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Abstract—Although existing optical character recognition 
(OCR) tools can achieve excellent performance in text image 
detection and pattern recognition, they usually require a clean 
input image. Most of them do not perform well when the image is 
partially occluded or smudged. Humans are able to tolerate 
much worse image quality during reading because the perception 
errors can be corrected by the knowledge in word and sentence 
level context. In this paper, we present a brain-inspired 
information processing framework for context-aware Intelligent 
Text Recognition (ITR) and its acceleration using memristor 
based crossbar array. The ITRS has a bottom layer of massive 
parallel Brain-state-in-a-box (BSB) engines that give fuzzy 
pattern matching results and an upper layer of statistical 
inference based error correction. Optimizations on each layer of 
the framework are introduced to improve system performance. A 
parallel architecture is presented that incorporates the 
memristor crossbar array to accelerate the pattern matching. 
Compared to traditional multicore microprocessor, the 
accelerator has the potential to provide tremendous area and 
power savings and more than 8,000 times speedups. 

Keywords—neuromorphic; text recognition; memristor 
crossbar array 

I. INTRODUCTION 
Military planning, battlefield situation awareness, and 

strategic reasoning rely heavily on the knowledge of the local 
situation and the understanding of different cultures. A rich 
source of such knowledge is presented as natural-language text. 
Autonomous and intelligent recognition of printed or 
handwritten text image is one of the key features to achieve 
situational awareness. Although generally effective, 
Conventional Optical Character Recognition (OCR) tools or 
pattern recognition techniques usually have difficulties in 
recognizing images that are noisy, partially occluded or even 
incomplete due to the damages to the printing material, or 
obscured by marks or stamps.  

However, such tasks are not too difficult for humans, as the 
errors in image recognition will be corrected later using 
semantic and syntactic context. Most human cognitive 
procedures involve two interleaved steps, sensing and 
association. Together, they provide higher accuracy. 

Computing models have been developed for performing 
cognitive functions on raw input signals such as image and 
audio. One representative area in this category is the 
associative neural network model, which is typically used for 
pattern recognition. We generally say that this kind of model 

performs the “sensing” function. In the other category, models 
and algorithms are researched to operate on the concept-level 
objects, assuming that they have already been “recognized” or 
extracted from raw inputs. In a recent development, the cogent 
confabulation model was used for sentence completion [1] [2]. 
Trained using a large amount of literatures, the confabulation 
algorithm has demonstrated the capability of completing a 
sentence (given a few starting words) based on conditional 
probabilities among the words and phrases. We refer these 
algorithms as the “association” models. The brain inspired 
signal processing flow could be applied to many applications. 
A proof-of-concept prototype of context-aware Intelligence 
Text Recognition system (ITRS) is developed on high 
performance computing cluster [3]. The lower layer of the 
ITRS performs pattern matching of the input image using a 
simple non-linear auto-associative neural network model called 
Brain-State-in-a-Box (BSB) [4]. It matches the input image 
with the stored alphabet. A race model is introduced that gives 
fuzzy results of pattern matching. Multiple matching patterns 
will be found for one input character image, which is referred 
as ambiguity. The upper layer of the ITRS performs 
information association using the cogent confabulation model 
[1]. It enhances those BSB outputs that have strong 
correlations in the context of word and sentence and suppresses 
those BSB outputs that are weakly related. In this way, it 
selects characters that form the most meaningful words and 
sentences. 

 Both BSB and confabulation models are connection based 
artificial neural networks, where weight matrices are used to 
represent synapses between neurons and their operation can be 
transformed into matrix-vector multiplication(s). Hardware 
realizations of neural networks require a large volume of 
memory and are associated with high cost if built with digital 
circuits [5]. 

The memristor has been discovered as a promising device 
for massively parallel, large-scale neuromorphic systems. A 
memristor can “remember” the total electric charge/flux ever to 
the flow through it [6], which is analogous to synapses among 
neurons. Moreover, memristor-based memories can achieve a 
very high integration density of 100-Gbits/cm2, a few times 
higher than flash memory technologies [7]. Due to these 
properties, memristor crossbar, which employs a memristor at 
each intersection of horizontal and vertical metal wires, is 
proposed to facilitate weight matrices storage and matrix-
vector multiplication. 
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In this paper, we present the brain inspired information 
processing framework and its acceleration using memristor 
crossbar array. The remainder of the paper is organized as 
follows. In Section II, we discuss some related neuromorphic 
works while in Section III we introduce the basics of models 
used for sensing and association in the ITRS system. Section 
IV describes the overall system model and the algorithms in 
different layers. Section V gives the details of hardware 
acceleration using memristor crossbar array. The experimental 
results and discussions are presented in Section VI. Section VII 
summarizes the work. 

II. RELATED WORKS 
During recent years, neuromorphic computing has become 

an important research area. The research works range from 
applications to hardware implementations. 

In [22] Voorhies et al. introduced a uniquely structured 
Bayesian learning network with combined measure across 
spatial and temporal scales on various visual features to detect 
small, rare events in far-field video streams. However, this 
structured Bayesian learning network does not fit applications 
like text recognition and completion easily. Authors of [23] 
proposed a sophisticated method based on spiking 
neuromorphic systems with event-driven contrastive 
divergence trained Restricted Boltzmann Machines and apply 
the model to recognize the image of MNIST hand-written digit. 
However their application limits only in the pattern matching 
layer, and did not go beyond that. M. Schmuker at el. [24] 
demonstrates a brain-like processing using spiking neuron 
network, which achieves classification of generic 
multidimensional data. No specific application, however, is 
discussed in this work. It only provides a proof of concept 
design of analog electronic microcircuits to mimic behavior of 
neurons for real-world computing tasks. 

