
Copyright © 2015 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics
Vol. 11, 1–15, 2015

Chip Multiprocessor Performance Modeling for
Contention Aware Task Migration and Frequency Scaling

Hao Shen1�∗ and Qinru Qiu2
1Marvell Semiconductor, Santa Clara, 95054, CA, USA

2Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, 13210, USA

(Received: xx Xxxx xxxx; Accepted: xx Xxxx xxxx)

Workload consolidation is usually performed in datacenters to improve server utilization for higher
energy efficiency. One of the key issues in workload consolidation is the contention for shared
resources. Dynamic voltage and frequency scaling (DVFS) of CPU is another effective technique
that has been widely used to trade performance for power reduction. We have found that the degree
of resource contention of a system affects its performance sensitivity to CPU frequency. Without
detailed architecture level information, the complex relationship between contention, frequency and
performance cannot be retrieved analytically. In this paper, we apply machine learning techniques
to construct a model for chip multiprocessor (CMP) Performance Estimation under Fixed workload
Scheduling (PEFS). It quantifies performance degradation of target process caused by resource
contention and frequency scaling for current CMP workload with the assumption of a fixed task
mapping. The model is further generalized for performance prediction with task migration (PPTM),
which predicts the performance degradation after potential intra-processor task migration. Both mod-
els are tested on an SMT-enabled chip multi-processor with 10∼20% estimation error on average.
Experimental results show that our PEFS model can keep the performance of those bottleneck
tasks much closer to the performance threshold than all other techniques, which leads to almost no
performance violation while achieves more energy savings, and task migration guided by our PPTM
model produces 4%∼9% higher performance than conventional task migration guided by last level
cache miss.

Keywords: Consolidation, Frequency Scaling, Migration, Power Management, Resource
Contention.

1. INTRODUCTION
It has been pointed out1 that the server energy efficiency
reduces super-linearly as its utilization goes down. Due to
the severe lack of energy proportionality in today’s com-
puters, workload consolidation is usually performed in dat-
acenters to improve server utilization for higher energy
efficiency. When used together with power management on
idle machines, this technique can lead to significant power
savings.2

Today’s high-end servers have multiple processing units
that consist of several symmetric multiprocessing (SMP)
cores. Each physical core also comprises more than one
logical core enabled by the simultaneous multithreading
(SMT) technique. One of the key issues related to work-
load consolidation is performance degradation due to the
contentions for shared resources. At SMP level the shared

∗Author to whom correspondence should be addressed.
Email: shenhao0811@gmail.com

resources include main memory, last level cache, memory
controller, etc. At SMT level, the shared resources also
include execution modules such as instruction issue ports,
ALU, branch target buffers, low level caches, etc.3�4 The
degree of performance degradation is a function of the
resource usage of all processes that are co-running and
hence is hard to predict. Even if we can measure the exe-
cution time of an application accurately, there is no direct
way to tell how much degradation that the process went
through unless we have a reference copy of the same appli-
cation running alone on an identical hardware machine.
Dynamic voltage and frequency scaling (DVFS)5–7 is

another effective low power technique that has widely been
used. Compared to workload consolidation and runtime
power management, DVFS provides finer adjustment in
power-performance trade-offs with much less control over-
head. In a hierarchical power management framework,2�8

the upper level is usually virtual machine management
that performs workload consolidation, while the lower

J. Low Power Electron. 2015, Vol. 11, No. 3 1546-1998/2015/11/001/015 doi:10.1166/jolpe.2015.1398 1

Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling Shen and Qiu

level is usually voltage and frequency scaling. Due to
the gap between CPU and memory speed, the perfor-
mance impact of DVFS is not linearly proportional to the
scale of frequency reduction.5–7 Different applications have
different sensitivity to frequency scaling. A memory inten-
sive application usually suffers less performance degrada-
tion from DVFS than a CPU intensive one, as the CPU
speed is no longer the performance bottleneck. The same
can be expected for many systems running multiple con-
solidated workloads. As their performance constrained by
the contention for shared resources, power reduction can
be achieved by applying DVFS without significant perfor-
mance impact. However, similar to systems with resource
contention, it is hard to directly tell an application’s per-
formance sensitivity to frequency scaling without having a
reference copy to compare with during runtime.
Tasks demand different resources at different levels. In a

parallel computing system with dynamic workload, such
demand varies from task to task and from time to time.
The level of resource contention is affected by the selec-
tion of “co-runners” on the same core or the same pro-
cessor. Task migration, which re-distributes tasks across
multiple cores/processors during runtime, may effectively
mitigate resource contention. Searching for the best task
distribution is a non-trivial problem and if not handled
properly, will lead to performance degradation instead of
performance improvement.
Performance degradation should be avoided especially

in a cloud environment, where the quality of service (QoS)
is specified by the service level agreement (SLA) between
service providers and customers and charges are deter-
mined based upon usage or reservation of cloud resources.
How to guarantee the service level in a system that per-
forms workload consolidation and DVFS for power control
is an urgent research problem.9�10

Previous works studied how to optimize process
scheduling to mitigate the resource contention.7�8�12∼18

Many of them aim at finding a metric (e.g., last level
cache miss rate) that must be balanced across the running
threads to minimize the resource contention. These works
make the best effort to mitigate the resource contention,
however, they do not report the performance degradation
during runtime. It is hard to tell if certain scheduling algo-
rithm does improve the performance and how much it
improves. Please note that the change in IPS (instruction
per second) cannot be used to represent the quality of a
scheduling algorithm. An increase in IPS does not neces-
sarily indicate the adoption of a more efficient scheduling.
It may simply because the program has entered a phase,
which requires less memory access. It is important for the
service provider to know how much degradation the target
process is undergoing when it is co-scheduled with other
processes and when the DVFS is applied. With such infor-
mation, further adjustment in performance power tradeoff
can be adopted. Another limitation of those previous works
is the lack of ability to quantitatively predict the exact

performance change caused by the change in task map-
ping. Therefore, they are not able to make fine-grained task
migration decisions. Furthermore, their goal is to improve
the average performance of all tasks. Given a mixed work-
load with both performance critical and noncritical tasks,
they may over-optimize the noncritical tasks and deprive
the optimization opportunity from the critical tasks. To
overcome the above limitations, a model that estimates the
performance degradation of each individual target process
under different task distributions will be extremely useful.
The problem is further complicated when CPU fre-

quency scaling is performed in a system with resource
contention, because its impact on different resources is
not equal. Obtaining an analytical model to quantify per-
formance degradation in a system with resource con-
tention and frequency scaling is almost not possible.
This is not only because of the increasing complexity of
today’s microprocessors, but also due to the lack of crucial
microarchitecture information due to intellectual property
protection. Machine learning, which learns from data and
makes prediction using the characterized model, seems to
be the only feasible solution.11

Some previous works have been proposed to apply
machine learning to model the performance change of
tasks when their co-runners vary.9�11�13 Reference [9] trains
a MIMO model online. Its inputs are different control actu-
ators for different cores (e.g., CPU cycles scheduled to
different cores and etc.). Its outputs are predicted QoS val-
ues. Reference [11] uses the information from hardware
performance counter to estimate the performance degrada-
tion of an SMP machine. Reference [13] presents a model
to predict the potential performance impact from differ-
ent co-running neighbors to make better decision of task
migration. However, none of these works consider the pos-
sibility that a system could also run at different voltage
and frequency levels. All of these previous works consider
SMP machine where only single thread is running on each
core, therefore, they ignore the contention for shared exe-
cution resources.
In this work, we apply machine learning techniques

to develop a model for Performance Estimation under
Fixed task Scheduling (PEFS). It estimates task perfor-
mance degradation caused by resource contention and
voltage/frequency scaling in current workload settings. In
other words, this model monitors the PMUs of current
server, and estimates performance degradation of a target
process with the respect to an ideal system (i.e., the sys-
tem without any resource contention and frequency scal-
ing). The information can be used as feedbacks to guide
scheduling and DVFS. We further present a generalized
model for Performance Prediction under Task Migration
(PPTM). The second model “predicts” the performance
degradation under new task mappings. Based on the pred-
icated results, decisions on intra-processor task migration
can be made using either integer linear programming or
graph analysis.

