
Hardware Acceleration for Thermodynamic
Constrained DNA Code Generation

Qinru Qiu1, Prakash Mukre1, Morgan Bishop2, Daniel Burns2, and Qing Wu1

1 Department of Electrical and Computer Engineering, Binghamton University, Bingham-
ton, NY 13902

2 Air Force Research Laboratory, Rome Site, 26 Electronic Parkway, Rome, NY 13441
qqiu@binghamton.edu, pmukre1@binghamton.edu, Morgan.Bishop@rl.af.mil,

Daniel.Burns@rl.af.mil, qwu@binghamton.edu

Abstract. Reliable DNA computing requires a large pool of oligonucleotides
that do not cross-hybridize. In this paper, we present a transformed algorithm to
calculate the maximum weight of the 2-stem common subsequence of two
DNA oligonucleotides. The result is the key part of the Gibbs free energy of the
DNA cross-hybridized duplexes based on the nearest-neighbor model. The
transformed algorithm preserves the physical data locality and hence is suitable
for implementation using a systolic array. A novel hybrid architecture that
consists of a general purpose microprocessor and a hardware accelerator for ac-
celerating the discovery of DNA under thermodynamic constraints is designed,
implemented and tested. Experimental results show that the hardware system
provides more than 250X speed-up compared to a software only implementa-
tion.

1 Introduction

A single DNA strand (i.e. oligonucleotides) is a sequence of four possible nucleotides
denoted as A, C, G and T. Short DNA sequences can be synthesized easily and be
used for different applications, including high density information storage [2], mo-
lecular computation of hard combinatorial problems [1], and molecular barcodes to
identify individual modules in complex chemical libraries [3]. These applications rely
on the specific hybridization between DNA code words and their Watson-Crick com-
plements. The key to success in DNA computing is the availability of a large collec-
tion of DNA code word pairs that do not cross-hybridize.

The capability of hybridization between two oligonucleotides is determined by the
base sequences of the hybridizing oligonucleotides, the location of potential mis-
matches, the concentrations of the molar strand, the temperature of the reaction and
the length of the sequences [4]. The melting temperature (Tm) is a parameter that
characterizes these factors [4]. It is defined as the temperature at which 50% of the
DNA molecules have been separated to single strands. Another closely related meas-
ure of the relative stability of a DNA duplex is its Gibbs free energy, denoted as ∆GO.
The nearest-neighbor (NN) model [7][10] was proven to be an effective and accurate

estimation of the free energy. In [12], the concept of t-stem block insertion-deletion
codes was introduced that captures the key aspects of the nearest neighbor model. In
the same reference, a dynamic programming algorithm is presented to calculate the
maximum weight of the t-stem common subsequence.

Search methods for DNA codes are extremely time-consuming [5], and this has
limited research on DNA codeword design, especially for codes of length greater than
about 12-14 bases. For example, the largest known DNA codeword library, which
has been generated based on the edit distance constraint with length 16 and edit dis-
tance 10, consists of 132 pairs, and composing such codes takes several days on a
cluster of 10 G5 processors, with no guarantee of optimality.

In [8], we presented a novel accelerator for the composition of reverse comple-
ment, edit distance, DNA codes of length 16. It incorporates a hardware GA, hard-
ware edit distance calculation, and hardware exhaustive search which extends an ini-
tial codeword library by doing a final scan across the entire universe of possible code
words. The proposed architecture consists of a host PC, a hardware accelerator im-
plemented in reconfigurable logic on a field programmable gate array (FPGA) and a
software program running in a host PC that controls and communicates with the hard-
ware accelerator. The proposed architecture uses a modified genetic algorithm that
uses a locally exhaustive, mutation-only heuristic tuned for speed. The architecture
reduces the search time from 6+ days (on 10 Pentium processors) to 1.5 hours,
achieving an effective 1000X speed-up, and it produces locally optimum codes.