Many existing neuromorphic computing researches 
concentrate on pattern matching applications such as video 
detection or character recognition. Very few of them study the 
function of probabilistic inference in neuromorphic computing. 
Some works also focus on developing general hardware 
architecture for neuromorphic computing. For example, IBM’s 
TrueNorth [25] is an efficient, scalable and flexible non-von 
Neumann architecture, which integrates 1 million 
programmable spiking neurons and 256 million configurable 
synapses. The hardware is suited to many applications such as 
multi-object detection and classification. Other novel 
architectures utilize emerging device technologies such as 
memristor crossbar or phase change memory (PCM). Authors 
of [26] attempt to implement data storage using memristor and 
[27] describe a memristor based neuromorphic circuit capable 
of learning which is tolerant of error. Suri, M. at el. [28] 
demonstrate a unique energy efficient methodology that uses 
PCM as synapse in ultra-dense large scale neuromorphic 
systems. In [28] the demonstration of complex visual pattern 
extraction from real world data using PCM synapses in a 2-
layer spiking neural network is shown. 

To the best of our knowledge, our proposed architecture is 
the first that covers both the pattern matching layer and 
probabilistic inference layer in neuromorphic computing. 
Neither have the implementation on state-of-the-art multicore 

processor nor the projected acceleration using memristor 
crossbar array been addressed in previous works.  

III. BACKGROUND 

A. Neural Network and BSB Model 
The BSB model is an auto-associative, nonlinear, energy 

minimizing neural network. A common application of the BSB 
model is to recognize a pattern from a given noisy version. It 
can also be used as a pattern recognizer that employs a smooth 
nearness measure and generates smooth decision boundaries. It 
has two main operations: training and recall. The mathematical 
model of BSB recall function can be represented as: 

 𝒙(𝑡 + 1) = 𝑆(𝛼 ∙ 𝑨𝒙(𝑡) + 𝛽 ∙ 𝒙(𝑡))         (1) 

where x is an N dimensional real vector and A is an N-by-N 
connection matrix, which is trained using the extended Delta 
rule. Ax(t) is a matrix-vector multiplication, which is the main 
function of the recall operation. D is a scalar constant feedback 
factor. E is an inhibition decay constant. S() is the “squash” 
function defined as follows: 

𝑆(𝑦) = {
1,                 𝑦 ≥ 1
𝑦,   − 1 < 𝑦 < 1
−1,          𝑦 ≤ −1

          (2) 

For a given input pattern x(0), the recall function computes (1) 
iteratively until convergence, that is, when all entries of x(t+1) 
are either ‘1’ or ‘�1’[14]. 
Algorithm 1.  BSB training algorithm using Delta rule. 
Step 0. Initialize weights (zero or small random values).  

Initialize learning rate D. 
Step 1. Randomly select one prototype pattern J(k)�Bn, k=1,…,m. Bn is 

the n-dimension binary space (�1, 1). 
Set target output to the external input prototype pattern J(k): ti=Ji. 

Step 2. Compute net inputs: ¦ j jijin wy
i

J  

(Each net input is a combination of weighted signals received 
from all units.) 

Step 3. Each unit determines its activation (output signal): 

𝑦𝑖 = 𝑆(𝑦𝑖𝑛𝑖) = {
1,                𝑦𝑖𝑛 ≥ 1

𝑦𝑖𝑛 ,   − 1 < 𝑦𝑖𝑛 < 1
−1,         𝑦𝑖𝑛 ≤ −1

 

Step 4. Update weights: 'wij=D�(tj‒yj)�Ji. 
Step 5. Repeat Steps 1-4 until the condition |t(i) - y(i)|<θ is satisfied in m 

consecutive iterations. 
The most fundamental BSB training algorithm is given in 
Algorithm 1, which bases on the extended Delta rule [8]. It 
aims at finding the weights so as to minimize the square of the 
error between a target output pattern and the input prototype 
pattern. 

B. Cogent Confabulation 
Inspired by human cognitive process, cogent confabulation 

[1] mimics human information processing including Hebbian 
learning, correlation of conceptual symbols and recall action of 
brain. Based on the theory, the cognitive information process 
consists of two steps: learning and recall. The confabulation 
model represents the observation using a set of features. These 
features construct the basic dimensions that describe the world 
of applications. Different observed attributes of a feature are 
referred as symbols. The set of symbols used to describe the 



same feature forms a lexicon and the symbols in a lexicon are 
exclusive to each other. 

In learning process, matrices storing posterior probabilities 
between neurons of two features are captured and referred as 
the knowledge links (KL).A KL stores weighted directed edges 
from symbols in source lexicon to symbols in target lexicon. 
The (𝑖, 𝑗) th entry of a KL, quantified as the conditional 
probability 𝑃(𝑠𝑖|𝑡𝑗), represents the Hebbian plasticity of the 
synapse between ith symbol in source lexicon s and jth symbol 
in target lexicon t. The knowledge links are constructed during 
learning process by extracting and associating features from 
the inputs and collection of all knowledge links in the model 
forms its knowledge base (KB). 

During recall, the input is a noisy observation of the target. 
In this observation, certain features are observed with great 
ambiguity, therefore multiple symbols are assigned to the 
corresponding lexicons. The goal of the recall process is to 
resolve the ambiguity and select the set of symbols for 
maximum likelihood using the statistical information obtained 
during the learning process. This is achieved using a procedure 
similar to the integrate-and-fire mechanism in biological neural 
system. Each neuron in a target lexicon receives an excitation 
from neurons of other lexicons through KLs, which is the 
weighted sum of its incoming excitatory synapses. Among 
neurons in the same lexicon, those that are least excited will be 
suppressed and the rest will fire and become excitatory input of 
other neurons. Their firing strengths are normalized and 
proportional to their excitation levels. As neurons gradually 
being suppressed, eventually only the neuron that has the 
highest excitation remains firing in each lexicon and the 
ambiguity is thus resolved. 

