor to exchange
tasks. We summarized the MATM in Figure 8. Please note
task exchange only happens if and only if both Gi < Gj

and Pi < Pj conditions are satisfied. So it is impossible for
task i and task j to be switched between two cores back
and forth continually.

The MATM algorithm is designed to overcome the com-
munication overhead (power, energy and latency) for a
many-core system. As pointed out in Refs. [11 and 27],
the energy for transferring a data packet from one core

Algorithm 1 MATM

1. for each neighbor processor j, compute

2. �Tij =Gi ·�Pi +Gj ·�Pj

3. �Tmin =min
�Tij �

4. Select processor j, and send migration request to it

Fig. 8. MATM algorithm.

to another core is proportional to the number of hops
along the path. This is because the switches and buffers
in the routers, and the links between routers also consume
energy when transferring a packet. For the similar reason,
the latency for transferring a packet is also proportional
to the number of hops. If we consider the congestions,
the energy and latency for communications between two
distant cores could be even larger. If communication only
happens between neighboring cores, it not only consumes
less energy and takes less time, but is also virtually conges-
tion free. Therefore, in a system with NoC based on-chip
interconnect, it is preferred to have the communication
between neighboring cores than between distant cores.

6. EXPERIMENTAL RESULTS
We implemented a many-core system simulator using
C++. Hotspot18 is integrated to the simulator to analyze
the system thermal behavior. Though the model is scalable
for any number of cores, a 36 core system with 6×6 grids
is chosen for our experiments due to the limitation of sim-
ulation time. Each core has a size of 4 mm×4 mm with
silicon layer of 24 mm×24 mm. All the physical param-
eters are the Hotspot’s default value, except the convec-
tive resistance, which is a variable. Task dynamic power
is obtained through Wattch power analysis tool. For leak-
age power, we apply the leakage power model in Ref. [17]
and scale it with respect to the dynamic power, so leak-
age power is about 40% the total processor power.13 For
cooling fan power, we apply the model in Ref. [3] and
also scale it with respect to the processor power, so cool-
ing fan power could range from less than 10% to 50%
of the overall system power3�12�26 based on the convective
resistance.
We carried out experiments using power sequences

collected from real applications. We used 9 different
CPU benchmarks comprising of 3 SPEC 2000 bench-
marks (bzip2, applu and mesa), 4 Mediabench applications
(mpeg2enc, mpeg2dec, jpegdec, jpegenc) and 2 telecom
applications (crc32 and fft) from MiBench benchmark
suite. We collected cycle level power trace by modify-
ing the Wattch power analysis tool.5 The average dynamic
power consumptions and steady state temperatures of each
task are summarized in Table I. The workloads of the
following experiments are random combinations of multi-
ple copies of these 9 benchmarks. All experiment results
reported below are the average of 10 runs.
The experiment is performed on 5 different task sets.

Each task set consists of 36 tasks. Each task is random

J. Low Power Electron. 10, 1–16, 2014 11

Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction Ge et al.

Table I. Average Power and Steady State Temperature of CPU Benchmarks.

Task ID. 1 2 3 4 5 6 7 8 9

Bench marks crc32 mp2enc mp2dec fft applu mesa bzip2 jpegdec jpegenc
Avg. power (mW) 24�4 19�4 19 18�5 17�4 17�3 13�3 10�7 10�4
Steady temp. (�C) 99�42 84�17 82�95 81�42 78�07 77�76 65�56 57�63 56�72

selected from the 9 bench marks listed in Table I. We con-
trol the selection probability of a benchmark based on its
average power consumption so that the average power con-
sumption of the 36 tasks can follow a desired distribution.
Figure 9 shows the five different task distribution. The x-
axis is the task ID in Table I and the y-axis is the number
of task. Uniform distribution evenly generates tasks with
different average power consumptions. Triangular (cool)
distribution generates more low power tasks than high
power tasks, whereas triangular (hot) distribution generates
more high power tasks. Normal distribution generates a
set of tasks whose power consumption is mostly clustered
around the medium power. On the other hand, inverse nor-
mal distribution generates more high power tasks and low
power tasks than the medium power tasks.