2 J. Low Power Electron. 11, 1–15, 2015

Shen and Qiu Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling

Compared to previous works (especially Refs. [11, 13]),
the contributions of this paper are:
1. It studies how resource contention and frequency scal-
ing can jointly affect the performance. Our results demon-
strate the necessity of considering both of them at the same
time for performance modeling.
2. It studies the effectiveness of traditional× last level
cache (LLC) based performance estimation. Our results
show that the absolute value of LLC miss rate and normal-
ized performance in general do not have high correlation.
3. Performance estimation model (PEFS) and prediction
model (PPTM) are presented to quantify performance
degradation of a task in SMT-enabled chip multi-processor.
4. The performance estimation information is used in a
feedback control loop to guide voltage and frequency
selection and the performance prediction results are used
to guide task mapping/migration for reduced contention.
The framework is flexible to handle variety of workload
with mixed performance critical and non-critical tasks.

The rest of the paper is organized as follows: Section 2
presents some observations that motivate the proposed per-
formance model. Section 3 presents the model construction
procedure. Section 4 discusses how to apply the model to
find the best task mapping/migration. Experimental results
are presented in Sections 5, and 6 gives the conclusions.

2. MOTIVATIONAL OBSERVATIONS
2.1. Impact of Co-Running Neighbors on

DVFS Sensitivity
In this section, we provide some experimental data that
motivate the search for a model that captures the perfor-
mance impact of both resource contention and frequency
scaling. Our experimental system is an Intel Ivy Bridge
i3770K CPU machine with 4 physical cores and 8 logi-
cal cores (SMT2). Each physical core has dedicated L1
and L2 cache (shared by two logical cores) while all cores
share the same 8 MB L3 cache. It supports frequency scal-
ing from 3.5 GHz to 1.6 GHz with a step of 0.1 GHz. It is
also equipped with 8 GB two-channel 1600 MHz DDR3
memory. Ubuntu Linux is installed. The configuration of
this experimental platform is representative among many
commercial computers on the market nowadays.

Though many research papers assume that frequency
scaling can be applied at core level, Intel Ivy Bridge pro-
cessors only have one voltage regulator. The per-core level
frequency scaling is disabled by firmware and OS.23 Each
physical core can be put in deep sleep C state indepen-
dently when they become idle.23 This state has very low
power consumption due to power and clock gating. The
socket power of our experimental system is around 24 W
during idle state when deep sleep C state is enabled. When
the deep C state is disabled, the idle power becomes 36 W
at lowest frequency and 63 W at highest frequency.

Nowadays the memory subsystem becomes relatively
fast. We observe that running a single memory intensive

task will be far from saturating the memory subsystem
of the server. The performance of the task scales almost
linearly during frequency scaling as the CPU and cache
speed are still the bottleneck even for memory intensive
tasks. The linear relation stops only when multiple mem-
ory intensive tasks are actively running simultaneously.
Our hypothesis is that different co-scheduled jobs not

only affect the performance of an application by generating
resource contentions, but also affect its sensitivity to fre-
quency scaling. To demonstrate this, we create workload
that has various levels of resource contention. Our work-
load consists of two benchmarks from SPEC CPU2006.26

One is lbm, which is memory intensive; and the other is
gamess, which is CPU intensive. Different workloads are
generated using these two benchmarks. In these workloads,
each logic core executes at most one benchmark program.
We refer the two processes sharing the same physical core
as SMT neighbors and the two processes running on differ-
ent physical cores as SMP neighbors. The performance of
these two benchmarks and their sensitivities to frequency
scaling are tested in the context of different workload map-
pings. The test cases are labeled as n-m-T-SMT[SMP].
The parameters n and m specify that there are n lbm pro-
cesses and m gamess processes running. The parameter
“T ” is the name of the target process whose performance
we are interested in. The label “SMT” indicates that the
SMT neighbor of our target process is the same bench-
mark program; otherwise the label “SMP” is attached to
the workload.
Figures 1(a)∼(c) show the performance degradations for

each test case. The x-axis is CPU frequency and the y-axis
is the normalized performance of the target benchmark
program compared with the same target program running
alone on a dedicated processor at the highest frequency
(i.e., 3.5 GHz).
In Figure 1(a) we can see that when only one task is

running, regardless whether it is memory intensive or CPU
intensive, the performance scales linearly with CPU fre-
quency at the same rate. This is because of the high mem-
ory bandwidth of the modern server. When all 8 logic
cores running the same task, the memory intensive task
(lbm) suffers much more degradation than the CPU inten-
sive task (gamess) due to the memory contention. How-
ever, it is also much less sensitive to frequency scaling than
gamess, because the CPU is no longer the bottleneck of
performance. Figures (b) and (c) show the performance of
lbm and gamess separately when they are scheduled with
different co-runners. Three major observations are made
from the two figures.
1. Having lbm as the SMT neighbor causes more per-
formance degradation than having gamess. For example,
2-6-lbm-SMT has less performance than 2-6-lbm-SMP
and 6-2-gamess-SMT has better performance than 6-2-
gamess-SMP. The similar trend can be observed for other
test cases. This is mainly because a memory intensive
SMT neighbor competes for the L1 and L2 cache.

J. Low Power Electron. 11, 1–15, 2015 3

Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling Shen and Qiu

0.1

0.3

0.5

0.7

0.9

1.6 2.2 2.8 3.4

8-0-lbm 0-8-gamess

1-0-lbm 0-1-gamess

Frequency(GHz)

1.6 2.2 2.8 3.4

Frequency(GHz)

P
er

fo
rm

an
ce

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1.6 2.2 2.8 3.4

Frequency(GHz)

P
er

fo
rm

an
ce

(a) Performance of uniform workload (b) Memory intensive task in hybrid workload

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

P
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1

gamess lbm mcfgamess lbm mcf

P
er

fo
rm

an
ce

(c) CPU intensive task in hybrid workload (d) Impact from different SMT neighbors

6-2-gamess-SMP 6-2-gamess-SMT

4-4-gamess-SMP 4-4-gamess-SMT

1-7-gamess-SMP 1-7-gamess-SMT

2-6-lbm-SMT 2-6-lbm-SMP

4-4-lbm-SMT 4-4-lbm-SMP

7-1-lbm-SMT 7-1-lbm-SMP

Fig. 1. Performance sensitivity to resource contention and frequency scaling.

2. With more and more lbm processes running on the pro-
cessor, the performance degradation of the target is exacer-
bated. For example, 2-6-lbm-SMT has better performance
than 4-4-lbm-SMT and 6-2-gamess-SMT has less perfor-
mance than 4-4-gamess-SMT. Such trend is more promi-
nent for memory intensive target (i.e., lbm) than for CPU
intensive target (i.e., gamess).
3. The gamess is more sensitive to frequency scaling than
the lbm. Figure 1(c) shows that its performance decreases
almost linearly with frequency scaling. However, as more
lbm processes are added into the system, the decreas-
ing ratio reduces, which indicates a reduced sensitivity to
frequency scaling. For example, the performance of 6-2-
gamess-SMT changes slower than 4-4-gamess-SMT with
frequency scaling. On the other hand, lbm’s performance
is a nonlinear function of the CPU frequency. When the
number of lbm processes increases, its performance is
almost constant as shown in Figure 1(b), indicating a low
sensitivity to frequency scaling.