Let 𝑙 denote a lexicon, 𝐹𝑙  denote the set of lexicons that 
have knowledge links going into lexicon 𝑙, and 𝑆𝑙  denote the 
set of symbols that belong to lexicon 𝑙. The excitation of a 
symbol t in lexicon l is calculated by summing up all incoming 
knowledge links:  

          𝑒𝑙(𝑡) = ∑ [∑ 𝑒𝑙(𝑠)𝑠∈𝑆𝑘 ln (𝑃(𝑠|𝑡)
𝑝0

) + 𝐵]𝑘∈𝐹𝑙 , 𝑡 ∈ 𝑆𝑙    (3) 
the function el(s) is the excitation level of the source symbol s. 
The parameter p0 is the smallest meaningful value of P(si | tj). 
The parameter B is a positive global constant called the 
bandgap. The purpose of introducing B in the function is to 
ensure that a symbol receiving N active knowledge links will 
always have a higher excitation level than a symbol receiving 
(N-1) active knowledge links, regardless of their strength. As 
we can see, the excitation level of a symbol is actually its log-
likelihood given the observed attributes in other lexicons.  

IV. SYSTEM ARCHITECTURE 

A. Overview of the ITRS 
The ITRS is divided into three layers as shown in Fig. 1. 

The input of the system is a text image. The first layer is 
character recognition based on BSB models. It recalls the 
stored patterns of the English alphabet that matches the input 
image. If there is noise in the image, multiple matched patterns 
may be found. The ambiguity can be removed by considering 
the word level and sentence level context, which is achieved by 
the statistical information association in the second and third 
layer where word and sentence is formed using cogent 
confabulation models. 
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Fig. 1 Overall architecture of the models and algorithmic flow 



Fig. 1 shows an example of using the ITRS to read texts 
that have been occluded. The BSB algorithm recognizes text 
images with its best effort. The word level confabulation 
provides all possible words that can be formed based on the 
recognized characters while the sentence level confabulation 
finds the combination among those words that gives the most 
meaningful sentence. 

B. Character Level Image Recognition 
The initial image processing consists of six major steps 

performed in a sequence. These steps corrects the distortion 
and extract characters for further pattern recognition. To 
optimize performance these stages are designed as a pipeline as 
shown in Fig. 2. 

 
Fig. 2 Image processing pipeline 

The region extraction operates at the page level. In this 
stage pages are broken down to paragraphs. The line extraction 
operates at paragraph level, which extracts the text lines from a 
paragraph. The line correction is the next step that corrects all 
deformations due to warping and rotation. Characters are then 
extracted and scaled in order to remove perspective distortion. 
Correct order of text lines in paragraph and correct order of 
paragraphs in a page are determined in line ordering and 
paragraph ordering stages. Each character image is labeled 
with these orders and sent to BSB model for pattern 
recognition. 

We designed a new “racing” algorithm for BSB recalls to 
implement the multi-answer character recognition process. Let 
S denote the set of characters that we want to recognize. 
Without loss of generality, assume the size of S is 52, which is 
the number of upper and lower case characters in the English 
alphabet. We also assume that for each character, there are M 
typical variations in terms of different fonts, styles and sizes. In 
terms of pattern recognition, there is a total of 52×M patterns 
to remember during training and to recognize during recall. 

A BSB model is trained for each character in S. Therefore 
there will be a set of 52 BSB models and each BSB model is 
trained for all variations of a character. The multi-answer 
implementation utilizes the BSB model’s convergence speed to 
represent the similarity between an input image and the stored 
pattern. An input image is compared against each one of the 52 
BSB models; therefore it triggers 52 recall processes. The 
number of iterations that each recall process takes to converge 
is recorded. Then we pick up characters in K “fastest” 
converged  processes as the final output to word confabulation 

model. Fig. 3 gives an example of how the racing mechanism 
works. 

C. Word Level Confabulation 
Word level confabulation interfaces between BSB and 

sentence confabulation, which collects ambiguous character 
inputs from BSB layer and generate valid combinations to form 
meaningful words. The word confabulation use the ambiguous 
letter candidates and create valid word combinations. The 
dictionary database is loaded as a trie data structure during 
initialization. An example of trie data structure is shown in the 
right of Fig. 4. 
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K(1 or more) 
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Fig. 3 Example for "racing" mechanism based on BSB model. Hand-written “t” 
is compared against each model storing patterns of each character in S, and 
initiate 52 recall processes. K fastest converged process are selected to output 
its corresponding character as candidates to next level, i.e. word confabulation.  

 
Fig. 4 Trie data structure used in Word Confabulation 

The combinations based on letter candidates are validated 
against the trie. For example let’s consider a word “dog”. Its 
candidates for each letter position are [d o b] [o a g] [g a y]. 
Word confabulation will traverse through the trie using these 
candidates to search for the valid words presented in the trie. 
The valid words will be pushed onto a stack. In this example, 
these valid words would be: dog, day, boy, bag. Since the letter 
candidates were passed with their relative confidence level, the 
confidence level for each word will be the product of the letters 
it contains. 

D. Sentence Level Confabulation 
Sentence level confabulation model defines three levels of 

lexicons. The first and second level lexicons represent single 
words and pairs of adjacent words; while the third level of 
lexicons represent the parts-of-speech (POS) tags of the 



corresponding word. During recall, those word and word-pair 
symbols corresponding to the outputs from word level 
confabulation are set as active, and all POS tag symbols are 
also set as active. If a lexicon has more than one active symbol, 
it is said to have ambiguity. The goal of sentence confabulation 
is to resolve the ambiguity iteratively through a recall 
procedure similar to belief propagation and finally form a 
meaningful sentence. The general confabulation recall 
algorithm can is described as follows in Algorithm.2. 