6.1. Fan Power Savings
Figure 10 shows the rmax, i.e., the maximum thermal
convective resistance that is required to exactly keep the
temperature below 80 �C. Five different task allocation
policies are compared, including the allocation that gives
the exact lower bound peak temperature (lb), LSAP-1,
LSAP-2, MATM, and the best one from 100 groups of
random allocation (rand). We also implement a base line
policy called base1. Base1 looks the temperature of each
core based on initial task mapping. It starts with the hottest
core and tries to swap a high power task on a hotter core

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

of

 ta
sk

s

Norm

0

2

4

6

8

1 2 3 4 5 6 7 8 9

of

 ta
sk

s

Inv. Norm

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

of

 ta
sk

s

Uniform

0

2

4

6

8

1 2 3 4 5 6 7 8 9

of

 ta
sk

s

Hot Tri.

0

2

4

6

8

1 2 3 4 5 6 7 8 9

of

 ta
sk

s

Cool Tri.

Fig. 9. Different task set generation probability distribution.

with a low power task on a cooler core. Among these, all
polices need centralized control except MATM. The results
show that, to maintain the whole system under the tem-
perature constraint, the minimum fan speed required by
MATM based allocation is 15.1% and 9.54% lower than
that is required by the rand and base1 policy. The reduced
fan speed could bring cubic savings in fan power for the
system. And Table II shows the fan power savings of our
proposed MATM policy compared to the rand and base1
policy. The MATM can achieve an average of 38.53%
and 25.12% fan power savings over rand and base1 policy
while maintains the maximum chip temperature under the
thermal constraint.
The experimental results show that MATM policy

distributes tasks among processors evenly according to a
processor’s heat dissipation ability. As the result, the tem-
peratures are also distributed evenly across the chip and the
maximum temperature is reduced. Hence, the fan can run
at a relatively lower speed to meet the temperature con-
straint and the fan power saving is achieved. Compared to
MATM, base1 policy ignores each core’s heat dissipation
ability, and swaps a high power task with a low power task
simply based on core temperature. Although it reduces the
temperature of the hotter core, it might as well create new
hotspot on the cooler core. Overall, the peak temperature
cannot be reduced effectively.

12 J. Low Power Electron. 10, 1–16, 2014

Ge et al. Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction

0

0.004

0.008

0.012

0.016

0.02
C

on
ve

ct
iv

e
re

si
st

an
ce

(º
C

/W
)

matm

lb

lsap1

lsap2

rand

base1

Fig. 10. Convective resistance comparison between 5 different task
allocation policies.

The results in Figure 10 also show that, because the
MATM is a distributed policy and each processor can only
communicate with its nearest neighbor, the algorithm can-
not find better task allocation than the two centralized poli-
cies LSAP-1 and LSAP-2. Compared to MATM, LSAP-1
could reduce the fan speed by 8.43% and LSAP-2 could
reduce the fan speed by 9.94%. The differences of the
MATM algorithm and the two global policies are less than
10%. We also observed that although LSAP-1 and LSAP-
2 are all global policies, LSAP-2 is constantly better than
LSAP-1. This indicates that minimizing the average chip
temperature (LSAP-1) is not equivalent to minimizing the
peak chip temperature. Finally, the lower bound policy
always gives the lowest fan speed. However, it is only less
than 15% better than MATM.

6.2. Overall System Power Consumption
In the second experiment, we examine the effect of
temperature constraint and task allocation on the over-
all system power consumption, i.e., the power consump-
tion summation of dynamic power, leakage power and
fan power. We select the uniform workload distribution in
this experiment. We vary the temperature constraint for
80 �C, 85 �C and 90 �C and compare the power con-
sumption between the five task allocation policies. For all
policies, optimal tradeoff point between fan power and
leakage power will be searched after the system reaching
stable state. As shown in Table III, comparing to best ran-
dom allocation and base1 policy, MATM based allocation
policy could achieve 28.9% and 22.2% overall power sav-
ings when the temperature constraint is 80 �C. When the
temperature constraint increases to 85 �C and 90 �C, the
power saving reduces to 14.8%, 11.8% and 7.2%, 6.0%
respectively.

Table II. Fan power savings of MATM compared to the rand and base1
policy.