The edit distance metric only provides a first order approximation of the free en-
ergy of binding of DNA duplexes. To improve the quality of DNA codes, more accu-
rate metrics based on the thermodynamics of binding of DNA duplexes must be con-
sidered. This paper focuses on implementing the nearest-neighbor based free energy
calculation on a reconfigurable hardware accelerator. We present a transformed algo-
rithm to calculate the maximum weight of the 2-stem common subsequence of two
DNA oligonucleotides. The result is the key part of the Gibbs free energy of the DNA
cross-hybridized (CH) duplexes based on the nearest-neighbor model. The trans-
formed algorithm preserves the physical data locality and hence is suitable for im-
plementation using a systolic array. A new hardware accelerator for accelerating the
discovery of locally optimum DNA codes with thermodynamic constraints is de-
scribed. At this writing the proposed architecture provides more than 250X speed-up
compared to a software only implementation.

The remainder of this paper is organized as follows: Section 2 describes the trans-
formed algorithm and its hardware implementation using a 2D systolic array. Section
3 presents our formulation of the problem, and the solution technique in hardware
GA. Section 4 provides a performance comparison between the software version and
the hardware version of the codeword search. Section 5 presents final conclusions.

2 Calculation of NN Free Energy Using 2D Systolic Array

The thermodynamics of binding of nucleic acids has been widely studied and re-
ported in the literature. The nearest-neighbor (NN) model [10] was proven to be an
effective and accurate estimate of the thermodynamic binding energy. The NN model

assumes that stability of a DNA duplex depends on the identity and orientation of
neighboring base pairs. There are 10 possible NN pairs: AA/TT, AT/TA, TA/AT,
CA/GT, GT/CA, CT/GA, GA/CT, CG/GC, GC/CG, and GG/CC. Based on the NN
model, the total free energy change of a DNA duplex at temperature T can be calcu-
lated by the following equation:

Terminal ,
NNs

,,,)()(ATT
CrickWatsoni

stackTsymmetryTinitiationTT GiGGGtotalG οοοοο ∆++∆+∆=∆ ∑
−∈

 (1)

 where initiationTG ,
ο∆ is the initiation energy, symmetryTG ,

ο∆ is a parameter that re-

flects whether the duplex is self-complementary, Terminal , ATTGο∆ is a parameter that
accounts for the differences between duplexes with terminal AT versus terminal GC,
and)(, iG stackT

ο∆ gives the thermodynamic energy of Watson-Crick NN duplex i,
which is determined by the structure of the primary sequence of the DNA duplex.
This work focuses on accelerating the calculation of NN free energy using recon-
figurable hardware and applies it to hardware based DNA code word search.

We developed a dynamic programming algorithm to calculate the NN free energy
based on the technique presented in [12]. Given a CH duplex ': yx , where 'y is the
Watson-Crick complement of y, we define 3 matrices. They include a suffix matrix (s)
which stores the longest common suffix between x and y, a weighted suffix matrix
(ws) which stores the accumulated weight of each common stem-2 and an energy ma-
trix (e) which stores the accumulated free energy of the possible NNs. The value of
the ijth entry of these matrices can be calculated using the following equations.

⎩
⎨
⎧ =+

= −−
otherwise 0

][][if 11,1 jyixs
s ji
ij

(2)

⎩
⎨
⎧ −=−=−+

= −−

otherwise 0
]1[]1[&][][if])[],1[(1,1

,
iyixjyixixixwws

ws ji
ji

(3)

⎪
⎩

⎪
⎨

⎧

=+−

+−+−

=

−−−−

−−−−−−

−−−−−−−−

otherwise),,max(
][][if), ,.

, ,max(

,11,1,1

,11,,3,3,,

3,32,2,2,21,1,

jijiji

jijijisjsiji

jijijijijiji

ij
eee

jyixeeewsws

ewswsewsws

e ijij

(4)

The parameter w(a[i-1],a[i]) is the stack-pair free energy between nearest-neighbor

base pairs a[i-1] and a[i]. The bottom right entry of the e matrix gives the NN free
energy of ': yx .