As Algorithm 2 shows, for each lexicon that has multiple 
symbols activated, we calculate the excitation level of each 
activated symbol. The N highest excited symbols in this 
lexicon are kept active. These symbols will further excite the 
symbols in other ambiguous lexicons. This procedure will 
continue until the activated symbols in all lexicons do not 
change anymore. If the convergence cannot be reached after a 
given number of iterations, then we will force the procedure to 
converge. Then value of N will be reduced by 1 and we repeat 
the above procedure. At last N is reduced to 0 which means 
there is only one active symbol in each lexicon. Then 
ambiguity is eliminated in all lexicons. 

Algorithm 2.  Confabulation recall algorithm 
for each known lexicon* 

set symbol to be active 
end for 
for N from MAX_AMBIGUIOUS downto 1 

converged = false; 
iteration_count =0; 
while not converged 
    for each unknown lexicon 
        for each symbol associated to the lexicon 
            calculate the excitation level of the symbol; 
        end for 
        select N highest excited symbols and set them to be active; 
    end for 

iteration_count++; 
if activated set does not change since last iteration 

        or iteration_count >= MAX_ITERATION 
        converged = true; 
    end if 

     N--; 
end for 
*lexicons who has only one symbol candidate are denoted as known lexicons, 
others are unknown lexicons. 

E. Improving Sentence Confabulation 
In sentence confabulation, the excitation level of a 

candidate is the weighted sum of excitation levels of active 
symbols in other lexicons. Intuitively, however, different 
source lexicons do not contribute equally to a target lexicon. 
For example, the lexicon right next to an unknown word 
obviously gives more information in determining the unknown 
word than the lexicon that is five words away. Thus the 
significance of a KL can be measured by weight and quantified 
by the mutual information(MI)[9]. Mutual information of two 
random variables is a measure of variables’ mutual 
independence, calculated as 

 𝐼(𝐴; 𝐵) = ∑ ∑ 𝑝(𝑎, 𝑏)𝑙𝑜𝑔𝑎∈𝐴𝑏∈𝐵 ( 𝑝(𝑎,𝑏)
𝑝(𝑎)𝑝(𝑏))          (4) 

where A is the source lexicon and a represents symbols in A; B 
is the target lexicon and b represents symbols in B. 𝑝(𝑎, 𝑏) is 
the joint probability of symbol a and b; 𝑝(𝑎) and 𝑝(𝑏) are the 

margin probability of symbol a and b respectively. 𝐼(𝐴; 𝐵) is 
nonnegative. The value of 𝐼(𝐴; 𝐵)  will increase when the 
correlation of symbols in lexicon A and B get stronger. We 
defined the weight of KL (i.e. 𝑤𝑘𝑙) from A to B as positive 
linear function of MI of A and B. 

 The sentence confabulation model in Algorithm 2 
considers all initial symbols equally possible. In reality, we 
know that some words are more likely than others from the 
given image. To incorporate the image information with 
sentence confabulation, we consider the BSB convergence 
speed during the confabulation process, and modify the 
excitation level calculation of a word symbol t as follows, 

𝑒𝑙(𝑡) = 𝛼𝑃𝐵𝑆𝐵(𝑡) + 𝛽 ∑ [𝑤𝑘𝑙 ∑ 𝑒𝑙(𝑠)𝑠∈𝑆𝑘 ln (𝑃(𝑠|𝑡)
𝑝0

) + 𝐵]𝑘∈𝐹𝑙      (5) 

In (5), variable  𝑃𝐵𝑆𝐵(𝑡) is the excitation to t from the BSB 
layer, which is calculated as: 𝑃𝐵𝑆𝐵(𝑡) = 1 (𝑁𝐵𝑆𝐵(𝑡)⁄ −𝑁𝑚𝑖𝑛)

∑ 1 (𝑁𝐵𝑆𝐵(𝑡)⁄ −𝑁𝑚𝑖𝑛)𝑡
, 

where 𝑁𝐵𝑆𝐵(𝑡) is the BSB convergence speed of t, 𝑁𝑚𝑖𝑛 is the 
minimum convergence number that is possible for BSB 
engines, D and E are coefficients that adjust the weight of BSB 
(i.e. image) information and confabulation (i.e. language) 
information, D + E = 1. In general, we should increase the 
value of D and decrease the value of E when the image has 
high quality and vice versa. 

V. HARDWARE ACCELERATION OF BSB RECALL  

A. Memristor and Crossbar Array 
In 2008, HP Lab demonstrated the first memristive device, 

in which the memristive effect was achieved by moving the 
doping front within a TiO2 thin-film [10]. The overall 
memristance can be expressed as:  

𝑀(𝑝) = 𝑝 ∙ 𝑅𝐻 + (1 − 𝑝) ∙ 𝑅𝐿                (6) 
where p (0dpd1) is the relative doping front position, which is 
the ratio of doping front position over the total thickness of the 
TiO2 thin-film, RL and RH respectively denote the low 
resistance state (LRS) and the high resistance state (HRS) of 
the memristor. The velocity of doping front movement v(t), 
driven by the voltage applied across the memristor V(t), can be 
expressed as: 

  𝑣(𝑡) = 𝑑𝑝(𝑡)
𝑑𝑡

= 𝜇𝑣 ∙ 𝑅𝐿
ℎ2 ∙ 𝑉(𝑡)

𝑀(𝑝)
             (7) 

where Pv is the equivalent mobility of dopants, h is the total 
thickness of the thin film, and M(p) is the total memristance 
when the relative doping front position is p. In general, a 
certain energy (or threshold voltage) is required to enable the 
state change in a memristive device. When the electrical 
excitation through a memristor is greater than the threshold 
voltage, i.e., V(t)>Vth, the memristance changes (in training). 
Otherwise, a memristor behaves like a resistor. 