Cool Hot Inv
Workload Uniform (%) tri (%) tri (%) Norm (%) norm (%)

Impr. versus rand 52�64 38�72 40�38 36�84 24�06
Impr. versus base1 43�91 25�26 11�54 29�81 15�09

Table III. Overall system power consumption comparison under differ-
ent temperature constraints.

Overall system power consumption (mW)

Temp. constraint 80 �C 85 �C 90 �C

rand 2271�04 1543�77 1289�61
base1 2076�01 1491�06 1272�66
MATM 1614�83 1315�59 1196�73

The experimental results show a diminishing power
savings as the constraint temperature increases from the
Table III, and task allocation gives large power savings
especially when temperature constraint is strict. To under-
stand this, we draw the curve of overall power consump-
tion and fan power consumption against the convective
resistance curve in Figure 11. When temperature constraint
is strict, the convective resistance has to be small to sat-
isfy the constraint. When fan is working in this area, the
curve slope is sharp and a little decrease in convective
resistance would increase the fan power as well as the
overall system power significantly; therefore a better task
allocation which reduces maximum chip temperature can
achieve large power saving. On the other hand, when tem-
perature constraint is loose, the convective resistance does
not have to be small to satisfy the constraint. In this case,
the curve slope is flat and the difference in convective
resistance does not affect the fan power and overall power
consumption significantly. Therefore, different task alloca-
tions achieve similar overall system power consumptions.

Overall power (W)

rmax, RND
(80 ºC)

rmax, RND
(90 ºC)

rmax, MATM
(80 ºC)

rmax, MATM
(90 ºC)

Power savings
in 80 ºC

Power savings
in 90 ºC

Fan power (W)

R*
conv

(ºC/W)

(ºC/W)

Fig. 11. Power consumption against convective thermal resistance
curve.

J. Low Power Electron. 10, 1–16, 2014 13

Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction Ge et al.

0

500

1000

1500

2000

2500

matm lb lsap1 lsap2 rand base1

P
ow

er
 (

m
W

)

Tpeak = 80 ºC

fan

leakage

dynamic

Tpeak = 85 ºC

0

500

1000

1500

2000

matm lb lsap1 lsap2 rand base1

P
ow

er
 (

m
W

) fan

leakage

dynamic

Tpeak = 90 ºC

0

500

1000

1500

matm lb lsap1 lsap2 rand base1

P
ow

er
 (

m
W

)

fan

leakage

dynamic

Fig. 12. The overall power consumption break down for different tem-
perature constraints.

If we further relax the temperature constraint so that the
rmax of both random and MATM allocations are located to
the right side of R∗

conv, the MATM allocation will not give
any power saving over the random allocation as both of
them can work at the optimal tradeoff point.
Figure 12 shows each component in the overall sys-

tem power consumption. The fan power consumption plays
an important part when temperature constraint is strict.
It accounts for 25.6% to 49.6% of total consumption for
different allocation policies when the temperature con-
straint is 80 �C. And the lower the peak temperature a
policy could reach, the lower the fan power it will con-
sume. When the constraint is relaxed, the share of fan
power decreases. We also notice that the dynamic power
stays the same for all constraints while the leakage power

Table IV. Comparison of convective resistance and average temperature when peak temperature constraint is 80 �C under extreme initial distribution.

LSAP-1 LSAP-2 MATM Random
Policy (Rconv(

�C/W�/Tavg
K�� (Rconv(
�C/W�/Tavg
K�� (Rconv(

�C/W�/Tavg
K�� (Rconv(
�C/W�/Tavg
K��

Uniform 0.0134/350.62 0.0135/350.73 0.0094/345.14 0.0096/346.60
Cool triangle 0.0157/349.97 0.0158/350.05 0.0116/344.84 0.0133/346.75
Hot triangle 0.0101/349.46 0.0103/349.83 0.0075/345.40 0.0080/347.06
Norm 0.0120/348.86 0.0120/348.84 0.0091/345.04 0.0098/346.54
Inv norm 0.0133/350.32 0.0137/350.43 0.0089/344.14 0.0099/346.50

increase as the constraint is relaxed. This is because allow-
ing higher maximum chip temperature will also increase
the average chip temperature, therefore the leakage power
increases. We also notice that MATM based task alloca-
tion has higher leakage power consumption compare to the
rand and base1 policy. This is because, in order to maintain
the same maximum chip temperature, the higher fan speed
needed for rand and base1 policy makes its average tem-
perature lower and hence it consumes less leakage power.
However, after combining the fan power, the MATM based
allocation still has lower total power consumption.