To sum up all the discussions above, the contention
and DVFS both affect the workload’s performance.
To make things more interesting, a program’s sensitivity to
frequency scaling is not only determined by itself but also

its SMT and SMP neighbors. And the performance does
not always scales linearly. The performance model consid-
ering only one frequency will no longer be accurate when
DVFS is enabled. In order to provide accurate performance
estimation to guide power management at different level,
our performance model must provide accurate estimation
across a wide range of CPU frequency.
Many previous works focus only at performance degra-

dation due to SMP level contention; however, the SMT
level contention has even greater performance impact. To
further show this impact, we pick two processes from
lbm, gamess and mcf (which is another memory inten-
sive benchmark in SPEC CPU2006) and run them as SMT
neighbors. Because only two processes are running, the
SMP level contention is almost negligible.
Figure 1(d) shows the normalized performance of each

processes running with different neighbors. The two
benchmarks running together are bundled. As we can see,
gamess has large performance degradation when running
with either lbm or mcf; while lbm has relatively less degra-
dation in either cases, which indicates low sensitivity to
SMT level contention. The performance of mcf exhibits
the behavior of bimodal. It is has large degradation when

4 J. Low Power Electron. 11, 1–15, 2015

Shen and Qiu Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling

running with lbm and marginal degradation when running
with gamess. This suggests that, compared to other two,
mcf is more sensitive to having a memory intensive SMT
neighbor. In other words, its performance is a function of
the characteristics of its SMT neighbor. These observations
motivate the development of the PEFS model, which will
be discussed in Section 3.

2.2. Limitation of Traditional Performance Model
Based on LLC Miss

Many previous task mapping/migration algorithms try
to minimize resource contention and performance
degradation by balancing the last level cache miss across
co-scheduled tasks. The rationale behind this is the
assumption that performance degradation and LLC miss
rate are highly correlated. However, our experimental
results show that such assumption is not always true.
Although LLC miss rate in general is a good indica-
tor of how severe tasks will compete for shared memory
resources, it is not a comprehensive indicator of overall
resource contention and performance degradation.

Two sets of experiments are conducted to evaluate the
relationship between target task performance degradation
and its LLC miss rate. In the first set of experiments,
we use gamess as the target task and change its SMT
neighbor from the remaining set of 29 benchmarks in
SPEC CPU 2006. Its SMP neighbor is set to either lbm or
gamess, which stereotypes memory intensive or CPU inten-
sive environment. The relation between the target perfor-
mance and the LLC miss rate of its SMT neighbor is plotted
in Figures 2(a) and (b). In the second set of experiments,
the same procedure is repeated with the target process set
to lbm and the results are given in Figures 2(c) and (d).

In Figure 2, the Y -axis represents the normalized per-
formance of the target task while the X-axis represents the
LLC miss rate of its SMT neighbor. Correlations between
X value and Y value of data points are listed on top of
the figure. As we can see from the figures, the perfor-
mance degradation of a CPU intensive target task (e.g.,
gamess) only has weak correlation with the LLC miss
rate of its SMT neighbor. Even memory intensive target
task (e.g., lbm) does not have high correlation between
its performance and its SMT neighbor’s LLC miss rate, if
the rest of the tasks running are also memory intensive.
That’s because as the SMP neighbors become more mem-
ory intensive and the overall memory access gets heavier,
the impact from the SMT neighbor will be less important.
These observations motivate us to develop a new perfor-
mance prediction model that considers information beyond
the LLC miss rate.

2.3. Potential Performance Improvement by
Task Migration

The next set of experiments is performed to find out the
potential of performance improvement by task migration.

Figure 3 shows the performance boost of 29 benchmarks
in SPEC CPU 2006 when its SMT neighbor changes from
lbm to gamess. These benchmarks are indexed based on
the ascending order of their LLC miss rate. The blue bars
and red bars correspond to the experiments where the
SMP neighbors of the target are CPU intensive and mem-
ory intensive respectively. In order to closely resemble the
effect of task migration, the total workload running on the
processor does not change before and after the switch of
SMT neighbor.
The first observation from Figure 3 is that different

benchmark benefit differently from replacing a memory
intensive SMT neighbor to a CPU intensive one. The per-
formance boosts varies from 5% to 35%. We also noticed
that although switching the SMT neighbor from lbm to
gamess always gives positive performance improvement,
the magnitude varies for different SMP neighbors. For
example, when running with CPU intensive SMP neigh-
bors, task #12 (“gromacs”) has 22% performance gain if
its SMT neighbor changes from lbm to gamess. This num-
ber reduces to 7% if its SMP neighbors are memory inten-
sive. Furthermore, the relative order of the performance
gain among tasks changes in different SMP settings. For
example, in a CPU intensive SMP setting, pairing gamess
with task #12 (“gromacs”) gives higher performance gain
than pairing it with task #14 (“perlbench”). However, the
reverse is observed if the SMP setting is memory inten-
sive. A simple LLC miss rate model is not able to pro-
vide such detailed information on performance changes.
First of all, some benchmarks with high LLC miss rate
might have less demand on other resources, which allows
certain co-runners run faster. Secondly, as mentioned in
Refs. [12, 19, 21], LLC miss rate along cannot repre-
sent the cache contention characteristics as different pro-
grams have different access patterns of the cache. Different
programs have different spatial preferences of the cache
access, which cannot be captured by the LLC miss rate.
Although they show significant variations, the data in

Figure 3 do not pose strong motivation for a more pow-
erful and better task-mapping algorithm, as the average
performance gain is only about 13%. This is because, run-
ning 8 SPEC benchmark tasks simultaneously, the proces-
sor already has very high utilization and there is not much
room for performance improvement.
The high utilization in previous example is not very

common in data center. More performance improvement
can be achieved from appropriate task-mapping algorithm
when the cores are not fully utilized. Figure 4 shows the
performance boost of different benchmark when their SMT
neighbor switches from lbm to a “sleep” task. The “sleep”
task is introduced to represent an idle logic core or a task
that has extremely low resource demand. As we can see,
for different target program, replacing its memory inten-
sive SMT neighbor with a “sleep” (idle) task can provide
10% to 100% performance improvements. Furthermore,

J. Low Power Electron. 11, 1–15, 2015 5

Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling Shen and Qiu

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

(a) gamess (CPU intensive SMP neighbor)

0.00E+00 1.60E+06 3.20E+06 4.80E+06

corr: –0.43

LLC miss rate (s–1)

LLC miss rate (s–1) LLC miss rate (s–1)

LLC miss rate (s–1)

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.00E+00 4.00E+05 8.00E+05 1.20E+06

corr: –0.38

0.3

0.4

0.5

0.6

0.7

0.8

0.00E+00 1.00E+06 2.00E+06 3.00E+06

corr: –0.80

0.08

0.1

0.12

0.14

0.16

0.18

0.00E+00 4.00E+05 8.00E+05 1.20E+06

corr: –0.67

(b) gamess (memory intensive SMP neighbor)

(c) lbm (CPU intensive SMP neighbor) (d) lbm (memory intensive SMP neighbor)

Fig. 2. Relation between target performance and LLC miss of its SMT neighbor.

some benchmarks benefits more from such switch under
CPU intensive SMP setting, while the others benefit more
under memory intensive SMP setting. Obviously, good
task mapping algorithm should pair the SMT co-runners
so that the best performance gain can be achieved. The
above analysis shows that LLC miss rate only provides a
rough guideline for task mapping; searching for the best
solution is something more subtle.