Systolic array processing has been widely used in parallel computing to enhance
computational performance. The general systolic architecture has N×N connected
processors, as shown in Figure 1 (b). Each processor performs an elementary calcula-
tion. The processor P(i,j) reads data from its up stream neighbors P(i-1,j), P(i,j-1) and
P(i-1, j-1), and propagates the results to its down stream neighbors P(i+1,j), P(i,j+1)

and P(i+1, j+1). After an initialization, or latency period that fills the pipeline, the ar-
ray generates one result per 2 clock periods.

Equations (2)~(4) cannot be directly mapped to a 2D systolic array architecture
because to calculate ije we need the value of djdiws −− , (djdie −− ,), ijsd ≤≤1 .

The variable ije is calculated by processor P(i,j). The variables djdiws −− , and

djdie −− , are calculated by processor P(i-d, j-d). If the calculation of ije is per-

formed at clock period t, then the calculations of djdiws −− , and djdie −− , for the

same DNA duplex are performed at clock period dt 2− . Because cells in the systolic
array will register the new input and update their results every 2 clock periods, it is
not possible for us to access the values of djdiws −− , and djdie −− , at clock period t

if d is greater than 1. One way to handle this problem is to store the values of
djdiws −− , and djdie −− , in memory or in registers. Because the maximum value of

sij can be as high as the length of the DNA strand, which in our case is 16, this solu-
tion would require duplication of each cell in the systolic array 16 times. This is not
practical as it significantly increases the hardware cost.

In this work, we use function transformation to simplify the hardware design. We
define a minimum weighted suffix matrix (min_ws) which stores the minimum value
of the difference between djdiws −− , and 1,1 −−−− djdie , where ijsd ≤≤1 . The ijth

entry of min_ws can be calculated as

⎩
⎨
⎧ =−

= −−

otherwise 1,000,000
][][if),min(1,1 jyixewsmin_ws

min_ws jiij1-j1,-i
ij

(5)

when][][jyix ≠ , min_wsij will be set to an extremely large number, otherwise, it is
the minimum between min_wsi-1,j-1 and wsij-ei-1,j-1. The calculation of eij and wsij is
transformed into the following equations.

⎩
⎨
⎧ ≠=−+

= −−−−
otherwise0

0,000,1&][][if])[],1[(1,11,1
,

wsmin_jyixixixwws
ws jiji

ji

(6)

⎩
⎨
⎧ =−

=
−−−−

−−
otherwise),,max(

][][if),,max(

,11,1,1

,11,,

jijiji

jiji1-j1,-iji
ij eee

jyixeemin_wsws
e

(7)

Equations (5)~(7) are equivalent to equations (2)~(4), however, only information

from adjacent cells is needed in the calculation, hence, they can be implemented us-
ing the systolic array architecture.