6.3. The Impact of Initial Task Allocation and
Multi-Hop MATM

In the previous experiments, we assume that the initial
task mapping is randomly generated. Therefore, the high
power tasks and low power tasks are evenly distributed
across the system, i.e., in each area of the system, the
number of hot tasks and cool tasks are roughly the same.
In this experiment, we test an extreme case, which has
high concentration of high power tasks in a small area in
the initial mapping. The further a processor is away from
this area, the higher probability that it will be assigned
to a low power task. In our experiment, the “hot area” is
located at the corner of the chip.
Table IV presents the convective resistances that are

required to keep the peak chip temperature under 80 �C
and the average chip temperature. Four algorithms are com-
pared, two global policies, the MATM distributed policy
and the best randommapping policy. Comparing the results
in Section 6.1, we can see that the performance of the
global policy is not affected by the initial task mapping. On
the other hand, the performance of the distributed policy
is significantly affected by the initial task allocation and
it performs much worse under this extreme case. This is
because the distributed policy relies on a rippling process
to pass out high power tasks from the hot area. However,
this rippling process is blocked by those cores located at
the center of the chip. Therefore, most hot tasks cannot
be delivered from the initially hot corner to other cores
with strong heat dissipation ability located at the other cor-
ners and boundaries of the chip. In this case, the allocation
obtained by the distributed policy is far from the optimal.
Please note, in this corner case, because MATM needs the
minimum rconv to keep peak temperature under constraint,
it actually results in the lowest average temperature.

14 J. Low Power Electron. 10, 1–16, 2014

Ge et al. Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction

0

0.005

0.01

0.015

0.02

C
on

ve
ct

iv
e

re
si

st
an

ce
(º

C
/W

)
LSAP-1

LSAP-2

MATM 3-hop

MATM 2-hop

MATM 1-hop

Random

Fig. 13. Comparison of convective resistance for multi-hop MATM.

To find better task allocation in this extreme case,
we slightly modify the distributed policy by allowing a
processor to send migration requests to its far neigh-
bors. Figure 13 show the required convective resistances
if far neighbors can be included in the task migration.
The MATM 1-hop refers to the original MATM pol-
icy where communication only happens between 1-hop
neighbors, and the MATM 2-hop and 3-hop refer to the
modified MATM policy where communication could hap-
pen between 2 and 3-hop neighbors respectively. As we
can see, compare to the MATM 1-hop policy, in this
extreme case, MATM 2-hop and 3-hop policy can save
fan power by 55.1% and 62.2% respectively. And even in
this extreme case, fan power savings achieved by the dis-
tributed MATM 3-hop policy is very close to the global
policy.

Obviously, the reduced power does not come for free.
Communication and exchanging tasks with 2 and 3-hop
neighbors means consuming more energy on the on-chip
networks. Here, we use migration distance to represent
the energy overhead on the network. Because the energy
consumed in the on-chip network is proportional to the
communication distance.11 For example, if a task is moved
from core i to core j , then we define the migration dis-
tance to be the Manhattan distance between core i to core
j in the number of hops. Figure 14 compares the migra-
tion distance for multi-hop MATM policy and the global
policies. As expected, allowing exchanging tasks among
far neighbors increase the migration distance significantly.
On the other hand, compare to the global policies such as

0

20

40

60

80

100

120

140

160

M
ig

ra
tio

n
di

st
an

ce
 (

of

 h
op

s)

MATM 1-hop

MATM 2-hop

MATM 3-hop

LSAP-1

LSAP-2

Fig. 14. Comparison of migration distance for multi-hop MATM policy
and global policies.

LSAP-1 and LSAP-2, the 2-hop and 3-hop MATM policy
still reduce migration overhead by 46% and 42%. Finally,
we want to point out that in a real system, such extreme
cases of initial task allocation can easily be avoided by
simple random mapping of the tasks.