0%

5%

10%

15%

20%

25%

30%

35%

40%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Benchmark index ordered by LLC miss rate running alone

P
er

ce
nt

ag
e

pe
rf

or
m

an
ce

 b
oo

st

CPU intensive SMP neighbor Memory intensive SMP neighbor

Fig. 3. Percentage performance boost of target process when its SMT neighbor changes from lbm to gamess.

3. MODEL CONSTRUCTION
3.1. Performance Estimation Under

Fixed Scheduling (PEFS)
In this section, we apply machine learning technique to
construct a model that assesses the performance degrada-
tion of target application considering the impact from its
current neighbors and the CPU frequency. The degrada-
tion is measured with the respect of a reference system

6 J. Low Power Electron. 11, 1–15, 2015

Shen and Qiu Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Benchmark index ordered by LLC miss rate running alone

P
er

ce
nt

ag
e

pe
rf

or
m

an
ce

 b
oo

st CPU intensive SMP neighbor Memory intensive SMP neighbor

Fig. 4. Percentage performance boost of target process when its SMT neighbor changes from lbm to sleep task.

which has no resource contention and frequency scaling.
The discussion is carried out based on Intel Ivy Bridge
i3770K CPU, which has 4 physical cores and 8 logical
cores. However, the same method can be applied to other
processors. Because we focus on CPU-bound workloads
(i.e., SPEC CPU2006), in our model, we assume only one
thread is running on each logical core.12

We classify the processes running on the same proces-
sor into 3 categories: Target, SMT and SMP. Target is the
process whose performance degradation needs to be char-
acterized. The SMT process shares the same physical core
with the Target, and the rest of the processes running on
the same chip belong to the SMP category.

To train and test the model, we created 30 groups of
workloads. Each workload consists of 4 benchmarks in
SPEC CPU2006. One of them will be Target, and another
one will be its SMT neighbor. The other two benchmarks
will be duplicated to 6 processes and run on the rest of the
3 physical cores. During the selection, we try to involve
as many benchmarks as possible while exploring different
combinations of memory and CPU intensive benchmarks20

to create variety. Each workload is run with 8 different
frequencies swept from 1.6 GHz to 3.5 GHz.

3.1.1. Feature Selection
There are around 260 PMU candidates on each logical
core. Overall, there are 260× 8 PMU variables. Includ-
ing all PMU variables in the performance estimation does
not necessarily give the best model. A good estimation
model is based on a set of variables that are highly cor-
related with the prediction results, however uncorrelated
with each other. Furthermore, using all 260×8 parameters
to construct the model requires extremely large amount
of training data, which needs prohibitively long time to
generate. We use perf 24 to collect the PMU values. There
are only 4 hardware performance counters for each logical
core which means only 4 events can be monitored at the
same time without loss of accuracy. If more events are to
be recorded, the counters have to be time-multiplexed, and

thus become less accurate. Assume we collect 8 events
in each run, to collect 260 PMU events requires running
the same workload repeatedly for more than 30 times.
As we can see, not only it is unnecessary to have all
260×8 events as inputs for model construction, to collect
all of these events will also take a prohibitively long time.
Finally, Even if we can construct a performance model
with 260×8 PMU parameters, to collect all 260×8 input
variables will be slow, which prevents runtime usage of
the model. Since our model is used to dynamically esti-
mate the performance of target task periodically, we need
to repeatedly collect all the 260× 8 PMU values during
runtime, which require lots of time multiplexing on the
PMUs. This is neither accurate nor efficient.
Due to the above reasons, a feature selection step must

be performed first to reduce the size of events to sim-
plify modeling and data collection. In this step, we run
each workload for only 10 seconds and repeat this for
about 40 times. Each time 6∼8 PMU events are col-
lected. The data forms the preliminary training set. First,
we consolidate the PMU events of the 6 SMP processes
by calculating their sum. For the target process, they are
like background activities and it is not necessary to keep
the individual information. After consolidation, we have
3 sets of PMU events from Target, SMT and SMP pro-
cesses respectively plus the CPU frequency. Then we apply
Weka25 for feature selection. The events are evaluated
using CFsSubsetEval algorithm which evaluates the sub-
set of events by considering the individual predictive abil-
ity of each feature along with the degree of redundancy
between them. A set of 24 events is selected at the end.
Table I shows the top 9 events that are selected and their
correlation to the target performance. The detailed infor-
mation of the PMU events can be found in Ref. [29]. As
we can see, they all have considerably high correlation
with target performance. In the table, the highest corre-
lated event UOPS_DISPATCHED.PORT_3(Target) is the
rate of the load and store micro-operations dispatched by
the target process. This is selected to be the most predic-
tive feature of the target process’s performance, over all

J. Low Power Electron. 11, 1–15, 2015 7

Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling Shen and Qiu

Table I. Top 9 selected events sorted by its correlation to the perfor-
mance for PEFS model.

PMU event name Correlation

UOPS_DISPATCHED.PORT_3(Target) 0.83
CYCLE_ACTIVITY.CYCLES_NO_EXECUTE(SMP) 0.77
CYCLE_ACTIVITY.CYCLES_LDM_PENDING(Target) 0.67
IDQ.ALL_DSB_CYCLES_ANY_UOPS(SMP) 0.63
CYCLE_ACTIVITY.CYCLES_L1D_PENDING(SMP) 0.61
L2_LINES_OUT.PF_CLEAN(Target) 0.54
MEM_LOAD_UOPS_RETIRED.HIT_LFB(Target) 0.40
LOAD_HIT_PRE.HW_PF(Target) 0.36
MOVE_ELIMINATION.INT_ELIMINATED(SMT) 0.33

events including many other memory IO related ones. It’s
not hard to infer that target process’s own memory inten-
siveness will directly impact its performance sensitivity to
neighboring processes’ memory intensiveness. The second
and third selected PMU features are cycles of dispatch
stalls and cycles of pending memory load. Interestingly,
we found that the attribute frequency itself is not selected
at last. However, the frequency information is reflected in
the PMU readings.

3.1.2. Model Construction
After feature selection, a more comprehensive and accu-
rate data collection is performed again. Each workload
runs for 40 seconds to get more coverage and the 24
selected PMU events are recorded with 4 collected at each
run. The model output is normalized performance (PF)
with respect to the reference system. It is calculated as
PF = instructiontest/instructionref, where instructiontest is
retired instruction of the target application running on the
test system that has contention and frequency scaling, and
instructionref is the retired instruction of the target applica-
tion running on a reference system that has no contention
and frequency scaling. Both are collected over the same
amount of time. It is easy to see that performance degra-
dation can be calculated as 1−PF .
About 16 different modeling algorithms are evaluated

for their relative absolute error through the 10 folds
cross-validation process. The results show that Multilay-
erPerceptron (i.e., neural network) model yields the best
accuracy. We refer this model as “model_full.”
Two reference models are also constructed in the simi-

lar way. However, the first one ignores the impact of fre-
quency scaling. Its training data is collected from systems
performing no frequency scaling (i.e., running at 3.5 GHz).
The model is referred as “model_no_freq.” The second
one does not explicitly consider the impact of SMT neigh-
bor. It’s training set does not have PMU data for the SMT
process. This model is referred as “model_no_SMT.”
The accuracy of those three models and their correla-

tion with the actual performance are given in Table II. As
we can see, “model_full” gives the highest accuracy and
correlation. The “model_no_SMT” also has a low error
rate. This is because the impact from SMT process is

Table II. Accuracy of 3 different PEFS models.

model_full model_no_freq model_no_SMT

Relative absolute error (%) 11.2 30.2 13.5
Correlation 0.994 0.940 0.985

partially reflected in the Target process’s PMU change.
Finally, Figure 5 shows the correlation between the PEFS
estimated performance and the actual performance. As we
can see they are highly correlated.

