
A Neuromorphic Architecture for Context Aware
Text Image Recognition

Abstract—Although existing optical character recognition
(OCR) tools can achieve excellent performance in text image
detection and pattern recognition, they usually require a clean
input image. Most of them do not perform well when the image is
partially occluded or smudged. Humans are able to tolerate
much worse image quality during reading because the perception
errors can be corrected by the knowledge in word and sentence
level context. In this paper, we present a brain-inspired
information processing framework for context-aware Intelligent
Text Recognition (ITR) and its acceleration using memristor
based crossbar array. The ITRS has a bottom layer of massive
parallel Brain-state-in-a-box (BSB) engines that give fuzzy
pattern matching results and an upper layer of statistical
inference based error correction. Optimizations on each layer of
the framework are introduced to improve system performance. A
parallel architecture is presented that incorporates the
memristor crossbar array to accelerate the pattern matching.
Compared to traditional multicore microprocessor, the
accelerator has the potential to provide tremendous area and
power savings and more than 8,000 times speedups.

Keywords—neuromorphic; text recognition; memristor
crossbar array

I. INTRODUCTION
Military planning, battlefield situation awareness, and

strategic reasoning rely heavily on the knowledge of the local
situation and the understanding of different cultures. A rich
source of such knowledge is presented as natural-language text.
Autonomous and intelligent recognition of printed or
handwritten text image is one of the key features to achieve
situational awareness. Although generally effective,
Conventional Optical Character Recognition (OCR) tools or
pattern recognition techniques usually have difficulties in
recognizing images that are noisy, partially occluded or even
incomplete due to the damages to the printing material, or
obscured by marks or stamps.

However, such tasks are not too difficult for humans, as the
errors in image recognition will be corrected later using
semantic and syntactic context. Most human cognitive
procedures involve two interleaved steps, sensing and
association. Together, they provide higher accuracy.

Computing models have been developed for performing
cognitive functions on raw input signals such as image and
audio. One representative area in this category is the
associative neural network model, which is typically used for
pattern recognition. We generally say that this kind of model

performs the “sensing” function. In the other category, models
and algorithms are researched to operate on the concept-level
objects, assuming that they have already been “recognized” or
extracted from raw inputs. In a recent development, the cogent
confabulation model was used for sentence completion [1] [2].
Trained using a large amount of literatures, the confabulation
algorithm has demonstrated the capability of completing a
sentence (given a few starting words) based on conditional
probabilities among the words and phrases. We refer these
algorithms as the “association” models. The brain inspired
signal processing flow could be applied to many applications.
A proof-of-concept prototype of context-aware Intelligence
Text Recognition system (ITRS) is developed on high
performance computing cluster [3]. The lower layer of the
ITRS performs pattern matching of the input image using a
simple non-linear auto-associative neural network model called
Brain-State-in-a-Box (BSB) [4]. It matches the input image
with the stored alphabet. A race model is introduced that gives
fuzzy results of pattern matching. Multiple matching patterns
will be found for one input character image, which is referred
as ambiguity. The upper layer of the ITRS performs
information association using the cogent confabulation model
[1]. It enhances those BSB outputs that have strong
correlations in the context of word and sentence and suppresses
those BSB outputs that are weakly related. In this way, it
selects characters that form the most meaningful words and
sentences.

 Both BSB and confabulation models are connection based
artificial neural networks, where weight matrices are used to
represent synapses between neurons and their operation can be
transformed into matrix-vector multiplication(s). Hardware
realizations of neural networks require a large volume of
memory and are associated with high cost if built with digital
circuits [5].

The memristor has been discovered as a promising device
for massively parallel, large-scale neuromorphic systems. A
memristor can “remember” the total electric charge/flux ever to
the flow through it [6], which is analogous to synapses among
neurons. Moreover, memristor-based memories can achieve a
very high integration density of 100-Gbits/cm2, a few times
higher than flash memory technologies [7]. Due to these
properties, memristor crossbar, which employs a memristor at
each intersection of horizontal and vertical metal wires, is
proposed to facilitate weight matrices storage and matrix-
vector multiplication.

This work was partially supported by the National Science Foundation
under Grants CCF-1337198 and CCF-1337300.

Qinru Qiu, Zhe Li, Khadeer Ahmed, Wei Liu, Syed F. Habib
Department of Electrical Engineering and Computer Science

Syracuse University, Syracuse, NY, USA
{qiqiu, zli89, khadmed, wliu46, sfhabib}@syr.edu

Hai (Helen) Li, Miao Hu
Department of Electrical and Computer Engineering

University of Pittsburgh, Pittsburgh, PA, USA
{hal66, mih73}@pitt.edu

In this paper, we present the brain inspired information
processing framework and its acceleration using memristor
crossbar array. The remainder of the paper is organized as
follows. In Section II, we discuss some related neuromorphic
works while in Section III we introduce the basics of models
used for sensing and association in the ITRS system. Section
IV describes the overall system model and the algorithms in
different layers. Section V gives the details of hardware
acceleration using memristor crossbar array. The experimental
results and discussions are presented in Section VI. Section VII
summarizes the work.

II. RELATED WORKS
During recent years, neuromorphic computing has become

an important research area. The research works range from
applications to hardware implementations.

In [22] Voorhies et al. introduced a uniquely structured
Bayesian learning network with combined measure across
spatial and temporal scales on various visual features to detect
small, rare events in far-field video streams. However, this
structured Bayesian learning network does not fit applications
like text recognition and completion easily. Authors of [23]
proposed a sophisticated method based on spiking
neuromorphic systems with event-driven contrastive
divergence trained Restricted Boltzmann Machines and apply
the model to recognize the image of MNIST hand-written digit.
However their application limits only in the pattern matching
layer, and did not go beyond that. M. Schmuker at el. [24]
demonstrates a brain-like processing using spiking neuron
network, which achieves classification of generic
multidimensional data. No specific application, however, is
discussed in this work. It only provides a proof of concept
design of analog electronic microcircuits to mimic behavior of
neurons for real-world computing tasks.

Many existing neuromorphic computing researches
concentrate on pattern matching applications such as video
detection or character recognition. Very few of them study the
function of probabilistic inference in neuromorphic computing.
Some works also focus on developing general hardware
architecture for neuromorphic computing. For example, IBM’s
TrueNorth [25] is an efficient, scalable and flexible non-von
Neumann architecture, which integrates 1 million
programmable spiking neurons and 256 million configurable
synapses. The hardware is suited to many applications such as
multi-object detection and classification. Other novel
architectures utilize emerging device technologies such as
memristor crossbar or phase change memory (PCM). Authors
of [26] attempt to implement data storage using memristor and
[27] describe a memristor based neuromorphic circuit capable
of learning which is tolerant of error. Suri, M. at el. [28]
demonstrate a unique energy efficient methodology that uses
PCM as synapse in ultra-dense large scale neuromorphic
systems. In [28] the demonstration of complex visual pattern
extraction from real world data using PCM synapses in a 2-
layer spiking neural network is shown.