7. CONCLUSION
In this paper, we studied the impact of task mapping on the
overall power consumption of a homogeneous many-core
system. We formulated the peak temperature aware task
mapping problem as a zero-one linear programming and
proposed global heuristic algorithms as well as an agent
based distributed task migration to solve this problem. Our
agent based algorithm has good scalability as the num-
ber of processors increases. Experimental results show that
our policy achieves large power savings compare to a ran-
dom mapping policy and a baseline policy. It also produces
solution close to the global policies while maintaining a
low communication and control overhead.

Acknowledgment: This work was supported by the
National Science Foundation under Grant CNS-1203986.

References
1. Tile Processor Architecture: Technology Brief. [Online]. Available:

http://www.tilera.com/pdf/ProductBrief_TileArchitecture_Web
_v4.pdf.

2. http://lpsolve.sourceforge.net/5.5/.
3. R. Ayoub, S. Sharifi, and T. Rosing, GentleCool: Cooling aware

proactive workload scheduling in multi-machine systems, Proc.
Design Automation and Test in Europe, March (2010), pp. 295–298.

4. S. Borkar, Thousand Core chips—A technology perspective, Proc.
Design Automation Conference, June (2007), pp. 746–749.

5. D. Brooks, V. Tiwari, and M. Martonosi, Wattch: A framework for
architectural level power analysis and optimizations. Proc. Int. Symp.
Computer Architecture, June (2000), pp. 83–94.

6. A.Coskun, T. Rosing, and K. Whisnant, Temperature aware task
scheduling in MPSoCs, Proc. Design Automation and Test in Europe,
April (2007), pp. 1659–1664.

7. A. Coskun, T. Rosing, and K. Gross, Utilizing predictors for efficient
thermal management in multiprocessor SoCs. IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst. 28, 1503 (2009).

8. J. Donald and M. Martonosi, Techniques for multicore thermal man-
agement: Classification and new exploration, Proc. Int. Symp. Com-
puter Architecture, June (2006), pp. 78–88.

9. T. Ebi, M. Al Faruque, and J. Henkel, TAPE: Thermal-aware
agent-based power economy for multi/many-core architectures, Proc.
Int. Conf. on Comput.-Aided Design (ICCAD), November (2009),
pp. 302–309.

10. J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain,
T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla,
M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der
Wijngaart, and T. Mattson, A 48-Core IA-32 message-passing pro-
cessor with DVFS in 45 nm CMOS, Proc. Int. Solid-State Circuits
Conf. (ISSCC), February (2010), pp. 108–109.

11. J. Hu and R. Marculescu, Energy-aware mapping for tile-based
NoC architectures under performance constraints, Proc. Asia and
South Pacific Design Autom. Conf. (ASP-DAC), January (2003),
pp. 233–239.

J. Low Power Electron. 10, 1–16, 2014 15

Distributed Task Migration in a Homogeneous Many-Core System for Leakage and Fan Power Reduction Ge et al.

12. C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,
and T. Keller, Energy management for commercial servers. IEEE
Computer 36, 39 (2003).

13. Y. Liu, R. Dick, L. Shang, and H. Yang, Accurate temperature-
dependent integrated circuit leakage power estimation is easy,
Proc. Design Automation and Test in Europe, April (2007),
pp. 1526–1531.

14. J. Moorey, J. Chasey, P. Ranganathanz, and R. Sharma, Making
Scheduling cool: Temperature-aware workload placement in data
centers, Proc. Annual Conference on USENIX Annual Technical
Conference, April (2005), pp. 5–18.

15. F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini,
and D. Atienza, Thermal balancing policy for streaming computing
on multiprocessor architectures, Proc. Design Automation and Test
in Europe, March (2008), pp. 734–739.

16. E. Pakbaznia, M. Ghasemazar, and M. Pedram, Temperature-aware
dynamic resource provisioning in a power-optimized datacenter,
Proc. Design Automation and Test in Europe, March (2010),
pp. 124–129.

17. D. Shin, N. Chang, J. Choi, S. Chung, and E. Chung, Energy-optimal
dynamic thermal management for green computing, Proc. Int. Conf.
Computer-Aided Design, November (2009), pp. 652–657.