3.2. Performance Prediction Under Task
Migration (PPTM)

Our discussion in Section 2 shows that co-runners have
significant impact on performance of target process, and
dynamic task migration, which remaps task during run-
time when workload characteristic changes, is desirable.
An effective task migration controller needs the ability
to predict how different task mappings may affect the
performance of the target process. In this section we
generalize the PEFS model for Performance Prediction
under Task Migration (PPTM). We limit our discussion
to migrations within the single chip multi-core processor,
which is referred as intra-processor task migration. We
focus on intra-processor task migration because it has very
low overhead but quite significant performance impact if
performed correctly. The similar modeling technique can
also be applied for performance prediction under inter-
processor task migration.
Unlike PEFS, PPTM predicts how the performance

of target process will change if a new task mapping is
adopted. The prediction relies on the architectural activities
observed under current task mapping and the knowledge
obtained during the training process. For good prediction
results, the new mapping should not be dramatically dif-
ferent from the current mapping. In this work, the task
migration is confined to switch the CPU affinity of only
two processes running on different cores. One of them is
the target process and the other is referred as the migra-
tion target (mTarget). Based on this definition, migrating
the target process to an idle core can be done by switch-
ing it with an “idle process.” Besides Target and mTarget,

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ct

ua
l P

er
fo

rm
an

ce

Estimated Performance

Correlation between estimated and actual performance

Fig. 5. Estimated performance is highly correlated to actual
performance.

8 J. Low Power Electron. 11, 1–15, 2015

Shen and Qiu Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling

PPTM divide the rest of processes running on the pro-
cessor into 3 categories based on current task mapping:
SMT, mSMT, and SMP. SMT and mSMT share the same
physical core with Target and mTarget respectively. How-
ever, this relation will be reversed after migration. In other
words, after migration, SMT process will share the same
physical core with mTarget and mSMT process will share
the same physical core with Target. All processes running
on other cores are SMP tasks.

To train and test the model, we created around
720 groups of workloads. Each workload consists of
6 benchmarks randomly selected from SPEC CPU2006.
Four of them will be Target, SMT, mTarget and mSMT
tasks. The remaining 2 benchmarks will be duplicated to
4 processes and run on the rest of the 2 physical cores.
Except the Target, all other tasks can also be set as “idle
task,” which does nothing but sleep. Each workload is
run twice. In the first round, PMU information is col-
lected. In the second round, Target and mTarget processes
will be switched and performance will be recorded. Each
workload is run with 3 different frequencies swept from
1.6 GHz to 3.5 GHz. The rest of the feature selection and
model construction steps are similar to that of the PEFS
model introduced in Section 3.1.

Table III shows the top 9 selected features for the PPTM
model and their correlation with the target performance.
The average absolute error is 21.1% by 10 fold cross vali-
dation and the correlation between predicted performance
and real performance is 0.967.

4. MODEL DIRECTED TASK MAPPING
With the help of PPTM model, the task mapping can eas-
ily be formulated as an integer linear program. Similar
problems are discussed in Ref. [22], however, with slightly
different objectives.

We use N to denote the total number of logic cores in
the processor. Similar to Ref. [22], we assume that each
logic core runs only a single task including the idle task.
Therefore, the total number of tasks running on the pro-
cessor is also N . Let T denote the set of tasks, �T � = N ,
and Tc denote the set of performance critical tasks. Our

Table III. Top 9 selected features sorted by its correlation to the per-
formance for PPTM model.

PMU event name Correlation

UOPS_DISPATCHED_PORT.PORT_2 (Target) 0�75
BR_MISP_EXEC.ALL_BRANCHES (SMP) 0�60
CYCLE_ACTIVITY.CYCLES_LDM_PENDING (Target) 0�52
RESOURCE_STALLS.SB (mSMT) −0�36
LD_BLOCKS_PARTIAL.ADDRESS_ALIAS (mTarget) 0�34
MEM_LOAD_UOPS_LLC_HIT_RETIRED 0�32

.XSNP_NONE (SMT)
LD_BLOCKS_PARTIAL.ADDRESS_ALIAS (mSMT) −0�31
RESOURCES_STALLS.ROB (SMP) 0�27
MEM_LOAD_UOPS_RETIRED.LLC_HIT (Target) 0�25

goal is to maximize the total performance of those critical
tasks. We define the target variable xij to be 1 when task i
and j are mapped to the same physical core, otherwise
it is 0. We use pij to denote the performance of task i
when it is co-scheduled with task j . The value of pij can
be obtained using PTMM prediction if i and j are not
scheduled together at current mapping, otherwise it can be
obtained using PEFS estimation.
The following specifies the objective function and the

constraints of the integer linear program for model directed
task mapping:

max
∑
i∈Tc

∑
j∈T

xijpij

s.t. xii = 0� ∀ i ∈ T

xij = xji� ∀ i ∈ T ∀ j ∈ T
∑
j∈T

xij = 1� ∀ i ∈ T

The constraints ensure that each task is scheduled
exactly once and it must be mapped with a different task
other than itself. We used lp_solve27 to solve this problem
in our experiment.
The task mapping can be found by looking for a perfect

match in a graph.22 By considering each task as a vertex
and setting the weight of edge between 2 vertices as the
total performance of the two corresponding tasks when
they are mapped together, the authors of Ref. [22] search
for the performance optimal mapping by looking for a set
of edges with maximum weight such that each vertex is
connected to exactly one edge. This is a perfect matching
problem and polynomial complexity algorithm exists for
this problem.
The exact same graph model as Ref. [22] cannot be used

in this work, because our goal is to only increase the per-
formance of the set of critical tasks while their objective
is to maximize the total performance of all tasks. The dif-
ference can be resolved with simple modification in the
edge weight. By defining the weight of an edge eij , which
connects task i and j , as the following:

eij =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pij +pji� if both i and j are critical tasks

pij �orpji�� if only i (or j) is a critcal task

0� otherwise

the same perfect matching algorithm can be used to find
the mapping that maximizes the performance for the set
of the critical tasks.

5. EXPERIMENTAL RESULTS
We apply the PEFS model and PPTM model to achieve
runtime performance optimization and power manage-
ment. Three sets of experiments are conducted that repre-
sent different application scenarios.