Fig. 1. 2D systolic array for maximum weighted 2-stem common subsequence

T

2T

3T

4T

16T
17T 18T 19T 32T

x0 x1 x2 x3 x150 0 0 0 0

y0

y1

y2

y3

y15

0

0

0

0

0

T

2T

3T

4T

16T
17T 18T 19T 32T

x0 x1 x2 x3 x150 0 0 0 0

y0

y1

y2

y3

y15

0

0

0

0

0

xi-1,j ei-1,j

yi,,j-1
ei, j-1

ei-1, j-1

xi, j ei, j

yi, j
ei, j
ei, j

wsi-1, j-1

min_wsi-1, j-1

wsi, j
min_wsi, j

xi-1,j ei-1,j

yi,,j-1
ei, j-1

ei-1, j-1

xi, j ei, j

yi, j
ei, j
ei, j

wsi-1, j-1

min_wsi-1, j-1

wsi, j
min_wsi, j

(a) Cell architecture (b) 2D systolic array

The hardware design of the 2D systolic array can be derived directly from equa-
tions (5)~(7). The systolic array is an n×n array of identical cells. Each cell in the ar-
ray has 7 inputs, among which the inputs ei-1,j and x[i-1, j] are from the cell that is lo-
cated above, the inputs ei,j-1 and y[i, j-1] are from the cell that is located to the left,
and the inputs ei-1,j-1, wsi-1,j-1 and min_wsi-1,j-1 are from the cell that is located to the
upper left. Each cell performs the computations that are described in equations
(5)~(7). For cell (i,j), the outputs xi,j and yi,j are equal to the inputs xi-1,j and yi,j-1. Fig-
ure 1 (a) gives the structure of each cell, including its input/output connections and
the computation implemented. The variables xi,j and yi,j are represented as 2 bit binary
numbers with A=00, C=01, G=10, and T=11. The variables ei,j, wsi,j and min_wsi,j are
represented as 14 bit signed integer numbers.

The overall architecture of the 2D systolic array as well as the data dependency
and timing information are shown in Figure 1 (b). In order to prevent ripple through
operation, the cells in the even columns and even rows or odd columns and odd rows
are synchronous to each other and perform computations in the same clock period.
The rest of the cells are also synchronous to each other but perform the computation
in the next clock period. Streams of operands enter a set of shift registers along the
edges of the array that synchronize the presentation of bases in the operands with the
results of calculations that propagate through the array diagonally.

3 Problem Formulation and Solution Technique

We consider each DNA codeword as a sequence of length n in which each symbol is
an element of an alphabet of 4 elements. Let):(yxG denote the nearest neighbor
free energy of duplex ': yx . In this work, we focus on searching for a set of DNA
codeword pairs S, where S consists of a set of DNA strands of length n and their re-

verse complement strands e.g. {(s1, s1’), (s2, s2’), …}, where (s1, s1’) denotes a strand
and its Watson-Crick complement. The problem can be formulated as the following
constrained optimization problem:

||max S (8)

() ,):'(),':(max such that 1111 gssGssGrangeg ≤≤− (9)

())':'(),:'(),':(),:(max 21212121
, 122

gssGssGssGssGrangeg
ssSs

≤≤−
≠∈

 (10)

where g and range are user defined threshold called CH upper bound and CH range.
Equation (8) indicates that our objective is to maximize the size of the DNA code-
word library. Constraints (9)~(10) specify that the NN free energy of any CH du-
plexes must be lower than or equal to g but greater than or equal to g-range. The
range was initially introduced because we thought that adding the code words that are
too far away from the rest of the library would restrict future growth of the library.
Therefore, we only add code words that are “just good enough”. Later in the experi-
ments we found that the range has little impact on library size, however, it has a sig-
nificant impact on the convergence speed of the GA.

The optimization problem is solved using a genetic algorithm. A genetic algorithm
(GA) is a stochastic search technique based on the mechanism of natural selection
and recombination. Potential solutions, which are also called individuals, are evolved
from generation to generation, with selection, mating, and mutation operators that
provide an effective combination for exploring the global search space.

Given a codeword library S, the fitness of each individual d reflects how well the
corresponding codeword fits into the current codeword library. Two values define the
fitness, the reject_num and max_match. The reject_num is the number of codewords
in the library which do not satisfy the condition (9)~(10) and

())':'(),:'(),':(),:(maxmax_ 21212121
12,2

ssGssGssGssGmatch
ssSs ≠∈

= .