To the best of our knowledge, our proposed architecture is
the first that covers both the pattern matching layer and
probabilistic inference layer in neuromorphic computing.
Neither have the implementation on state-of-the-art multicore

processor nor the projected acceleration using memristor
crossbar array been addressed in previous works.

III. BACKGROUND

A. Neural Network and BSB Model
The BSB model is an auto-associative, nonlinear, energy

minimizing neural network. A common application of the BSB
model is to recognize a pattern from a given noisy version. It
can also be used as a pattern recognizer that employs a smooth
nearness measure and generates smooth decision boundaries. It
has two main operations: training and recall. The mathematical
model of BSB recall function can be represented as:

 𝒙(𝑡 + 1) = 𝑆(𝛼 ∙ 𝑨𝒙(𝑡) + 𝛽 ∙ 𝒙(𝑡)) (1)

where x is an N dimensional real vector and A is an N-by-N
connection matrix, which is trained using the extended Delta
rule. Ax(t) is a matrix-vector multiplication, which is the main
function of the recall operation. D is a scalar constant feedback
factor. E is an inhibition decay constant. S() is the “squash”
function defined as follows:

𝑆(𝑦) = {
1, 𝑦 ≥ 1
𝑦, − 1 < 𝑦 < 1
−1, 𝑦 ≤ −1

 (2)

For a given input pattern x(0), the recall function computes (1)
iteratively until convergence, that is, when all entries of x(t+1)
are either ‘1’ or ‘�1’[14].
Algorithm 1. BSB training algorithm using Delta rule.
Step 0. Initialize weights (zero or small random values).

Initialize learning rate D.
Step 1. Randomly select one prototype pattern J(k)�Bn, k=1,…,m. Bn is

the n-dimension binary space (�1, 1).
Set target output to the external input prototype pattern J(k): ti=Ji.

Step 2. Compute net inputs: ¦ j jijin wy
i

J

(Each net input is a combination of weighted signals received
from all units.)

Step 3. Each unit determines its activation (output signal):

𝑦𝑖 = 𝑆(𝑦𝑖𝑛𝑖) = {
1, 𝑦𝑖𝑛 ≥ 1

𝑦𝑖𝑛 , − 1 < 𝑦𝑖𝑛 < 1
−1, 𝑦𝑖𝑛 ≤ −1

Step 4. Update weights: 'wij=D�(tj‒yj)�Ji.
Step 5. Repeat Steps 1-4 until the condition |t(i) - y(i)|<θ is satisfied in m

consecutive iterations.
The most fundamental BSB training algorithm is given in
Algorithm 1, which bases on the extended Delta rule [8]. It
aims at finding the weights so as to minimize the square of the
error between a target output pattern and the input prototype
pattern.

B. Cogent Confabulation
Inspired by human cognitive process, cogent confabulation

[1] mimics human information processing including Hebbian
learning, correlation of conceptual symbols and recall action of
brain. Based on the theory, the cognitive information process
consists of two steps: learning and recall. The confabulation
model represents the observation using a set of features. These
features construct the basic dimensions that describe the world
of applications. Different observed attributes of a feature are
referred as symbols. The set of symbols used to describe the

same feature forms a lexicon and the symbols in a lexicon are
exclusive to each other.

In learning process, matrices storing posterior probabilities
between neurons of two features are captured and referred as
the knowledge links (KL).A KL stores weighted directed edges
from symbols in source lexicon to symbols in target lexicon.
The (𝑖, 𝑗) th entry of a KL, quantified as the conditional
probability 𝑃(𝑠𝑖|𝑡𝑗), represents the Hebbian plasticity of the
synapse between ith symbol in source lexicon s and jth symbol
in target lexicon t. The knowledge links are constructed during
learning process by extracting and associating features from
the inputs and collection of all knowledge links in the model
forms its knowledge base (KB).

During recall, the input is a noisy observation of the target.
In this observation, certain features are observed with great
ambiguity, therefore multiple symbols are assigned to the
corresponding lexicons. The goal of the recall process is to
resolve the ambiguity and select the set of symbols for
maximum likelihood using the statistical information obtained
during the learning process. This is achieved using a procedure
similar to the integrate-and-fire mechanism in biological neural
system. Each neuron in a target lexicon receives an excitation
from neurons of other lexicons through KLs, which is the
weighted sum of its incoming excitatory synapses. Among
neurons in the same lexicon, those that are least excited will be
suppressed and the rest will fire and become excitatory input of
other neurons. Their firing strengths are normalized and
proportional to their excitation levels. As neurons gradually
being suppressed, eventually only the neuron that has the
highest excitation remains firing in each lexicon and the
ambiguity is thus resolved.

Let 𝑙 denote a lexicon, 𝐹𝑙 denote the set of lexicons that
have knowledge links going into lexicon 𝑙, and 𝑆𝑙 denote the
set of symbols that belong to lexicon 𝑙. The excitation of a
symbol t in lexicon l is calculated by summing up all incoming
knowledge links:

 𝑒𝑙(𝑡) = ∑ [∑ 𝑒𝑙(𝑠)𝑠∈𝑆𝑘 ln (𝑃(𝑠|𝑡)
𝑝0

) + 𝐵]𝑘∈𝐹𝑙 , 𝑡 ∈ 𝑆𝑙 (3)
the function el(s) is the excitation level of the source symbol s.
The parameter p0 is the smallest meaningful value of P(si | tj).
The parameter B is a positive global constant called the
bandgap. The purpose of introducing B in the function is to
ensure that a symbol receiving N active knowledge links will
always have a higher excitation level than a symbol receiving
(N-1) active knowledge links, regardless of their strength. As
we can see, the excitation level of a symbol is actually its log-
likelihood given the observed attributes in other lexicons.