J. Low Power Electron. 11, 1–15, 2015 9

Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling Shen and Qiu

5.1. Runtime Power Management Without
Task Migration

In the first set of experiments, we consider DVFS based
power management on a multicore processor with fixed
CPU affinity mapping. PEFS model is used to provide
performance feedback to guide the DVFS controller. Four
different workloads are generated and tested. Each work-
load contains 8 copies of SPEC CPU2006 benchmark.
The first workload (WL1) has 2 memory intensive pro-
cesses and 6 CPU intensive processes. The second work-
load (WL2) has 4 memory intensive processes and 4 CPU
intensive processes. The third and fourth workloads consist
of only memory intensive benchmarks and CPU intensive
benchmarks respectively. Two different scheduling meth-
ods are applied to WL1 and WL2. The first one schedules
a memory intensive process to be the SMT neighbor with
a CPU intensive process. The second one schedules two
memory intensive (or two CPU intensive) processes to be
SMT neighbors to each other. The first method causes less
resource contention12 and hence will be denoted as “G”,
which stands for “good” scheduling. The second method
is denoted as “B” which stands for “bad” scheduling. The
detailed information of workloads and their mappings is
presented in Table IV. Labels (M) and (C) indicate if the
benchmark is memory or CPU intensive. In this work,
we do not consider task migration. The performance feed-
back from the model is only used to guide DVFS settings.
Please note that, the testing workloads are significantly dif-
ferent from the training set. None of the training workload
has more than 50% similarity to a testing workload.
Each workload will run for 400 seconds (benchmarks

will run iteratively if their actual length is less than
400 seconds). A user-level Shell script is developed for
performance monitoring and DVFS control. It dynamically
calls the Linux perf tool to collect the 24 PMU attributes
from each logical core to form the inputs of the model. The
interval of data collection is set to be 10 seconds, which
is long enough to let each event be monitored for sub-
stantial period of time to get good sampling accuracy. We
assume that a set of target processes are critical and have
QoS constraints. The constraint is expressed as the nor-
malized performance (PF) of the process with the respect
to the reference system. If all critical tasks exceed per-
formance threshold, the chip’s frequency will be increased

Table IV. Workloads used in the evaluation.

WL1 (G) WL1 (B) WL2 (G) WL2 (B) WL3 WL4

0 lbm (M) lbm (M) mcf (M) mcf (M) milc (M) namd (C)
gamess (C) lbm (M) hmmer (C) libq (M) milc (M) namd (C)

1 lbm (M) povray (C) libq (M) mcf (M) milc (M) namd (C)
namd (C) namd (C) namd (C) libq (M) milc (M) namd (C)

2 povray (C) namd (C) mcf (M) hmmer (C) milc (M) namd (C)
h264ref (C) h264ref (C) gromacs (C) gromacs (C) milc (M) namd (C)

3 namd (C) gamess (C) libq (M) namd (C) milc (M) namd (C)
gobmk (C) gobmk (C) tonto (C) tonto (C) milc (M) namd (C)

by 0.1 GHz (chip voltage will be adjusted accordingly).
Otherwise, the frequency will be decreased. Two sets of
critical tasks are selected for WL1 and WL2. The first
one consists of all memory intensive tasks, while the sec-
ond one consists of all CPU intensive tasks. For WL3 and
WL4, all tasks are critical.
We refer to a system that uses our model as

“model_full.” It is compared with 4 reference systems:
(1) model_no_smt: the system conducts performance
assessment without considering SMT neighbor’s impact
explicitly, i.e., it uses model_no_smt specified in Table II
for performance estimation;
(2) model_no_freq : the system conducts performance
assessment without considering the impact of frequency
scaling, i.e., it uses model_no_freq specified in Table II
for performance estimation;
(3) direct_scaling: the system scales CPU frequency lin-
early according to the given performance threshold;
(4) capping: instead of frequency scaling, the system set
a cap on the CPU quotas that a task can take based on the
given performance threshold.

The cap is set using Linux cgroups.28 The same cap is
given to all tasks on the chip. The processor will run
at the highest speed and enter deep sleep mode when
it is capped. Both “direct_scaling” and “capping” ignores
SMP level resource contention. A constant 50% perfor-
mance degradation is assumed for SMT level contention.
Although not very accurate, this is the best approximation
that we can have without dynamically tracking the perfor-
mance, which is the purpose of using simple management
approaches such as “direct_scaling” and “capping.” The
CPU frequency and cap are set accordingly. For example,
if the performance threshold is 30% of reference system,
then “direct_scaling” will set CPU frequency to 0�3/0�5=
60% of the maximum frequency, while “capping” will cap
the CPU quota to 60%.
The performance for all 4 workload running on 5 differ-

ent systems is reported in Figure 6. Please note that WL1
and WL2 both have 2 different task mappings and for each
mapping two sets of critical tasks are tested. Therefore,
four plots are presented for each workload. The left two
plots in Figure 6(a) are for WL1(G) and the right two
plots are for WL1(B). The top two plots in Figure 6(a)
are for systems where memory intensive tasks are critical,

10 J. Low Power Electron. 11, 1–15, 2015

Shen and Qiu Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling

(a) WL1

(b) WL2

(c) WL3 and WL4

WL2(G) WL2(B)

pe
rf

or
m

an
ce

pe
rf

or
m

an
ce

Memory intensive critical Memory intensive critical

CPU intensive critical CPU intensive critical

Fig. 6. Performance for all workloads.

while bottom two plots are for systems where CPU inten-
sive tasks are critical. Each bundle of bars corresponds to
the performance of one task running at different systems.
The bars with dark solid outlines are the critical tasks
whose performance is important while the bars with dotted
outlines are noncritical. The dotted horizontal lines indi-
cate the performance thresholds. If a solid bar falls below
this line then there is a performance violation. A task
with performance violation is marked by a small red cross
underneath the bar. Those critical tasks that have the low-
est performance are referred as bottleneck tasks, as their

performance is the bottleneck that determines the CPU
frequency of the entire chip. They are marked with red
boxes. In order to minimize power consumption, the per-
formance of these bottleneck tasks should exactly meet the
threshold.
From the figure we can see, systems using the PEFS

model (i.e., model_full) have almost no performance vio-
lation except for WL1 (B). This only performance vio-
lation is because of the inefficient task mapping. All of
the reference systems have performance violations for this
test case. Furthermore, our model keeps the performance

J. Low Power Electron. 11, 1–15, 2015 11

Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling Shen and Qiu

of those bottleneck tasks much closer to the performance
threshold than all other techniques. This means that lower
frequency level is used and hence more energy savings
are achieved. Comparing systems with different mapping
choices, our model can correctly identify the ‘bottleneck’
tasks and make frequency scaling decision accordingly. We
also observed that “capping” gives large violation most of
time when the critical tasks are memory intensive. This is
because it runs the CPU at full speed, hence the memory
becomes the performance bottleneck. Furthermore, when
the CPU is throttled, the memory access is stopped too.
The similar is not observed for DVFS based approaches,
where both CPU and memory operate all the time.
The third thing we observed is that “model_no_smt,”

“model_no_freq” and “direct_scaling” lead to more vio-
lation when the critical tasks are CPU intensive. This is
because frequency scaling based on inferior performance
model or simple linear scaling obviously cannot accu-
rately capture the performance degradation of CPU inten-
sive tasks, which varies greatly during frequency scaling;
while the performance of memory intensive tasks generally
do not change that much. We also observed that there are
fewer violations for WL2 than WL1 if the critical jobs are
CPU intensive. It seems that the more memory intensive
tasks are running, the easier for all the models to make
the right decision since sensitivity to frequency scaling
reduces.
Please note that all systems use the same task map-

ping. And all of the first four systems “model_full,”
“model_no_SMT,” “model_no_frequency” and “direct_
scaling” perform DVFS based power management. Since
Intel Ivy Bridge processor only supports chip level
frequency scaling, the system that has the minimum
power consumption without performance violation is
the bottleneck task, whose performance should exactly
meet the threshold. Therefore, it is not necessary to
compare the power consumption among “model_full,”
“model_no_SMT,” “model_no_freq” and “direct_scaling.”
Because model_full brings the performance of the bottle-
neck task closest to the threshold, its power consumption
must be lower than the other three reference models. How-
ever, the same comparison cannot be applied to “capping,”

0

1

2

3

4

5

6
model_full capping

en
er

gy
 (

J)
 ×

 1
00

00

0

1

2

E
D

P
 ×

 1
00

00
0

model_full capping

Fig. 7. Energy and EDP of model_full and capping.

because it performs power management using CPU cap-
ping instead of DVFS. Therefore, we still need to com-
pare its power consumption with that of “model_full.” The
power consumption of the 10 test cases in Figure 6 is mea-
sured using Watts up? PRO power meter.
Figure 7 shows the energy and energy delay product

(EDP) of systems using “capping” and “model_full.” Both
systems execute the same amount of instruction. Here the
whole system idle power (around 24 W) is removed from
calculation. As we can see, in average “model_full” has
24% reduction in energy and 38% reduction in EDP com-
pared to “capping.”