Crossbar array illustrated in Fig. 5 is a typical structure of 
memristor based memories. It employs a memristor device at 
each intersection of horizontal and vertical metal wires without 
any selectors [11]. The memristor crossbar array is naturally 
attractive for implementation of connection matrix in neural 
networks for it can provide a large number of signal 
connections within a small footprint and conduct the weighted 
combination of input signals [12][13]. 



 
Fig. 5 A memristor crossbar array 

B. Matrix Multiplication using Memristor Crossbar 
In order to use the N-by-N memristor crossbar array 

illustrated in Fig. 5 for matrix computation, a set of input 
voltages VIT={VI,1, VI,2, …, VI,N} is applied on the word-lines 
(WL) of the array, and the current through each bit-line (BL) is 
collected by measuring the voltage across a sensing resistor. 
The same sensing resistors are used on all BLs with resistance 
rs, or conductance gs = 1/rs. The output voltage vector 
VOT={VO,1, VO,2, …, VO,N}. Assume the memristor sitting on 
the connection between WLi and BLj has a memristance of mi,j. 
The corresponding conductance gi,j=1/mi,j. Then, the relation 
between the input and output voltages can be represented by: 

  𝑉𝑜 = 𝐶𝑉𝐼           (8) 

Here, C can be represented by the memristors’ conductance 
and the load resistors as: 

𝑪 = 𝑫𝑮𝑇 = 𝑑𝑖𝑎𝑔(𝑑1, ⋯ , 𝑑𝑁) [
𝑔11 ⋯ 𝑔1,𝑁

⋮ ⋱ ⋮
𝑔𝑁,1 ⋯ 𝑔𝑁,𝑁

]            (9) 

where 𝑑𝑖 = 1/(𝑔𝑠 + ∑ 𝑔𝑖,𝑗
𝑁
𝑖=1 ).  

Please note that some non-iterative neuromorphic hardware 
uses the output currents IO as output signals. Since the BSB 
algorithm discussed in this work is an iterative network, we 
take VO as output signals, which can be directly fed back to 
inputs for the next iteration without extra design cost. 

Equation (8) indicates that a trained memristor crossbar 
array can be used to construct the weight matrix C, and transfer 
the input vector VI to the output vector VO. However, C is not 
a direct one-to-one mapping of conductance matrix G as 
indicated in equation (9). Though we can use a numerical 
iteration method to obtain the exact mathematical solution of G, 
it is too complex and hence impractical when frequent updates 
are needed.  

For simplification, assume gi,j�G satisfies gmindgi,jdgmax, 
where gmin and gmax respectively represent the minimum and 
the maximum conductance of all the memristors in the crossbar 
array. Thus, a simpler and faster approximation solution to the 
mapping problem is defined as: 

𝑔𝑗,𝑖 = 𝑐𝑖,𝑗 ∙ (𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) + 𝑔𝑚𝑖𝑛      (10) 

With the proposed fast approximation function (10), the 
memristor crossbar array performs as a decayed matrix �̂�  
between the input and output voltage signals, where �̂�𝑖,𝑗 =
 𝑐𝑖,𝑗 ∙ 𝑔𝑚𝑎𝑥/𝑔𝑠. 

C. Training Memristor Crossbars in BSB Model 
A software generated weight matrix can be mapped to the 

memristor crossbar arrays based on the assumption that every 
memristor in the crossbar could be perfectly programmed to 
the required resistance value. However, the traditional crossbar 
programming method faces accuracy and efficiency limitations 
due to the existence of the sneak paths [11]. Although some 
recent works were presented to improve the write/read ability 
of memristor crossbars by leveraging the device nonlinearity 
[11], the controllability of analog state programming is still 
limited. In spite of preparing the memristor crossbars with 
open-loop writing operations, we propose a close-loop training 
method which iteratively tunes the entire memristor crossbar to 
the target state. This technique is based on a modification of 
the software training algorithm. 

Let’s use the Delta rule in Algorithm 1 as an example. A 
weight wij corresponds to the analog state of the memristor at 
the cross-point of the ith row and the jth column in a crossbar 
array.  A weight updating 'wij involves multiplying three 
analog variables: D, tj‒yj, and xi. Though these variables are 
available in training scheme design, the hardware 
implementation to obtain their multiplication demands 
unaffordable high computation resources. Thus, we simplify 
the weight updating function by trading off the convergence 
speed as:  

∆𝑤𝑖𝑗 = 𝛼 ∙ 𝑠𝑖𝑔𝑛(𝑡𝑗 − 𝑦𝑗) ∙ 𝑠𝑖𝑔𝑛(𝑥𝑖)         (11) 

Here, sign(tj‒yj) and sign(xi) are the polarities of tj�yj and xi, 
respectively. sign(tj�yj)�sign(xi) represents the direction of the 
weight change.  

The simplification minimizes the circuit design complexity 
meanwhile ensuring the weight change in the same direction as 
that of the Delta rule.  

D. Transformation of BSB Recall Matrix 
A memristor is a physical device with conductance g>0. 

Therefore, all elements in matrix C must be positive as shown 
in (9). However, in the original BSB recall model, ai,j�A can 
be either positive or negative. An alternative solution is 
moving the whole A into the positive domain. Since the output 
x(t+1) will be used as input signal in the next iteration, a 
biasing scheme at x(t+1) is needed to cancel out the shift 
induced by the modified A. The biasing scheme involves a 
vector operation since the shift is determined by x(t).  