IV. SYSTEM ARCHITECTURE

A. Overview of the ITRS
The ITRS is divided into three layers as shown in Fig. 1.

The input of the system is a text image. The first layer is
character recognition based on BSB models. It recalls the
stored patterns of the English alphabet that matches the input
image. If there is noise in the image, multiple matched patterns
may be found. The ambiguity can be removed by considering
the word level and sentence level context, which is achieved by
the statistical information association in the second and third
layer where word and sentence is formed using cogent
confabulation models.

beginning but to perceive that the handcuffs were not for me

b e g i n n i n g p e r c e i v eb u t t o t h a t t h e h a n d c u f f s w e r e n o t f o r m e

BSB Recognition

a
e

s
l
g
n

s
e
n

e
m
n
h

g a
o
e

c
s

t
v
l

i
x
a
s

w
t
e

t
s

h
b

f
h
w
s

u
o

t
n
d

a
i
o
u

Word Level Confabulation

besieging
believing
beginning
banishing

...

porceite
perceive
parseile

twit
that
text
test
...

the
she

handcuffs fere
sere
were
here

...

nut
nun
nod
not
...

fur
fir
far
for

but to me

b u t b i i n t o p r e i e t t h e a n d c u f f s e r e n f r m e

Sentence Level Confabulation

...but beginning to perceive that the handcuffs were not for me ...

Knowledge Base
(KB)

Knowledge Base
(KB)

...

...
...

...

...

...
...

... ...
...

... ...

...

...
...

...

...but beginning to perceive that
the handcuffs were not for me

Fig. 1 Overall architecture of the models and algorithmic flow

Fig. 1 shows an example of using the ITRS to read texts
that have been occluded. The BSB algorithm recognizes text
images with its best effort. The word level confabulation
provides all possible words that can be formed based on the
recognized characters while the sentence level confabulation
finds the combination among those words that gives the most
meaningful sentence.

B. Character Level Image Recognition
The initial image processing consists of six major steps

performed in a sequence. These steps corrects the distortion
and extract characters for further pattern recognition. To
optimize performance these stages are designed as a pipeline as
shown in Fig. 2.

Fig. 2 Image processing pipeline

The region extraction operates at the page level. In this
stage pages are broken down to paragraphs. The line extraction
operates at paragraph level, which extracts the text lines from a
paragraph. The line correction is the next step that corrects all
deformations due to warping and rotation. Characters are then
extracted and scaled in order to remove perspective distortion.
Correct order of text lines in paragraph and correct order of
paragraphs in a page are determined in line ordering and
paragraph ordering stages. Each character image is labeled
with these orders and sent to BSB model for pattern
recognition.

We designed a new “racing” algorithm for BSB recalls to
implement the multi-answer character recognition process. Let
S denote the set of characters that we want to recognize.
Without loss of generality, assume the size of S is 52, which is
the number of upper and lower case characters in the English
alphabet. We also assume that for each character, there are M
typical variations in terms of different fonts, styles and sizes. In
terms of pattern recognition, there is a total of 52×M patterns
to remember during training and to recognize during recall.

A BSB model is trained for each character in S. Therefore
there will be a set of 52 BSB models and each BSB model is
trained for all variations of a character. The multi-answer
implementation utilizes the BSB model’s convergence speed to
represent the similarity between an input image and the stored
pattern. An input image is compared against each one of the 52
BSB models; therefore it triggers 52 recall processes. The
number of iterations that each recall process takes to converge
is recorded. Then we pick up characters in K “fastest”
converged processes as the final output to word confabulation

model. Fig. 3 gives an example of how the racing mechanism
works.

C. Word Level Confabulation
Word level confabulation interfaces between BSB and

sentence confabulation, which collects ambiguous character
inputs from BSB layer and generate valid combinations to form
meaningful words. The word confabulation use the ambiguous
letter candidates and create valid word combinations. The
dictionary database is loaded as a trie data structure during
initialization. An example of trie data structure is shown in the
right of Fig. 4.

Chracter
Image

A B t z

BSB
Recall

BSB
Recall

BSB
Recall

BSB
Recall

Compare
converge speed

... ...
... ...

49 iterations 45 iterations 11 iterations 38 iterations

t,l,i,...
K(1 or more)

candidates are
selected

Fig. 3 Example for "racing" mechanism based on BSB model. Hand-written “t”
is compared against each model storing patterns of each character in S, and
initiate 52 recall processes. K fastest converged process are selected to output
its corresponding character as candidates to next level, i.e. word confabulation.

Fig. 4 Trie data structure used in Word Confabulation

The combinations based on letter candidates are validated
against the trie. For example let’s consider a word “dog”. Its
candidates for each letter position are [d o b] [o a g] [g a y].
Word confabulation will traverse through the trie using these
candidates to search for the valid words presented in the trie.
The valid words will be pushed onto a stack. In this example,
these valid words would be: dog, day, boy, bag. Since the letter
candidates were passed with their relative confidence level, the
confidence level for each word will be the product of the letters
it contains.

D. Sentence Level Confabulation
Sentence level confabulation model defines three levels of

lexicons. The first and second level lexicons represent single
words and pairs of adjacent words; while the third level of
lexicons represent the parts-of-speech (POS) tags of the

corresponding word. During recall, those word and word-pair
symbols corresponding to the outputs from word level
confabulation are set as active, and all POS tag symbols are
also set as active. If a lexicon has more than one active symbol,
it is said to have ambiguity. The goal of sentence confabulation
is to resolve the ambiguity iteratively through a recall
procedure similar to belief propagation and finally form a
meaningful sentence. The general confabulation recall
algorithm can is described as follows in Algorithm.2.

As Algorithm 2 shows, for each lexicon that has multiple
symbols activated, we calculate the excitation level of each
activated symbol. The N highest excited symbols in this
lexicon are kept active. These symbols will further excite the
symbols in other ambiguous lexicons. This procedure will
continue until the activated symbols in all lexicons do not
change anymore. If the convergence cannot be reached after a
given number of iterations, then we will force the procedure to
converge. Then value of N will be reduced by 1 and we repeat
the above procedure. At last N is reduced to 0 which means
there is only one active symbol in each lexicon. Then
ambiguity is eliminated in all lexicons.

Algorithm 2. Confabulation recall algorithm
for each known lexicon*

set symbol to be active
end for
for N from MAX_AMBIGUIOUS downto 1

converged = false;
iteration_count =0;
while not converged
 for each unknown lexicon
 for each symbol associated to the lexicon
 calculate the excitation level of the symbol;
 end for
 select N highest excited symbols and set them to be active;
 end for

iteration_count++;
if activated set does not change since last iteration

 or iteration_count >= MAX_ITERATION
 converged = true;
 end if

 N--;
end for
*lexicons who has only one symbol candidate are denoted as known lexicons,
others are unknown lexicons.