5.2. Task Migration for Optimal Performance
In the second set of experiments, we apply the PPTM
model to guide task migration. The input of the PPTM
model is the PMU information collected while the tasks
are running under current mapping. The goal is to find a
new mapping that maximizes the performance of a set of
critical tasks. No DVFS power management is considered
in this experiment. Since only the highest CPU frequency
is used in this experiment, we train the PPTM model with
only the data collected at the single clock frequency, and
refer it as PPTM-SF.
As we pointed out in Section 2.3 that task migration will

not provide much performance gain if the CPU utilization
is very high. Here we assume that at least one of the cores
is not fully utilized, i.e., there is at least one idle task
in the workload. Two scenarios are evaluated. In the first
scenario, the workload has two critical tasks and one idle
task; in the second scenario, the workload has 4 critical
tasks and 2 idle tasks.
Our reference algorithm is task migration based on LLC

miss rate. It chooses the set of tasks with the minimum
LLC miss rate during run time and pairs them with the
critical tasks. For each of the two scenarios, 20 different
workloads are created based on randomly selected SPEC
benchmarks. We run each workload for 400 second. Every
40 seconds the PPTM-SF model will be called or the LLC
information will be checked. Based on the prediction, a
new task mapping is found. If it differs from the current
one, tasks will migrate accordingly.

12 J. Low Power Electron. 11, 1–15, 2015

Shen and Qiu Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PPTM-SF based LLC based

Workload index

P
er

fo
rm

an
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Workload index

0

0.5

1

1.5

2

P
er

fo
rm

an
ce

PPTM-SF based LLC based

(a) Overall performance of 2 critical tasks (scenario 1) (b) Overall performance of 4 critical tasks (scenario 2)

Fig. 8. Performance of model predictive task migration.

Figures 8(a) and (b) give the performance comparison
between PPTM based and LLC based system for both
scenarios. The X-axis in both figures gives the index of
workloads, and the Y -axis gives the summation of the per-
formance of all critical tasks normalized with the respect
of an ideal system. As we can see in the figure, the PPTM
based task migration in average gives 4% better perfor-
mance than LLC based migration for a system with 2 crit-
ical tasks and 1 idle task. It gives 9% better performance
in average for a system with 4 critical tasks and 2 idle
tasks. We can see that the more critical tasks we have, the
better the PPTM-SF model performs than the LLC based
migration. The results also show that, in general LLC miss
rate can provide fairly good prediction of how the target
performance will change after migration, if the rest of the
workload remains that same. However, because the abso-
lute value of the total LLC miss rate does not correlate
to the absolute target performance very well, it cannot be

(a) Performance for threshold 0.25 (b) Performance for threshold 0.35

(c) Average power for threshold 0.25 (d) Average power for threshold 0.35

Workload index Workload index

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

migration+DVFS balanced+DVFS

random+DVFS unbalanced+DVFS

P
er

fo
rm

an
ce

0

0.1

0.2

0.3

0.4

0.5

P
er

fo
rm

an
ce

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Workload index

0

10

20

30

40

50

60

P
ow

er
 (

W
)

migration+DVFS balanced+DVFS

random+DVFS unbalanced+DVFS

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Workload index

0

10

20

30

40

P
ow

er
 (

W
)

migration+DVFS balanced+DVFS

random+DVFS unbalanced+DVFS

1 2 3 4 5 6 7 8 9 10 11 12 13 14

migration+DVFS balanced+DVFS

random+DVFS unbalanced+DVFS

Fig. 9. Model directed hierarchical power management.

used to provide accurate guidance for power and perfor-
mance tradeoffs.

5.3. Combining Task Migration with DVFS
In Section 5.1, we showed how much energy can be saved
from model directed DVFS. In the next experiment, we
demonstrate how task migration can create potential for
further energy savings and more opportunities for DVFS.
Fourteen different workloads were created in this experi-
ment consisting of randomly selected SPEC benchmarks.
Each workload has 2 critical tasks and 1 idle task. Every
40 seconds new task mapping will be searched based on
the performance predicated using the PPTM model. If the
result is different from current mapping, task migration
will be performed. Every 10 seconds the PPTM model
will be used again to estimate the current performance of
the critical tasks. This is done by setting both the Target
and mTarget to be the same. Please note that, although

J. Low Power Electron. 11, 1–15, 2015 13

Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling Shen and Qiu

Table V. Average performance, power and violations.

Performance Number of violations Power-performance ratio

Pth = 0.25 Pth = 0.35 Pth = 0.25 Pth = 0.35 Pth = 0.25 Pth = 0.35

Our System 0.308 0.355 0 4 60 60
Balanced 0.312 0.358 0 6 60 61
Random 0.275 0.335 3 10 74 75
Unbalanced 0.278 0.330 2 9 78 87

PEFS model has higher accuracy in estimating perfor-
mance under current task mapping, we choose to use
PPTM model so that one set of model needs to be trained
and stored and the complexity of the approach could be
reduced. We will increase (or decrease) one frequency step
of the CPU if the performance is below (or above) the
given threshold.
Our reference systems have static mapping, however

they also performs DVFS power management based on
the performance information estimated using the PPTM
model. Three different static mappings are adopted. The
first static mapping tries to balance the LLC miss rate and
pairs the tasks with the lowest LLC miss rate with the
critical tasks. We refer to this system as “balanced.” The
second static mapping works reversely. It pairs the tasks
with the highest LLC miss rate with the critical tasks, and
is referred as “unbalanced.” The third static mapping ran-
domly pairs uncritical and critical tasks, and is referred
as “random.” In the experiment, the average performance
of 8 random mappings is reported. Please note that the
LLC miss rate of an arbitrary process is unknown in a
datacenter until the process has completed. Therefore, the
“balanced” and “unbalanced” mappings are created simply
for experimental purpose and the “random” mapping is the
more realistic case.
Two different thresholds of normalized performance are

used for the critical tasks. Figures 9(a) and (c) report
the performance of the worst critical task and the total
system power consumption when the threshold is set to
0.25. Figures 9(b) and (d) report the same information
for the systems where the threshold is set to 0.35. The
figure does not include the static power when the system is
idle.
Table V gives the average of the minimum performance

of the two critical tasks, the number of performance vio-
lations and the average power performance ratio of the
four testing systems collected across the 14 workloads.
Instead of energy, here we report the ratio between the
system power consumption and the average minimum per-
formance of critical tasks. This is because due to dif-
ferent task mapping, it is difficult to make sure that all
critical and noncritical tasks execute the same amount of
instructions across different systems. Therefore, we use the
ratio between power consumption and the average perfor-
mance of the worst case critical tasks to represent power-
performance tradeoffs. A smaller power performance ratio
means higher energy efficiency.