A traditional GA mutation function might randomly pick an individual in the
population, randomly pick a pair of bits in the individual representing one of its 16
bases, and randomly change the base to one of the 3 other bases in the set of 4 possi-
ble bases. In the proposed algorithm, however, we randomly select an individual, but
then exhaustively check all of the 48 possible base changes. This is an attempt to
speed beneficial evolution of the population by minimizing the overhead that would
be associated with randomly picking this individual again and again in order to test
those mutations. We also specify that if none of the 48 mutations were beneficial, a
random individual will be generated to replace the individual. For more details about
the genetic algorithm and its hardware implementation, refer to [8]. In this work, we
extend the architecture of the hardware GA presented in [8] to incorporate the con-
sideration of nearest-neighbor free energy. The 2D systolic array that is presented in
section 4 is used as the fitness evaluation module and the main state machine control-
ler of the GA is modified so that it checks constraints (9)~(10).

4 Experimental Results and Discussions

A hardware accelerator that uses a stochastic GA to build DNA codeword libraries of
codeword length 16 has been designed, implemented, and tested. The design was im-
plemented on the reconfigurable computing platform that is composed of a desktop
computer and an Annapolis WildStar–Pro FPGA board [9]. The FPGA board is
plugged into the PCI-X slot of the host system. The WildStar-Pro uses one XC2VP70
FPGA that has 74,448 programmable logic cells. The hardware accelerator uses about
80% of the logic resources. It runs at a 45 MHz clock frequency. A hardware based
code extender that uses exhaustive search to complete the codeword library generated
from GA was also designed and implemented. All the code word libraries that have
been found are verified using the online tool SynDCode[11]. Since the GA is a sto-
chastic algorithm, all results reported are the average of 5 runs.

The first set of experiments compares the performance of the hardware-based and
the software-only DNA codeword search. Two versions of each search algorithm
were implemented. They are denoted as “deterministic search” (DS) and “randomized
search” (RS). A population size of 16 was used for both versions. The population
for DS was initialized using 16 sequential integer values from 0x000003F0 to
0x000003FF, which correspond to DNA codewords 3’AATTTAAAAAAAAAAA’5
through 3’TTTTTAAAAAAAAAAA’5, while the population for RS was initialized
randomly. When a new codeword is found, or when none of the mutated codewords
has lower fitness than the original individual, a new individual is generated to replace
the original one. In DS, a counter is used to generate the new individual. The counter
is initialized to 0x000006D6. In RS, the new individual is generated randomly. We
found that random search is more effective than the deterministic search. However, in
order to compare the speed of hardware-based implementation and software-based
implementation, we must ensure that the two systems perform exactly the same com-
putation tasks. This is achievable only with a deterministic algorithm. All experi-
ments were run with g = 8.5 and range = 1.0, and were terminated after 300 code
word pairs were found.

Figure 2 shows the time required to build large thermodynamically constrained

DNA code word libraries, for software running on a single processor workstation,
and for the hardware accelerator. The lower curves indicate faster speed. As we can
see, the software-based deterministic search has the lowest performance, while the
hardware-based random search has the highest performance. The hardware-based de-
terministic search provides approximately 240X speed-up compared to the software-
only version while the hardware-based random search provides approximately 260X
speed-up compared to the software-only version. Compared to deterministic search,
random search provides approximately 3.7X and 4X speed-ups using software-only
and hardware-based implementations respectively. The plot also shows that the
curves for software-only implementation and the hardware-based implementation are
almost parallel to each other, which indicates that they both have the same complex-
ity. Therefore, the performance gain that has been achieved by using hardware accel-
eration is a constant ratio.

Fig. 2. Comparison between hardware-based and software-based implementation

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 29 57 85 113 141 169 197 225 253 281

HW-deterministic
SW-deterministic

HW-random
SW-rand

code word pairs

Ti
m

e
(s

ec
.) HW -deterministic

HW -random

SW -deterministic
SW -random

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 29 57 85 113 141 169 197 225 253 281