E. Improving Sentence Confabulation
In sentence confabulation, the excitation level of a

candidate is the weighted sum of excitation levels of active
symbols in other lexicons. Intuitively, however, different
source lexicons do not contribute equally to a target lexicon.
For example, the lexicon right next to an unknown word
obviously gives more information in determining the unknown
word than the lexicon that is five words away. Thus the
significance of a KL can be measured by weight and quantified
by the mutual information(MI)[9]. Mutual information of two
random variables is a measure of variables’ mutual
independence, calculated as

 𝐼(𝐴; 𝐵) = ∑ ∑ 𝑝(𝑎, 𝑏)𝑙𝑜𝑔𝑎∈𝐴𝑏∈𝐵 (𝑝(𝑎,𝑏)
𝑝(𝑎)𝑝(𝑏)) (4)

where A is the source lexicon and a represents symbols in A; B
is the target lexicon and b represents symbols in B. 𝑝(𝑎, 𝑏) is
the joint probability of symbol a and b; 𝑝(𝑎) and 𝑝(𝑏) are the

margin probability of symbol a and b respectively. 𝐼(𝐴; 𝐵) is
nonnegative. The value of 𝐼(𝐴; 𝐵) will increase when the
correlation of symbols in lexicon A and B get stronger. We
defined the weight of KL (i.e. 𝑤𝑘𝑙) from A to B as positive
linear function of MI of A and B.

 The sentence confabulation model in Algorithm 2
considers all initial symbols equally possible. In reality, we
know that some words are more likely than others from the
given image. To incorporate the image information with
sentence confabulation, we consider the BSB convergence
speed during the confabulation process, and modify the
excitation level calculation of a word symbol t as follows,

𝑒𝑙(𝑡) = 𝛼𝑃𝐵𝑆𝐵(𝑡) + 𝛽 ∑ [𝑤𝑘𝑙 ∑ 𝑒𝑙(𝑠)𝑠∈𝑆𝑘 ln (𝑃(𝑠|𝑡)
𝑝0

) + 𝐵]𝑘∈𝐹𝑙 (5)

In (5), variable 𝑃𝐵𝑆𝐵(𝑡) is the excitation to t from the BSB
layer, which is calculated as: 𝑃𝐵𝑆𝐵(𝑡) = 1 (𝑁𝐵𝑆𝐵(𝑡)⁄ −𝑁𝑚𝑖𝑛)

∑ 1 (𝑁𝐵𝑆𝐵(𝑡)⁄ −𝑁𝑚𝑖𝑛)𝑡
,

where 𝑁𝐵𝑆𝐵(𝑡) is the BSB convergence speed of t, 𝑁𝑚𝑖𝑛 is the
minimum convergence number that is possible for BSB
engines, D and E are coefficients that adjust the weight of BSB
(i.e. image) information and confabulation (i.e. language)
information, D + E = 1. In general, we should increase the
value of D and decrease the value of E when the image has
high quality and vice versa.

V. HARDWARE ACCELERATION OF BSB RECALL

A. Memristor and Crossbar Array
In 2008, HP Lab demonstrated the first memristive device,

in which the memristive effect was achieved by moving the
doping front within a TiO2 thin-film [10]. The overall
memristance can be expressed as:

𝑀(𝑝) = 𝑝 ∙ 𝑅𝐻 + (1 − 𝑝) ∙ 𝑅𝐿 (6)
where p (0dpd1) is the relative doping front position, which is
the ratio of doping front position over the total thickness of the
TiO2 thin-film, RL and RH respectively denote the low
resistance state (LRS) and the high resistance state (HRS) of
the memristor. The velocity of doping front movement v(t),
driven by the voltage applied across the memristor V(t), can be
expressed as:

 𝑣(𝑡) = 𝑑𝑝(𝑡)
𝑑𝑡

= 𝜇𝑣 ∙ 𝑅𝐿
ℎ2 ∙ 𝑉(𝑡)

𝑀(𝑝)
 (7)

where Pv is the equivalent mobility of dopants, h is the total
thickness of the thin film, and M(p) is the total memristance
when the relative doping front position is p. In general, a
certain energy (or threshold voltage) is required to enable the
state change in a memristive device. When the electrical
excitation through a memristor is greater than the threshold
voltage, i.e., V(t)>Vth, the memristance changes (in training).
Otherwise, a memristor behaves like a resistor.

Crossbar array illustrated in Fig. 5 is a typical structure of
memristor based memories. It employs a memristor device at
each intersection of horizontal and vertical metal wires without
any selectors [11]. The memristor crossbar array is naturally
attractive for implementation of connection matrix in neural
networks for it can provide a large number of signal
connections within a small footprint and conduct the weighted
combination of input signals [12][13].

Fig. 5 A memristor crossbar array

B. Matrix Multiplication using Memristor Crossbar
In order to use the N-by-N memristor crossbar array

illustrated in Fig. 5 for matrix computation, a set of input
voltages VIT={VI,1, VI,2, …, VI,N} is applied on the word-lines
(WL) of the array, and the current through each bit-line (BL) is
collected by measuring the voltage across a sensing resistor.
The same sensing resistors are used on all BLs with resistance
rs, or conductance gs = 1/rs. The output voltage vector
VOT={VO,1, VO,2, …, VO,N}. Assume the memristor sitting on
the connection between WLi and BLj has a memristance of mi,j.
The corresponding conductance gi,j=1/mi,j. Then, the relation
between the input and output voltages can be represented by:

 𝑉𝑜 = 𝐶𝑉𝐼 (8)

Here, C can be represented by the memristors’ conductance
and the load resistors as:

𝑪 = 𝑫𝑮𝑇 = 𝑑𝑖𝑎𝑔(𝑑1, ⋯ , 𝑑𝑁) [
𝑔11 ⋯ 𝑔1,𝑁

⋮ ⋱ ⋮
𝑔𝑁,1 ⋯ 𝑔𝑁,𝑁

] (9)

where 𝑑𝑖 = 1/(𝑔𝑠 + ∑ 𝑔𝑖,𝑗
𝑁
𝑖=1).

Please note that some non-iterative neuromorphic hardware
uses the output currents IO as output signals. Since the BSB
algorithm discussed in this work is an iterative network, we
take VO as output signals, which can be directly fed back to
inputs for the next iteration without extra design cost.

Equation (8) indicates that a trained memristor crossbar
array can be used to construct the weight matrix C, and transfer
the input vector VI to the output vector VO. However, C is not
a direct one-to-one mapping of conductance matrix G as
indicated in equation (9). Though we can use a numerical
iteration method to obtain the exact mathematical solution of G,
it is too complex and hence impractical when frequent updates
are needed.