To better maintaining the meaning of the matrix A in 
physical mapping and leverage the high integration density of 
memristor crossbar, we propose to split the positive and 
negative elements of A into two matrixes A+ and A– as: 

𝑎𝑖,𝑗
+ = {

𝑎𝑖,𝑗 ,   𝑖𝑓 𝑎𝑖,𝑗 > 0 
0,      𝑖𝑓 𝑎𝑖,𝑗 ≤ 0 and 𝑎𝑖,𝑗

− = {
0,          𝑖𝑓 𝑎𝑖,𝑗 > 0 
−𝑎𝑖,𝑗 , 𝑖𝑓 𝑎𝑖,𝑗 ≤ 0      (12) 

As such, (1) becomes 
𝒙(𝑡 + 1) = 𝑆(𝑨+𝒙(𝑡) − 𝑨− ∙ 𝒙(𝑡) + 𝑥(𝑡))        (13) 



where we set D=E=1. Thus, A+ and A– can be mapped to two 
memristor crossbar arrays M1 and M2 in a decayed version �Â
and �Â , respectively, by following (10). 

VI. EXPERIMENTAL RESULTS 
In this section, we present several independent experiments 

carried out on different layers of the ITRS system. Each 
experiment is specifically designed to demonstrate our 
improvements on that particular layer over the previous works. 
Their configuration and results are discussed in detail in the 
following sections. We also report the accuracy and confidence 
level of the entire ITRS system when applied to recognize 
document images with different qualities. At the end, we 
demonstrate the recall quality of memristor crossbar array 
based BSB, and analyze its performance and cost. 

A. Performance improvement in word confabulation layer 
Instead of the hash table, which is originally used to store 

the dictionary, the trie data structure is applied as a new 
implementation to significantly reduce the search time for 
checking all character combinations against dictionary. Three 
sets of images with different qualities are used as inputs. The 
first set of images are clean scanned document images; the 
second set of images are scanned document image with 10% of 
characters completely occluded; and the third set of images are 
camera images with the same amount of occlusions. Each set 
consists of 8 document images. The average Signal-to-Noise 
Ratio (SNR) and average Peak Signal-to-Noise Ratio (PSNR) 
of the images in each set are given in TABLE 1.  The clean 
image has the highest quality while the camera occluded image 
has the lowest quality. 

TABLE 1.  QUALITY OF INPUT IMAGES 

Image sets Scanned Clean Scanned 
Occluded 

Camera 
Occluded 

Avg. SNR 5.1204 4.3756 3.8116 
Avg. PSNR 8.095 7.3515 6.7904 

TABLE 2.  IMPROVEMENT IN WORD CONFABULATION LAYER 

 Word Confabulation Time (sec) 
Clean image Scan 

Occluded 
Camera 

Occluded 
Original implementation 310  2997  2483  

New implementation 0.3 1.28 1.71 

TABLE 2.  compares the word confabulation time of old 
implementation to that of the new implementation when 
processing input images with different qualities. As we can see, 
the lower quality input image leads to higher ambiguity in 
pattern matching. As the number of letter candidates increases, 
the complexity of the original implementation of word 
confabulation increases exponentially as it has to check all the 
combinations of the letter candidates. The new implementation 
has much lower complexity because it pruned many invalid 
combinations in advance. Furthermore, the hash table based 
dictionary storage in the original implementation has very poor 
memory locality, which degrades the performance even more.  

B. Performance improvement in sentence confabulation layer 
As the most important layer of ITRS system, more 

optimizations are proposed on sentence confabulation layer. In 
order to focus only on the performance of sentence 
confabulation, for all experiments in this subsection, we set D 
and E in Equation (5) to 0 and 1 respectively, in order to 
decouple the image information from sentence confabulation. 
We will discuss the impact of parameters  D and E in the next 
subsection. 

Original sentence confabulation model maintains a separate 
knowledge link for each pair of source and target lexicons, 
which generates redundancy. A new implementation called 
circular model is proposed in [16] to merge all knowledge links 
between source and target lexicons that have same relative 
position. For example, knowledge links between any pair of 
adjacent lexicons will be merged as one. The new 
implementation not only reduces training and recall time, but 
also improves the accuracy of sentence completion. In this 
experiment, we cover random number of words completely in a 
sentence so that all words in dictionary are taken as candidates 
for the missing words. TABLE 3.  shows that circular model 
gives 23.99% accuracy improvement, with 70.4% less effort of 
training and 17.5% less effort of recall.  

TABLE 3.  COMPARASION OF NON-CIRCULAR AND CIRCULAR MODEL 

 Non-circular Circular Improvement(%) 

Training time(sec) 489180 144540 70.45% 

Recall time(sec) 6317.22 5207.83 17.56% 

Accuracy 54.95% 68.13% 23.99% 

We also reduced the initialization time of sentence 
confabulation by loading the knowledge base in parallel. The 
size of sentence confabulation knowledge base is more than 
7GB. Loading the knowledge base sequentially takes more 
than 83.9 seconds. A multi-thread implementation that loads 
the knowledge base in parallel can reduce the initialization 
time to 31 seconds and provides 2.7x speedups.  

Integrating the POS tag in confabulation model 
significantly improves the sentence confabulation accuracy 
[15]. To evaluate the impact, the tag-assisted confabulation 
method is compared with no-tag confabulation at various noise 
levels. In this experiment, we randomly select input character 
image and add 3 pixel wide horizontal strikes. The noise level 
percentage means the ratio of characters in text with a 3-pixel 
wide horizontal strike. Note that the size of original character is 
15x15 pixels, a 3-pixel wide strike is almost equivalent to 20% 
distortion.  

Fig. 6 shows that no-tag sentence confabulation quickly 
collapse as noise level increases. This is because each test 
sentence contains on average 28 characters and we only 
consider the sentence correct if all of its characters are correct. 
The noise level at character level is compounded into character 
and word level ambiguity. Without semantic information, 
which provides an overall structure for each sentence, the 
success rate is expected to drop exponentially as noise level 
increase. Tag-assisted confabulation shows clear improvements 
over no-tag confabulation at all noise levels. The improvement 



is minor at low noise level, but significant at high noise level. 
Overall, tag-assisted confabulation improves success rate by 33% 
in average. 