18. K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, Temperature-Aware Microarchitecture: Modeling and
Implementation. ACM Trans. Architecture and Code Optimization
1, 94 (2004).

19. Q. Tang, S. Gupta, and G. Varsamopoulos, Energy-Efficient,
Thermal-Aware Task Scheduling for Homogeneous, High Perfor-
mance Computing Data Centers: A Cyber-Physical Approach. IEEE
Trans. Parallel and Distributed Syst. 19, 1458 (2008).

20. S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Lyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,

Yang Ge
Yang Ge received his B.S. degree in telecommunication engineering from Zhejiang University, China in 2007, M.S. degree from
the department of Electrical and Computer Engineering of Binghamton University, USA in 2009, and Ph.D. degree in Department
of Electrical Engineering and Computer Science in Syracuse University, USA in 2012. He is currently an ASIC design scientist in
Broadcom Corporation. His research interests include power and thermal analysis and optimization for multi and many-core system.

Yukan Zhang
Yukan Zhang received her B.S. degree in electrical engineering from Nankai University, China in 2006, and M.S. degree from the
department of Electrical and Computer Engineering of Binghamton University, USA in 2009. She is currently working on her Ph.D.
degree in Department of Electrical Engineering and Computer Science in Syracuse University, USA. Her research interests include
energy harvesting and management for embedded systems.

Qinru Qiu
Qinru Qiu received her M.S. and Ph.D. degrees from the department of Electrical Engineering at University of Southern California
in 1998 and 2001 respectively. She received her B.S. degree from the department of Information Science and Electronic Engineering
at Zhejiang University, China in 1994. Dr. Qiu is currently an associate professor at the Department of Electrical Engineering and
Computer Science in Syracuse University. Before joining Syracuse University, she has been an assistant professor and then an associate
professor at the Department of Electrical and Computer Engineering in State University of New York, Binghamton. Her research
areas are energy efficient computing systems, energy harvesting real-time embedded systems, and neuromorphic computing. She has
published more than 50 research papers in referred journals and conferences. Her works are supported by NSF, DoD and Air Force
Research Laboratory.

Y. Hoskote, and N. Borkar, An 80-Tile 1.28 TFLOPS network-on-
chip in 65 nm CMOS, Proc. Int. Solid-State Circuits Conf., February
(2007), pp. 98–589.

21. Y. Wang, K. Ma, and X. Wang, Temperature-constrained power con-
trol for chip multiprocessors with online model estimation, Proc. Int.
Symp. Computer Architecture, June (2009), pp. 314–324.

22. Y. Ge and Q. Qiu, Task allocation for minimum system power in
a homogenous multi-core processor. Int. Green Computing Conf.,
August (2010), pp. 299–306.

23. Y. Ge, P. Malani, and Q. Qiu, Distributed task migration for ther-
mal management in many-core systems. Proc. Design Automation
Conference, June (2010).

24. S. Manoj, K. Wang, and H. Yu, Peak power reduction and workload
balancing by space-time multiplexing based demand-supply match-
ing for 3D thousand-core microprocessor, Proc. Design Automation
Conference (DAC), May (2013).

25. Y. Cui, W. Zhang, and H. Yu, Distributed thermal-aware task
scheduling for 3D network-on-chip, 2012 IEEE 30th International
Conference on Proc. Computer Design (ICCD), September (2012).

26. W. Huang, M. Allen-Ware, J. B., Carter, E. Elnozahy, H. Hamann,
T. Keller, C. Lefurgy, J. Li, K. Rajamani, and J. Rubio, TAPO:
Thermal-aware power optimization techniques for servers and data
centers, Proc. International Green Computing Conference and Work-
shops (IGCC), July (2011), pp. 1–8.

27. R. Marculescu, U. Ogras, L. Peh, N. Jerger, and Y. Hoskote, Out-
standing Research Problems in NoC Design: System, Microarchitec-
ture, and Circuit Perspectives. IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst. 28, 3 (2009).

28. B. Shi, A. Srivastava, and A. Bar-Cohen, Hybrid 3D-IC cooling sys-
tem using micro-fluidic cooling and thermal TSVs, Proc. IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), August (2012),
pp. 33–38.

16 J. Low Power Electron. 10, 1–16, 2014