For simplification, assume gi,j�G satisfies gmindgi,jdgmax,
where gmin and gmax respectively represent the minimum and
the maximum conductance of all the memristors in the crossbar
array. Thus, a simpler and faster approximation solution to the
mapping problem is defined as:

𝑔𝑗,𝑖 = 𝑐𝑖,𝑗 ∙ (𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) + 𝑔𝑚𝑖𝑛 (10)

With the proposed fast approximation function (10), the
memristor crossbar array performs as a decayed matrix 𝐶̂
between the input and output voltage signals, where 𝑐̂𝑖,𝑗 =
 𝑐𝑖,𝑗 ∙ 𝑔𝑚𝑎𝑥/𝑔𝑠.

C. Training Memristor Crossbars in BSB Model
A software generated weight matrix can be mapped to the

memristor crossbar arrays based on the assumption that every
memristor in the crossbar could be perfectly programmed to
the required resistance value. However, the traditional crossbar
programming method faces accuracy and efficiency limitations
due to the existence of the sneak paths [11]. Although some
recent works were presented to improve the write/read ability
of memristor crossbars by leveraging the device nonlinearity
[11], the controllability of analog state programming is still
limited. In spite of preparing the memristor crossbars with
open-loop writing operations, we propose a close-loop training
method which iteratively tunes the entire memristor crossbar to
the target state. This technique is based on a modification of
the software training algorithm.

Let’s use the Delta rule in Algorithm 1 as an example. A
weight wij corresponds to the analog state of the memristor at
the cross-point of the ith row and the jth column in a crossbar
array. A weight updating 'wij involves multiplying three
analog variables: D, tj‒yj, and xi. Though these variables are
available in training scheme design, the hardware
implementation to obtain their multiplication demands
unaffordable high computation resources. Thus, we simplify
the weight updating function by trading off the convergence
speed as:

∆𝑤𝑖𝑗 = 𝛼 ∙ 𝑠𝑖𝑔𝑛(𝑡𝑗 − 𝑦𝑗) ∙ 𝑠𝑖𝑔𝑛(𝑥𝑖) (11)

Here, sign(tj‒yj) and sign(xi) are the polarities of tj�yj and xi,
respectively. sign(tj�yj)�sign(xi) represents the direction of the
weight change.

The simplification minimizes the circuit design complexity
meanwhile ensuring the weight change in the same direction as
that of the Delta rule.

D. Transformation of BSB Recall Matrix
A memristor is a physical device with conductance g>0.

Therefore, all elements in matrix C must be positive as shown
in (9). However, in the original BSB recall model, ai,j�A can
be either positive or negative. An alternative solution is
moving the whole A into the positive domain. Since the output
x(t+1) will be used as input signal in the next iteration, a
biasing scheme at x(t+1) is needed to cancel out the shift
induced by the modified A. The biasing scheme involves a
vector operation since the shift is determined by x(t).

To better maintaining the meaning of the matrix A in
physical mapping and leverage the high integration density of
memristor crossbar, we propose to split the positive and
negative elements of A into two matrixes A+ and A– as:

𝑎𝑖,𝑗
+ = {

𝑎𝑖,𝑗 , 𝑖𝑓 𝑎𝑖,𝑗 > 0
0, 𝑖𝑓 𝑎𝑖,𝑗 ≤ 0 and 𝑎𝑖,𝑗

− = {
0, 𝑖𝑓 𝑎𝑖,𝑗 > 0
−𝑎𝑖,𝑗 , 𝑖𝑓 𝑎𝑖,𝑗 ≤ 0 (12)

As such, (1) becomes
𝒙(𝑡 + 1) = 𝑆(𝑨+𝒙(𝑡) − 𝑨− ∙ 𝒙(𝑡) + 𝑥(𝑡)) (13)

where we set D=E=1. Thus, A+ and A– can be mapped to two
memristor crossbar arrays M1 and M2 in a decayed version �Â
and �Â , respectively, by following (10).

VI. EXPERIMENTAL RESULTS
In this section, we present several independent experiments

carried out on different layers of the ITRS system. Each
experiment is specifically designed to demonstrate our
improvements on that particular layer over the previous works.
Their configuration and results are discussed in detail in the
following sections. We also report the accuracy and confidence
level of the entire ITRS system when applied to recognize
document images with different qualities. At the end, we
demonstrate the recall quality of memristor crossbar array
based BSB, and analyze its performance and cost.

A. Performance improvement in word confabulation layer
Instead of the hash table, which is originally used to store

the dictionary, the trie data structure is applied as a new
implementation to significantly reduce the search time for
checking all character combinations against dictionary. Three
sets of images with different qualities are used as inputs. The
first set of images are clean scanned document images; the
second set of images are scanned document image with 10% of
characters completely occluded; and the third set of images are
camera images with the same amount of occlusions. Each set
consists of 8 document images. The average Signal-to-Noise
Ratio (SNR) and average Peak Signal-to-Noise Ratio (PSNR)
of the images in each set are given in TABLE 1. The clean
image has the highest quality while the camera occluded image
has the lowest quality.

TABLE 1. QUALITY OF INPUT IMAGES

Image sets Scanned Clean Scanned
Occluded

Camera
Occluded

Avg. SNR 5.1204 4.3756 3.8116
Avg. PSNR 8.095 7.3515 6.7904

TABLE 2. IMPROVEMENT IN WORD CONFABULATION LAYER

 Word Confabulation Time (sec)
Clean image Scan

Occluded
Camera

Occluded
Original implementation 310 2997 2483

New implementation 0.3 1.28 1.71

TABLE 2. compares the word confabulation time of old
implementation to that of the new implementation when
processing input images with different qualities. As we can see,
the lower quality input image leads to higher ambiguity in
pattern matching. As the number of letter candidates increases,
the complexity of the original implementation of word
confabulation increases exponentially as it has to check all the
combinations of the letter candidates. The new implementation
has much lower complexity because it pruned many invalid
combinations in advance. Furthermore, the hash table based
dictionary storage in the original implementation has very poor
memory locality, which degrades the performance even more.

B. Performance improvement in sentence confabulation layer
As the most important layer of ITRS system, more

optimizations are proposed on sentence confabulation layer. In
order to focus only on the performance of sentence
confabulation, for all experiments in this subsection, we set D
and E in Equation (5) to 0 and 1 respectively, in order to
decouple the image information from sentence confabulation.
We will discuss the impact of parameters D and E in the next
subsection.

Original sentence confabulation model maintains a separate
knowledge link for each pair of source and target lexicons,
which generates redundancy. A new implementation called
circular model is proposed in [16] to merge all knowledge links
between source and target lexicons that have same relative
position. For example, knowledge links between any pair of
adjacent lexicons will be merged as one. The new
implementation not only reduces training and recall time, but
also improves the accuracy of sentence completion. In this
experiment, we cover random number of words completely in a
sentence so that all words in dictionary are taken as candidates
for the missing words. TABLE 3. shows that circular model
gives 23.99% accuracy improvement, with 70.4% less effort of
training and 17.5% less effort of recall.