 
Fig. 6 Accuracy of sentence confabulation with/without POS tag 

The next set of experiments is to show the impact of 
weighting knowledge link of sentence level confabulation 
using mutual information between the source and target 
lexicons. 

This experiment is based on Microsoft Research Sentence 
Completion (MRSC) challenge. The MRSC challenge intended 
to stimulate research into language modeling techniques which 
are sensitive to overall sentence coherence [20]. The challenge 
consists of fill-in-the-blank questions similar to those widely 
used in the Scholastic Aptitude Test. We use partial training set 
provided by MRSC project to train our confabulation model 
due to the limited time. And we run recall function based on 
sentence confabulation model with and without weighting 
knowledge links to fill in the blank words for 1,040 tests in the 
challenge. Fig. 7 shows the recall accuracy of the two different 
of confabulation models. For each model, the Bandgap is 
varied from 1 to 1000. As we can see, when bandgap value is 
10 or less, assigning weight to KL provides little improvement. 
However, when the bandgap value exceeds 100, assigning 
weight to KLs brings visible benefits; it improves accuracy by 
about 4%. The recall accuracy becomes saturated after the 
bandgap exceeds 100. We also observe that, without weighted 
KL, changing the bandgap value has almost no impact on the 
recall accuracy. Please note in this experiment, the condition is 
equivalent to that words are completely covered, sentence level 
confabulation cannot get any clue from word confabulation. 
And since we train incomplete training set to save time, some 
words appear in the tests are not stored in dictionary. An 
unrecognized word will never be recalled correctly by the 
confabulation model, thus if we train complete training set, 
sentence accuracy will be increased. The same testing set was 
evaluated in [21], our weighted confabulation model gives a 
slightly higher recall accuracy of 48.30% than 47% accuracy 
based on recurrent neural network (RNN) model. Please note 
that the RNN model identifies the missing word from the list of 
candidates by evaluating the probability of the sentence that 
they could make. Therefore, it has to create a sentence for each 
combination of the candidates and calculate its probability. The 
complexity of the RNN is an exponential function of the 
number of missing words, while the complexity of 
confabulation model is a linear function of the number of 
missing words. 

 
Fig. 7 Comparison of accuracy for weighted/non-weighted KL model with 
different bandgap value 

C. Performance improvement of overall ITR system 
To evaluate the impact of weighting image and language 

information. We assign 𝑤𝑘𝑙 as 1, and  𝛼 varies from 1 to 0 at 
step of 0.1, 𝛽  varies from 0 to 1 at step of 0.1. In this 
experiment, we run the complete ITRS to show the overall 
performance. 

 
Fig. 8 Adjusting the weight of image and language information affects the 
accuracy of ITRS 

As shown in (5), the excitation level of a word in the 
sentence confabulation layer is a weighted sum of two 
components. One of them represents the likelihood of the word 
based on the input image; the other represents the likelihood of 
word based on the language context. The parameters D and E 
control the weight of image information and language 
knowledge. Adjusting the value of D and E affects the accuracy 
of ITRs. Fig. 8 shows how the word accuracy changes as we 
vary the value of D and E. In this experiment, we take three sets 
of images as input, scanned clean images, scanned occluded 
images and occluded images taken by camera. As we can see, 
completely ignore either the image inform or language 
information will lead to poor accuracy. Furthermore, for a 
clean image, we can rely more on the image information, and 
the best quality recognition happens when D and E are set at 
(0.9, 0.1); while for a low quality image, we should rely more 
on language information, and the best quality recognition 
happens when D and E are set at (0.7, 0.3). 



We further assign confidence level to the words recognized 
by ITRS. The confidence level is calculated as the normalized 
excitation difference between the selected candidate and its 
final competitor in the last round of confabulation, 𝑐(𝑡1) =
𝑚𝑖𝑛[1, 𝐼(𝑡1)−𝐼(𝑡2)

𝐼(𝑡2) ], where t1 is the selected word and t2 is its 
only competitor in the last round of confabulation. Under this 
definition, 100% confidence means that there was only 1 
candidate for the lexicon while 0% confidence means that the 
excitation level for the two remaining candidates are the same 
and in that case, the program just chooses the first candidate. 

TABLE 4.  CONFIDENCE LEVEL OF SCANNED OCCLUDED IMAGES 

File Name Test-1 Test-2 Test-3 Test-4 Total 

Total Words 761 737 745 613 2856 

Total Right Words 731 703 700 575 2709 

Total Wrong Words 30 34 45 38 147 

Average Confidence 
of right words(%) 

88.86 85.66 88.63 88.96 87.99 

Average Confidence 
of wrong words(%) 

16.83 20.87 15.37 24.53 19.31 

Total Average 
Confidence(%) 

86.03 82.67 84.20 84.96 84.46 

Total Accuracy(%) 96.06 95.39 93.96 93.80 94.85 

TABLE 4.  shows the recall results for scanned occluded 
images as an example. Correctly recalled words have around 
90% confidence compared to around 20% confidence of 
wrongly recalled words,. The overall average confidence is 
pretty high around 85%, which means the ITRS system can 
always eliminate the ambiguity for multiple candidates 
effectively and achieve a high accuracy. 

In the last experiment, we compare the accuracy of ITRS 
with that of Tesseract on processing the same three sets of 
testing images. Developed initially at HP lab and now at 
Google, Tesseract is claimed to be the most accurate open 
source OCR engine available. The word accuracy of both ITRS 
and Tesseract are given in TABLE 5.  As we can see, with the 
reduced image quality, the accuracy of Tesseract degrades 
rapidly, while the performance of ITRS is more robust. 
Although Tesseract produces perfect recognition with given 
clean image, the ITRS is more reliable under noisy 
environment for low quality images. 