As we can see, in general all systems have more viola-
tions when performance threshold is tight (i.e., 35% of an
ideal system), however our system has the least violation.
This is because, although all systems perform the model
based DVFS, our system is more flexible since it dynam-
ically migrates tasks to better explore the opportunity of
constraining the critical tasks’ performance above thresh-
old. At the same time, our system has the lowest power-
performance ration. This is because the migration reduces
part of the stress of meeting performance constraint, so
our system does not simply rely on overclocking the CPU
to improve performance. Therefore its power consumption
is also lower than other systems.

6. CONCLUSIONS
In this work, we demonstrate the importance of consid-
ering both resource contention and frequency scaling in
system performance modeling. A model is constructed to
dynamic quantify task performance degradation with the
respect to a reference system, where the target process
is executed alone at the highest frequency. The propose
model is used to provide performance feedback to guide
DVFS control. The model is further extended to predict
the performance of the target process under a new task
mapping. The improved model is used to provide per-
formance prediction to guide the task migration. Exper-
imental results show that our PEFS model can keep the
performance of those bottleneck tasks much closer to the
performance threshold than all other techniques, which
leads to almost no performance violation while achieves
more energy savings, and our PPTM model based task
migration in average gives 4%∼9% better performance
than last level cache miss rate based migration.

Acknowledgment: This work was supported by the
National Science Foundation under Grant CNS-1203986.

References
1. L. Barroso and U. Holzle, The case for energy-proportional comput-

ing. Computer 40, 33 (2007).
2. R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu,

No ‘Power’ Struggles: Coordinated multi-level power management
for the data center, Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, March (2008).

3. J. R. Funston, K. E. Maghraoui, J. Jann, P. Pattnaik, and A. Fedorova,
An SMT-selection metric to improve multithreaded applications’ per-
formance, IPDPS’12 (2012), Vol. 1388.

14 J. Low Power Electron. 11, 1–15, 2015

Shen and Qiu Chip Multiprocessor Performance Modeling for Contention Aware Task Migration and Frequency Scaling

4. M. E. Thomadakis, The architecture of the Nehalem processor and
Nehalem-EP SMP platforms, Texas A&M University, Tech. Rep.
(2011).

5. H. Shen, Y. Tan, J. Lu, Q. Wu, and Q. Qiu, Achieving autonomous
power management using reinforcement learning, TODAES 2013
(2013), Vol. 18.

6. H. Shen, J. Lu, and Q. Qiu, Learning based DVFS for simultane-
ous temperature, performance and energy management, ISQED 2012
March (2012), pp. 19–21.

7. A. Merkel, J. Stoess, and F. Bellosa, Resource-conscious scheduling
for energy efficiency on multicore processors, EuroSys’10 (2010),
pp. 153–166.

8. G. Dhiman, G. Marchetti, and T. Rosing, “vGreen: A system for
energy-efficient management of virtual machines, ACM TODAES
November (2010), Vol. 16.

9. R. Nathuji, A. Kansal, and A. Ghaffarkhah, Q-Clouds: Managing
performance interference effects for QoS-Aware clouds, EuroSys’10
(2010), pp. 237–250.

10. S. Blagodurov, D. Gmach, M. Arlitt, Y. Chen, C. Hyser, and
A. Fedorova, Maximizing server utilization while meeting criti-
cal SLAs via weight-based collocation management, IM 2013 May
(2013), pp. 277–285.

11. T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F. Gaud, and J. Pei,
A practical method for estimating performance degradation on multi-
core processors, and its application to HPC workloads, SC’12 Article
No. 83, (2012).

12. S. Zhuravlev, S. Blagodurov, and A. Fedorova, Addressing shared
resource contention in multicore processors via scheduling, ASPLOS
XV (2010), pp. 129–142.

13. K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kalogeraki,
FACT: A framework for adaptive contention-aware thread migra-
tions, CF’11 Article No. 35 (2011).

14. A. Snavely and D. M. Tullsen, Symbiotic jobscheduling for
a simultaneous multithreading processor, ASPLOS IX (2000),
pp. 234–244.

Hao Shen
Hao Shen Hao Shen received his Ph.D. degree from Department of Electrical Engineering and Computer Science at Syracuse Uni-
versity, NY, USA in 2014. He received his B.S. degree in Electrical Engineering from Southeast University, China, in 2008 and M.S.
degree in Electrical and Computer Engineering from Binghamton University, NY, USA in 2011. His primary research interest is system
level power management. He joins Marvell Semiconductor after graduation as firmware engineer.

Qinru Qiu
Qinru Qiu Qinru Qiu received her M.S. and Ph.D. degrees from the department of Electrical Engineering at University of Southern
California in 1998 and 2001 respectively. She received her B.S. degree from the department of Information Science and Electronic
Engineering at Zhejiang University, China in 1994. Dr. Qiu is currently an associate professor at the Department of Electrical Engi-
neering and Computer Science in Syracuse University. Before joining Syracuse University, she has been an assistant professor and then
an associate professor at the Department of Electrical and Computer Engineering in State University of New York, Binghamton. Her
research areas are energy efficient computing systems, energy harvesting real-time embedded systems, and neuromorphic computing.
She has published more than 70 research papers in referred journals and conferences. Her works are supported by NSF, DoD and Air
Force Research Laboratory.

15. K. Deng, K. Ren, and J. Song, Symbiotic scheduling for virtual
machines on SMT processors, CGC’12 (2012), pp. 145–152.

16. R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, Using OS
observations to improve performance in multicore systems, IEEE
Micro 28 (2008).

17. D. Gaurav, V. Kontorinis, D. Tullsen, T. Rosing, E. Saxe, and
J. Chew, Dynamic workload characterization for power effi-
cient scheduling on CMP systems, ISLPED’10 August (2010),
pp. 437–442.

18. C. Bae, L. Xia, P. Dinda, and J. Lange, Dynamic adaptive virtual
core mapping to improve power, energy, and performance in multi-
socket multicores, HDPC’12 (2012), pp. 247–258.

19. J. L. Kihm and D. A. Connors, Implementation of fine-grained cache
monitoring for improved SMT scheduling. Computer Design: VLSI
in Computers and Processors, 2004 326 (2004).

20. A. Phansalkar, A. Joshi, and L. K. John, Subsetting the SPEC
CPU2006 benchmark suite, ACM SIGARCH March (2007), vol. 35.

21. A. Settle, J. Kihm, and A. Janiszewski, Architectural support for
enhanced SMT job scheduling, PACT 2004, September (2004),
pp. 63–73.

22. Y. Jiang, X. Shen, J. Chen, and R. Tripathi, Analysis and approxi-
mation of optimal co-scheduling on chip multiprocessors, PACT’08
(2008), pp. 220–229.

23. J. D. Gelas, Dynamic power management: A quantitative approach,
ss AnandTech (2010), http://www.anandtech.com/show/2919.

24. Perf tool: https://perf.wiki.kernel.org/index.php/Main_Page.
25. Weka 3: Data Mining Software in Java: http://www.cs.waikato.ac.nz/

ml/weka/index.html.
26. SPEC CPU2006: http://www.spec.org/cpu2006/.
27. lp_solve: http://lpsolve.sourceforge.net/5.5/3.
28. Linux cgroups: https://www.kernel.org/doc/Documentation/cgroups/

cgroups.txt.
29. Intel 64 and IA-32 Architectures Developer’s Manual: Vol.3B: http://

www.intel.com/content/www/us/en/architecture-and-technology/64-
ia-32-architectures-software-developer-vol-3b-part-2-manual.html.

J. Low Power Electron. 11, 1–15, 2015 15