TABLE 3. COMPARASION OF NON-CIRCULAR AND CIRCULAR MODEL

 Non-circular Circular Improvement(%)

Training time(sec) 489180 144540 70.45%

Recall time(sec) 6317.22 5207.83 17.56%

Accuracy 54.95% 68.13% 23.99%

We also reduced the initialization time of sentence
confabulation by loading the knowledge base in parallel. The
size of sentence confabulation knowledge base is more than
7GB. Loading the knowledge base sequentially takes more
than 83.9 seconds. A multi-thread implementation that loads
the knowledge base in parallel can reduce the initialization
time to 31 seconds and provides 2.7x speedups.

Integrating the POS tag in confabulation model
significantly improves the sentence confabulation accuracy
[15]. To evaluate the impact, the tag-assisted confabulation
method is compared with no-tag confabulation at various noise
levels. In this experiment, we randomly select input character
image and add 3 pixel wide horizontal strikes. The noise level
percentage means the ratio of characters in text with a 3-pixel
wide horizontal strike. Note that the size of original character is
15x15 pixels, a 3-pixel wide strike is almost equivalent to 20%
distortion.

Fig. 6 shows that no-tag sentence confabulation quickly
collapse as noise level increases. This is because each test
sentence contains on average 28 characters and we only
consider the sentence correct if all of its characters are correct.
The noise level at character level is compounded into character
and word level ambiguity. Without semantic information,
which provides an overall structure for each sentence, the
success rate is expected to drop exponentially as noise level
increase. Tag-assisted confabulation shows clear improvements
over no-tag confabulation at all noise levels. The improvement

is minor at low noise level, but significant at high noise level.
Overall, tag-assisted confabulation improves success rate by 33%
in average.

Fig. 6 Accuracy of sentence confabulation with/without POS tag

The next set of experiments is to show the impact of
weighting knowledge link of sentence level confabulation
using mutual information between the source and target
lexicons.

This experiment is based on Microsoft Research Sentence
Completion (MRSC) challenge. The MRSC challenge intended
to stimulate research into language modeling techniques which
are sensitive to overall sentence coherence [20]. The challenge
consists of fill-in-the-blank questions similar to those widely
used in the Scholastic Aptitude Test. We use partial training set
provided by MRSC project to train our confabulation model
due to the limited time. And we run recall function based on
sentence confabulation model with and without weighting
knowledge links to fill in the blank words for 1,040 tests in the
challenge. Fig. 7 shows the recall accuracy of the two different
of confabulation models. For each model, the Bandgap is
varied from 1 to 1000. As we can see, when bandgap value is
10 or less, assigning weight to KL provides little improvement.
However, when the bandgap value exceeds 100, assigning
weight to KLs brings visible benefits; it improves accuracy by
about 4%. The recall accuracy becomes saturated after the
bandgap exceeds 100. We also observe that, without weighted
KL, changing the bandgap value has almost no impact on the
recall accuracy. Please note in this experiment, the condition is
equivalent to that words are completely covered, sentence level
confabulation cannot get any clue from word confabulation.
And since we train incomplete training set to save time, some
words appear in the tests are not stored in dictionary. An
unrecognized word will never be recalled correctly by the
confabulation model, thus if we train complete training set,
sentence accuracy will be increased. The same testing set was
evaluated in [21], our weighted confabulation model gives a
slightly higher recall accuracy of 48.30% than 47% accuracy
based on recurrent neural network (RNN) model. Please note
that the RNN model identifies the missing word from the list of
candidates by evaluating the probability of the sentence that
they could make. Therefore, it has to create a sentence for each
combination of the candidates and calculate its probability. The
complexity of the RNN is an exponential function of the
number of missing words, while the complexity of
confabulation model is a linear function of the number of
missing words.

Fig. 7 Comparison of accuracy for weighted/non-weighted KL model with
different bandgap value

C. Performance improvement of overall ITR system
To evaluate the impact of weighting image and language

information. We assign 𝑤𝑘𝑙 as 1, and 𝛼 varies from 1 to 0 at
step of 0.1, 𝛽 varies from 0 to 1 at step of 0.1. In this
experiment, we run the complete ITRS to show the overall
performance.

Fig. 8 Adjusting the weight of image and language information affects the
accuracy of ITRS

As shown in (5), the excitation level of a word in the
sentence confabulation layer is a weighted sum of two
components. One of them represents the likelihood of the word
based on the input image; the other represents the likelihood of
word based on the language context. The parameters D and E
control the weight of image information and language
knowledge. Adjusting the value of D and E affects the accuracy
of ITRs. Fig. 8 shows how the word accuracy changes as we
vary the value of D and E. In this experiment, we take three sets
of images as input, scanned clean images, scanned occluded
images and occluded images taken by camera. As we can see,
completely ignore either the image inform or language
information will lead to poor accuracy. Furthermore, for a
clean image, we can rely more on the image information, and
the best quality recognition happens when D and E are set at
(0.9, 0.1); while for a low quality image, we should rely more
on language information, and the best quality recognition
happens when D and E are set at (0.7, 0.3).

We further assign confidence level to the words recognized
by ITRS. The confidence level is calculated as the normalized
excitation difference between the selected candidate and its
final competitor in the last round of confabulation, 𝑐(𝑡1) =
𝑚𝑖𝑛[1, 𝐼(𝑡1)−𝐼(𝑡2)

𝐼(𝑡2)], where t1 is the selected word and t2 is its
only competitor in the last round of confabulation. Under this
definition, 100% confidence means that there was only 1
candidate for the lexicon while 0% confidence means that the
excitation level for the two remaining candidates are the same
and in that case, the program just chooses the first candidate.

TABLE 4. CONFIDENCE LEVEL OF SCANNED OCCLUDED IMAGES

File Name Test-1 Test-2 Test-3 Test-4 Total

Total Words 761 737 745 613 2856

Total Right Words 731 703 700 575 2709

Total Wrong Words 30 34 45 38 147

Average Confidence
of right words(%)

88.86 85.66 88.63 88.96 87.99

Average Confidence
of wrong words(%)

16.83 20.87 15.37 24.53 19.31

Total Average
Confidence(%)

86.03 82.67 84.20 84.96 84.46

Total Accuracy(%) 96.06 95.39 93.96 93.80 94.85

TABLE 4. shows the recall results for scanned occluded
images as an example. Correctly recalled words have around
90% confidence compared to around 20% confidence of
wrongly recalled words,. The overall average confidence is
pretty high around 85%, which means the ITRS system can
always eliminate the ambiguity for multiple candidates
effectively and achieve a high accuracy.