TABLE 5.  COMPARISION BETWEEN ITRS AND TESSERACT 

Input quality Scanned clean 
images 

Scanned images 
with occlusions 

Camera images with 
occlusions 

Tesseract 100% 93.1% 88.6% 
ITRS (default) 97.6% 93.5% 90.9% 

ITRS (best) 99.0% 94.8% 91.9% 
Please note that, unlike Tesseract which recognize words 

and sentences solely based on image information, ITRS cannot 
guarantee the recognition of any word that is not in its 
dictionary. This is because the known words will always 
receive higher excitation than unknown words during sentence 
confabulation, which is analogy to human cognition process. If 
we exclude all proper nouns, such as the name of characters 

and locations, the word level accuracy of ITRS can be further 
increased. 

D. Performance evaluation on Memristor based BSB circuit 
The robustness of the BSB recall circuit was analyzed 

based on Monte-Carlo simulations at the component level. 
Memristor device parameters are taken from [10]. We tested 26 
BSB circuits corresponding to the 26 lower case letters from “a” 
to “z”. The character imaging data was taken from [17]. Each 
character image consists of 16×16 points and can be converted 
to a (‒1, +1) binary vector with n=256. Accordingly, each BSB 
recall matrix has a dimension of 256×256. The training set of 
each character consists of 20 prototype patterns representing 
different size-font-style combinations. In each test, we created 
500 design samples for each BSB circuit and ran 13,000 
Monte-Carlo simulations. We use the probability of failed 
recognitions (PF) to measure the performance of a BSB circuit. 

Fig. 9 shows the comparison of PF of each input character 
pattern without considering any noise sources (“Ideal”) and 
under the scenario including all the process variations and 
signal fluctuations (“All noises”). In the figure, “within 3” 
stands for the failure rate test that the correct answer is within 
the top 3 recognized patterns, and “1st hit” stands for the 
failure rate test that the first recognized pattern is the correct 
answer.  

 
Fig. 9 PF for each character pattern 

The simulation shows that the performance degradation 
induced by process variations and signal fluctuations have a 
constant impact on all of the BSB circuits in the case of 
“within 3”. When processing a perfect image under ideal 
conditions, no BSB circuits fail and hence PF=0. After 
including all static and dynamic noise, PF (within 3) ranges 
from 1% to 7% for different input characters. When increasing 
the random point defects to 30 for input images, the range of 
PF (within 3) increase from 0‒10% under ideal conditions to 4‒
16% after including the noise sources. When considering only 
the “1st hit” case, the PF of most characters, both in “Ideal” or 
“All noise”, dramatically increases as defects number goes to 
30, implying that the input image defects rather than noise 
dominates the failure rate. Only a few characters, such as “j” 
and “l”, are more sensitive to noise than defects as they suffer 
from the high failure rates even without input pattern defects. 



Besides accuracy, BSB model emphasize more on speed of 
calculation, for ambiguity can be eliminated on word 
confabulation level. We created a Verilog-A memristor model 
by adopting the device parameters from [18] and scaling them 
to 65nm node based on the resistance and device area relation 
given in [19]. To achieve high-speed and small form factor, we 
adopt the flash analog-digital converter (ADC) and current 
steering digital analog converter (DAC) [29] in our design. For 
more detailed design of the peripheral circuitry of the crossbar 
array, please refer to [30]. 

We implemented the layout and schematic of the 64x64 
memristor crossbar array under Cadence Virtuoso environment 
and extracted its area. The delay and power consumption of the 
crossbar array is obtained through simulation. The area, delay 
and power consumption of the peripheral circuits (e.g. AD/DA 
converter, op-amps, etc.) are estimated using published data 
[29]. We then scale the results to obtain an estimation of the 
Neuromorphic Computing Accelerator (NCA) with size 
256x256.  93 NCAs are used and each of them implement one 
BSB model. TABLE 6. gives the area, power consumption and 
performance estimation of the accelerator. The processing time 
is estimated as the time needed to complete one unit workload 
of BSB computation, which is to check a set of 96 images. In 
the same table, we also list the power consumption, area and 
performance of Intel Xeon Sandy Bridge-EP processor as a 
reference. As we can see, the memristor based neuromorphic 
computing accelerator provides tremendous reduction from 
every perspective. 

With the scaling of memristor devices, the programming 
energy will be further reduced [31] [32]. For example, Pi et al. 
demonstrated cross point arrays of memristive devices with a 
lateral dimension of 8 nm [32]. The 8 nm device arrays made 
required a programming current of 600 pA, and it only needed 
3 nanowatts to power the operation. Moreover, memristance 
has an inverse proportional relationship with the device area. 
Thus, memristance will increase with the shrinking of device 
sizes, resulting in lower operation power consumption of 
crossbar array. 

TABLE 6.  COMPARISON OF MEMRISTOR AND XEON PROCESSOR 

Implementations Processing time Area (mm2) Power consumption 
Memristor crossbar 60µs 151 875mW 

Xeon processor 0.5s 435 183W 

VII. CONCLUSIONS 
This paper presents our work and optimization in 

neuromorphic computing with performance improvement. A 
brain-inspired information processing framework is developed 
that performs document image recognition using pattern 
matching and statistical information association. The 
framework has outstanding noise resistance and is capable of 
recognizing words and sentences from highly damaged images 
at high accuracy. With optimization on each layer of the 
framework, local and global accuracy are both increased. The 
detailed structure of a memristor crossbar array based 
neuromoprhic accelerator is described. When applied to 
implement the pattern matching layer of the text recognition 
system, the memristor based BSB recall circuit has high 
resilience to process variations and signal fluctuations and 

NCA based on memristor crossbar array provides more than 
8,000X speedups over the Intel Xeon processor. The area and 
power consumption of the NCA is only 1/3 and 0.5% of a 
Xeon processor respectively. 
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