HW-deterministic
SW-deterministic

HW-random
SW-rand

HW-deterministic
SW-deterministic

HW-random
SW-rand
HW-random
SW-rand

code word pairs

Ti
m

e
(s

ec
.) HW -deterministic

HW -random

SW -deterministic
SW -random

The second set of experiments evaluates the impact of CH range on the speed and

quality of the code word search. Figure 3 (a) gives the time to find 400 code word
pairs for different CH ranges. In the next experiment, we ran the GA until it con-
verged (i.e. could not find any new code words for 10 minutes), and then used ex-
haustive search to complete the codeword library. Figure 3 (b) shows the size of the
final library. As we can see, the GA converges faster when the range is set to an ap-
propriate value. For example, compared to range = 0.5, the runtime of GA is 26% and
24% longer at range= 0.05 and 3.0 respectively. Contrary to our original belief, the
distance range does not have significant impact on library size. The size of final lo-
cally optimum libraries found with the addition of ES differ by only 3%. Exhaustive
search usually finishes within 2 hours, depending on the number of words not found
by GA.

The third set of experiments compared the search speed for different CH upper

bounds (g). We varied the CH upper bound from 6.5 to 10.0 and ran GA-based code
word search. Figure 4 (a) shows the number of code word pairs found in 5 minutes
for CH upper bounds from 5 to 8.0 while Figure 4 (b) shows the runtime required to
find 300 code word pairs for CH upper bound from 8.5 to 10. The results indicate

(b) Library size under different range

400

410

420

430

440

450

Library found by GA Extended Library

range=0.05 range=0.1 range=0.5
range=1 range=3

co

de
 p

ai
rs

400

410

420

430

440

450

Library found by GA Extended LibraryLibrary found by GA Extended Library

range=0.05 range=0.1 range=0.5
range=1 range=3
range=0.05 range=0.1 range=0.5
range=1 range=3

co

de
 p

ai
rs

(a) Time to find 400 code word pairs

0.0E+00
2.0E+02
4.0E+02
6.0E+02
8.0E+02
1.0E+03

0.05 0.1 0.5 1 3 6 8
Range

R
un

tim
e

0.0E+00
2.0E+02
4.0E+02
6.0E+02
8.0E+02
1.0E+03

0.05 0.1 0.5 1 3 6 8
Range

R
un

tim
e

Fig. 3. Impact of different ranges on the search speed and library size

Fig. 4. Code word search under different CH upper bound

0

100

200

300

400

5 5.5 6 6.5 7 7.5 8
CH upper bound

#c
od

e
w

or
d

pa
irs

(a) # code word pairs found in 5 minutes

0

100

200

300

400

5 5.5 6 6.5 7 7.5 8
CH upper bound

#c
od

e
w

or
d

pa
irs

(a) # code word pairs found in 5 minutes

that the time to find 300 code words increases exponentially as CH upper bound in-
creases.

The significance of the hardware accelerator is that for the first time it enables us

to evaluate different code word search algorithms and explore the lower bound of op-
timal code word library size in a reasonable amount of time. For example, without the
hardware accelerator, each experiment in our second set would have taken take more
than 20 days.

While it is true that the hardware accelerator does not explicitly consider con-
straints preventing bulges or internal loops, the free energy metric checking in a 2D
systolic does impose those constraints implicitly by covering all sliding of the mers
against each other. We believe that it should be possible to extend this work to in-
clude other secondary constraints commonly used in DNA code design, such as CG
content, disallowing specific sequences, and checking all concatenations of two li-
brary words against each other (i.e. 32 mers vs 32 mers) in future hardware versions.
Interestingly, scaling up to 32 mer x 32 mer checking may or may not result in longer
checking times. The challenge of using hardware to calculate the free energy of DNA
codewords of length 32 is that it may require more programmable hardware resources
than any present single chip FPGA can provide. Possible solutions are to implement a
large systolic array using multiple connected FPGAs and perform all computations in
parallel, or implement a small systolic array on one FPGA and time-multiplex the
computation, or await larger future generation FGPAs. While the first two solutions
are feasible today, compared to the first solution, the second solution has lower cost
but also lower performance. Careful tradeoff decisions must be made based on the
available resources, and the given cost and performance requirements. It is also noted
that DNA code design problem is only slightly different than the tag-antitag and
probe set design problems faced in composing diagnostic micro arrays, where mers of
length 25-60 must be checked in many alignments against longer mers drawn from
large and potentially multiple genomes. Hardware accelerators similar to our own
should be adaptable to that problem. Finally, DNA codes designed in-silico for both
problems must be checked by fabrication and wet chemistry experiments run under
use conditions to verify their true utility