In the last experiment, we compare the accuracy of ITRS
with that of Tesseract on processing the same three sets of
testing images. Developed initially at HP lab and now at
Google, Tesseract is claimed to be the most accurate open
source OCR engine available. The word accuracy of both ITRS
and Tesseract are given in TABLE 5. As we can see, with the
reduced image quality, the accuracy of Tesseract degrades
rapidly, while the performance of ITRS is more robust.
Although Tesseract produces perfect recognition with given
clean image, the ITRS is more reliable under noisy
environment for low quality images.

TABLE 5. COMPARISION BETWEEN ITRS AND TESSERACT

Input quality Scanned clean
images

Scanned images
with occlusions

Camera images with
occlusions

Tesseract 100% 93.1% 88.6%
ITRS (default) 97.6% 93.5% 90.9%

ITRS (best) 99.0% 94.8% 91.9%
Please note that, unlike Tesseract which recognize words

and sentences solely based on image information, ITRS cannot
guarantee the recognition of any word that is not in its
dictionary. This is because the known words will always
receive higher excitation than unknown words during sentence
confabulation, which is analogy to human cognition process. If
we exclude all proper nouns, such as the name of characters

and locations, the word level accuracy of ITRS can be further
increased.

D. Performance evaluation on Memristor based BSB circuit
The robustness of the BSB recall circuit was analyzed

based on Monte-Carlo simulations at the component level.
Memristor device parameters are taken from [10]. We tested 26
BSB circuits corresponding to the 26 lower case letters from “a”
to “z”. The character imaging data was taken from [17]. Each
character image consists of 16×16 points and can be converted
to a (‒1, +1) binary vector with n=256. Accordingly, each BSB
recall matrix has a dimension of 256×256. The training set of
each character consists of 20 prototype patterns representing
different size-font-style combinations. In each test, we created
500 design samples for each BSB circuit and ran 13,000
Monte-Carlo simulations. We use the probability of failed
recognitions (PF) to measure the performance of a BSB circuit.

Fig. 9 shows the comparison of PF of each input character
pattern without considering any noise sources (“Ideal”) and
under the scenario including all the process variations and
signal fluctuations (“All noises”). In the figure, “within 3”
stands for the failure rate test that the correct answer is within
the top 3 recognized patterns, and “1st hit” stands for the
failure rate test that the first recognized pattern is the correct
answer.

Fig. 9 PF for each character pattern

The simulation shows that the performance degradation
induced by process variations and signal fluctuations have a
constant impact on all of the BSB circuits in the case of
“within 3”. When processing a perfect image under ideal
conditions, no BSB circuits fail and hence PF=0. After
including all static and dynamic noise, PF (within 3) ranges
from 1% to 7% for different input characters. When increasing
the random point defects to 30 for input images, the range of
PF (within 3) increase from 0‒10% under ideal conditions to 4‒
16% after including the noise sources. When considering only
the “1st hit” case, the PF of most characters, both in “Ideal” or
“All noise”, dramatically increases as defects number goes to
30, implying that the input image defects rather than noise
dominates the failure rate. Only a few characters, such as “j”
and “l”, are more sensitive to noise than defects as they suffer
from the high failure rates even without input pattern defects.

Besides accuracy, BSB model emphasize more on speed of
calculation, for ambiguity can be eliminated on word
confabulation level. We created a Verilog-A memristor model
by adopting the device parameters from [18] and scaling them
to 65nm node based on the resistance and device area relation
given in [19]. To achieve high-speed and small form factor, we
adopt the flash analog-digital converter (ADC) and current
steering digital analog converter (DAC) [29] in our design. For
more detailed design of the peripheral circuitry of the crossbar
array, please refer to [30].

We implemented the layout and schematic of the 64x64
memristor crossbar array under Cadence Virtuoso environment
and extracted its area. The delay and power consumption of the
crossbar array is obtained through simulation. The area, delay
and power consumption of the peripheral circuits (e.g. AD/DA
converter, op-amps, etc.) are estimated using published data
[29]. We then scale the results to obtain an estimation of the
Neuromorphic Computing Accelerator (NCA) with size
256x256. 93 NCAs are used and each of them implement one
BSB model. TABLE 6. gives the area, power consumption and
performance estimation of the accelerator. The processing time
is estimated as the time needed to complete one unit workload
of BSB computation, which is to check a set of 96 images. In
the same table, we also list the power consumption, area and
performance of Intel Xeon Sandy Bridge-EP processor as a
reference. As we can see, the memristor based neuromorphic
computing accelerator provides tremendous reduction from
every perspective.

With the scaling of memristor devices, the programming
energy will be further reduced [31] [32]. For example, Pi et al.
demonstrated cross point arrays of memristive devices with a
lateral dimension of 8 nm [32]. The 8 nm device arrays made
required a programming current of 600 pA, and it only needed
3 nanowatts to power the operation. Moreover, memristance
has an inverse proportional relationship with the device area.
Thus, memristance will increase with the shrinking of device
sizes, resulting in lower operation power consumption of
crossbar array.

TABLE 6. COMPARISON OF MEMRISTOR AND XEON PROCESSOR

Implementations Processing time Area (mm2) Power consumption
Memristor crossbar 60µs 151 875mW

Xeon processor 0.5s 435 183W

VII. CONCLUSIONS
This paper presents our work and optimization in

neuromorphic computing with performance improvement. A
brain-inspired information processing framework is developed
that performs document image recognition using pattern
matching and statistical information association. The
framework has outstanding noise resistance and is capable of
recognizing words and sentences from highly damaged images
at high accuracy. With optimization on each layer of the
framework, local and global accuracy are both increased. The
detailed structure of a memristor crossbar array based
neuromoprhic accelerator is described. When applied to
implement the pattern matching layer of the text recognition
system, the memristor based BSB recall circuit has high
resilience to process variations and signal fluctuations and

NCA based on memristor crossbar array provides more than
8,000X speedups over the Intel Xeon processor. The area and
power consumption of the NCA is only 1/3 and 0.5% of a
Xeon processor respectively.

REFERENCES
[1] R. Hecht-Nielsen, “Confabulation Theory: The Mechanism of Thought”,

Springer, Aug. 2007.
[2] Q. Qiu, Q. Wu, D. Burns, M. Moore, M. Bishop, R. Pino, R. Linderman,

“Confabulation Based Sentence Completion for Machine Reading,”
Proc. Of IEEE Symposium Series on Computational Intelligence, April,
2011.