0

5

10

15

20

8.5 9 9.5 10
CH upper bound

R
un

tim
e

(s
ec

)

(b) Time to find 300 code word pairs

0

5

10

15

20

0

5

10

15

20

8.5 9 9.5 108.5 9 9.5 10
CH upper bound

R
un

tim
e

(s
ec

)

(b) Time to find 300 code word pairs
(a) # code word pairs found in 5 minutes. (b) Time to find 300 code word pairs.

5 Conclusions

In this work, we propose a novel systolic array architecture to calculate the nearest-
neighbor free energy of DNA duplexes that is based on a transformed version of a
dynamic programming approach. A single chip FPGA hardware accelerator has been
developed that builds large, locally optimum libraries of DNA codewords with GA
and exhaustive search, both based on thermodynamic energy constraints. The present
version, run at 45 MHz clock frequency, provided more than a 250X speedup over a
software only approach running on a 2.5 GHz Pentium processor.

6 References

[1] L. M. Adleman.: Molecular Computation of Solutions to Combinatorial Problems. Sci-
ence. 266, 1021--1024 (1994).

[2] M. Mansuripur, P.K. Khulbe, S.M. Kuebler, J.W. Perry, M.S. Giridhar, and N. Peygham-
barian.: Information Storage and Retrieval using Macromolecules as Storage Media. In:
Optical Data Storage (2003).

[3] S. Brenner and R. A. Lerner.: Encoded Combinatorial Chemistry. In: Natl. Acad. Sci.
USA, 89, pp. 5381--5383, (1992).

[4] R. Deaton and M. Garzon.: Thermodynamic Constraints on DNA-based Computing.
Computing with Bio-Molecules: Theory and Experiments. Springer-Verlag.

[5] A. Brenneman and A. Condon.: Strand Design for Biomolecular Computation. Theoreti-
cal Computer Science, 287, 39--58 (2002).

[6] F. Tanaka, A. Kameda, M. Yamamoto, and A. Ohuchi.: Design of Nucleic Acid Se-
quences for DNA Computing based on a Thermodynamic Approach. Nucleic Acids Re-
search. 33(3), 903--911 (2005).

[7] J. Santalucia.: A Unified View of polymer, dumbbell, and oligonucleotide DNA nearest
neighbor thermodynamics. In: Natl. Acad. Sci., Biochemistry, pp. 1460--1465 (1998).

[8] Qinru Qiu, D. Burns, Q. Wu and Prakash Mukre.: Hybrid Architecture for Accelerating
DNA Codeword Library Searching. In: IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology (2007).

[9] Annapolis Micro System, http://www.annapmicro.com/

[10] J. SantaLucia, Jr. and D. Hicks.: The thermodynamics of DNA Structural Motifs. Annu.
Rev. Biophys. Biomol. Struct. 33:415--440 (2004).

[11] M. A. Bishop, A. J. Macula1, T. E. Renz.: SynDCode: Cooperative DNA Code Generat-
ing Tool. In: 3rd Annual Conference of Foundations of Nanoscience (2006).

[12] A.G. D’yachkov, A.J. Macula, W.K. Pogozelski, T.E. Renz, V.V. Rykov, and D.C. Tor-
ney.: A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA
Codes. In: Lecture Notes in Computer Science, vol 3384, pp. 90--103, Springer Ber-
lin/Heidelber (2005).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