[3] Qinru Qiu, Q. Wu, M. Bishop, R. Pino, and R. W. Linderman, “A
Parallel Neuromorphic Text Recognition System and Its Implementation
on a Heterogeneous High Performance Computing Cluster,” IEEE
Transactions on Computers, Vol 62, No. 5, 2013.

[4] J. A. Anderson, “An Introduction to Neural Networks,” The MIT Press,
1995.

[5] J. Partzsch and R. Schuffny, “Analyzing the scaling of connectivity in
neuromorphic hardware and in models of neural networks,” IEEE
Transactions on Neural Networks, vol. 22, no. 6, pp. 919–935, 2011.

[6] L. Chua, “Resistance switching memories are memristors,” Applied
Physics A: Materials Science& Processing, vol. 102, no. 4, pp. 765–783,
2011.

[7] Y. Ho, G.M. Huang, and P. Li, “Nonvolatile memristor memory: device
characteristics and design implications,” in International Conference on
Computer-Aided Design (ICCAD), 2009, pp.485–490.

[8] J. Anderson, J. Silverstein, S. Ritz, and R. Jones, “Distinctive features,
categorical perception, and probability learning: some applications of a
neural model.” Psychological Review, vol. 84, no. 5, pp. 413, 1977.

[9] Z. R. Yang, M. Zwolinski, “Mutual information theory for adaptive
mixture models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, PP 396-403, April, 2001

[10] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, 2008.

[11] A. Heittmann and T. G. Noll, “Limits of writing multivalued resistances
in passive nano-electronic crossbars used in neuromorphic circuits,”
ACM Great Lakes Symposium on VLSI (GLSVLSI), 2012, pp. 227–232.

[12] U. Ramacher and C. V. D. Malsburg, On the Construction of Artificial
Brains. Springer, 2010.

[13] T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K.
Gimzewski, and M. Aono, “Learning abilites achieved by a single solid-
state atomic switch,” Advanced Materials, vol. 22, no. 16, pp. 1831–
1834, 2010.

[14] K. Ahmed, Qinru Qiu, P. Malani, M. Tamhankar, “Accelerating Pattern
Matching in Neuromorphic Intelligent Text Recognition System Using
Intel Xeon Phi Coprocessor,” Proc. International Joint Conference on
Neural Networks (IJCNN), 2014.

[15] F. Yang, Qinru Qiu, M. Bishop, and Q. Wu, “Tag-assisted Sentence
Confabulation for Intelligent Text Recognition,” Proc. Of
Computational Intelligence for Security and Defense Applications
(CISDA), May, 2012.

[16] Z. Li, Qinru Qiu, “Completion and Parsing Chinese Sentences Using
Cogent Confabulation,” on Proc. Of IEEE Symposium Series on
Computational Intelligence (SSCI), 2014.

[17] Q. Wu, M. Bishop, R. Pino, R. Linderman, and Q. Qiu, “A multi-answer
character recognition method and its implementation on a high-
performance computing cluster,” in 3rd International Conference on
Future Computational Technologies and Applications, 2011, pp. 7–13.

[18] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N.
Srinivasa, and W. Lu, “A functional hybrid memristor
crossbararray/cmos system for data storage and neuromorphic
applications,” Nano letters, vol. 12, no. 1, pp. 389–395, 2011.

[19] B. J. Choi, A. B. Chen, X. Yang, and I.-W. Chen, “Purely electronic
switching with high uniformity, resistance tunability, and good retention
in pt-dispersed sio2 thin films for reram,” Advanced Materials, vol. 23,
no. 33, pp. 3847–3852, 2011.

[20] Geoffrey Zweig and Chris JC Burges. A challenge set for advancing
language modeling. In Proceedings of the NAACL-HLT 2012 Workshop:
Will We Ever Really Replace the N-gram Model? On the Future of
Language Modeling for HLT, pages 29–36. Association for
Computational Linguistics, 2012.

[21] B. Li, E. Zhou, B. Huang, J. Duan, Y. Wang, N. Xu, J. Zhang and H.
Yang, “Large Scale Recurrent Neural Network on GPU,” in Neural
Networks (IJCNN), 2014 International Joint Conference on, pp. 4062-
4069, 2014

[22] R.C. Voorhies, L. Elazary, L. Itti, “Neuromorphic Bayesian Surprise for
Far-Range Event Detection,” on Advanced Video and Signal-Based
Surveillance (AVSS), 2012 IEEE Ninth International Conference on, pp
1-6, 18-21 Sept. 2012

[23] E. Neftci, S.Das, B.Pedroni, K. Kreutz-Delgado, G. Cauwenberghs,
“Event-driven contrastive divergence for spiking neuromorphic systems,”
Frontiers in neuroscience, vol 7, 2014

[24] Schmuker, Michael, Thomas Pfeil, and Martin Paul Nawrot. "A
neuromorphic network for generic multivariate data classification."
Proceedings of the National Academy of Sciences 111.6 (2014): 2081-
2086.

[25] Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada,
J., Akopyan, F., ... & Modha, D. S. (2014). A million spiking-neuron
integrated circuit with a scalable communication network and interface.
Science, 345(6197), 668-673.

[26] Kim, K. H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T.,
Srinivasa, N., & Lu, W. (2011). A functional hybrid memristor crossbar-
array/CMOS system for data storage and neuromorphic applications.
Nano letters, 12(1), 389-395.

[27] Yakopcic, C., Hasan, R., & Taha, T. M. (2014, June). Tolerance to
defective memristors in a neuromorphic learning circuit. In Aerospace
and Electronics Conference, NAECON 2014-IEEE National (pp. 243-
249). IEEE.

[28] Bichler, O., Suri, M., Querlioz, D., Vuillaume, D., DeSalvo, B., &
Gamrat, C. (2012). Visual pattern extraction using energy-efficient “2-
PCM synapse” neuromorphic architecture. Electron Devices, IEEE
Transactions on, 59(8), 2206-2214.

[29] Gustavsson, M., Wikner, J. J., & Tan, N. (2000). CMOS data converters
for communications. Springer Science & Business Media.

[30] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, “RENO: A
High-efficient Reconfigurable Neuromorphic Computing Accelerator
Design,” Proc. Of Design Automation Conference, June, 2015.

[31] V. V. Zhirnov, R. Meade, R. K. Cavin, and G. Sandhu, “ Scaling limits
of resistive memories,” Nanotechnology, vol. 22, no. 25, 2011.

[32] S. Pi, P. Lin, and Q. Xia, “Cross point arrays of 8 nm38 nm memristive
devices fabricated with nanoimprint lithography,” Journal of Vacuum
Science & Technology, B 31, 06FA02 (2013).

