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Abstract. Reliable DNA computing requires a large pool of oligonucleotides 
that do not cross-hybridize. In this paper, we present a transformed algorithm to 
calculate the maximum weight of the 2-stem common subsequence of two 
DNA oligonucleotides. The result is the key part of the Gibbs free energy of the 
DNA cross-hybridized duplexes based on the nearest-neighbor model. The 
transformed algorithm preserves the physical data locality and hence is suitable 
for  implementation using a systolic array. A novel hybrid architecture that 
consists of a general purpose microprocessor and a hardware accelerator for ac-
celerating the discovery of DNA under thermodynamic constraints is designed, 
implemented and tested. Experimental results show that the hardware system 
provides more than 250X speed-up compared to a software only implementa-
tion.  

1   Introduction 

A single DNA strand (i.e. oligonucleotides) is a sequence of four possible nucleotides 
denoted as A, C, G and T. Short DNA sequences can be synthesized easily and be 
used for different applications, including high density information storage [2], mo-
lecular computation of hard combinatorial problems [1], and molecular barcodes to 
identify individual modules in complex chemical libraries [3]. These applications rely 
on the specific hybridization between DNA code words and their Watson-Crick com-
plements.  The key to success in DNA computing is the availability of a large collec-
tion of DNA code word pairs that do not cross-hybridize.   

The capability of hybridization between two oligonucleotides is determined by the 
base sequences of the hybridizing oligonucleotides, the location of potential mis-
matches, the concentrations of the molar strand, the temperature of the reaction and 
the length of the sequences [4]. The melting temperature (Tm) is a parameter that 
characterizes these factors [4]. It is defined as the temperature at which 50% of the 
DNA molecules have been separated to single strands. Another closely related meas-
ure of the relative stability of a DNA duplex is its Gibbs free energy, denoted as ∆GO. 
The nearest-neighbor (NN) model [7][10] was proven to be an effective and accurate 



estimation of the free energy. In [12], the concept of t-stem block insertion-deletion 
codes was introduced that captures the key aspects of the nearest neighbor model. In 
the same reference, a dynamic programming algorithm is presented to calculate the 
maximum weight of the t-stem common subsequence. 

Search methods for DNA codes are extremely time-consuming [5], and this has 
limited research on DNA codeword design, especially for codes of length greater than 
about 12-14 bases.  For example, the largest known DNA codeword library, which 
has been generated based on the edit distance constraint with length 16 and edit dis-
tance 10, consists of 132 pairs, and composing such codes takes several days on a 
cluster of 10 G5 processors, with no guarantee of optimality.  

In [8], we presented a novel accelerator for the composition of reverse comple-
ment, edit distance, DNA codes of length 16. It incorporates a hardware GA, hard-
ware edit distance calculation, and hardware exhaustive search which extends an ini-
tial codeword library by doing a final scan across the entire universe of possible code 
words. The proposed architecture consists of a host PC, a hardware accelerator im-
plemented in reconfigurable logic on a field programmable gate array (FPGA) and a 
software program running in a host PC that controls and communicates with the hard-
ware accelerator. The proposed architecture uses a modified genetic algorithm that 
uses a locally exhaustive, mutation-only heuristic tuned for speed. The architecture 
reduces the search time from 6+ days (on 10 Pentium processors) to 1.5 hours, 
achieving an effective 1000X speed-up, and it produces locally optimum codes. 

The edit distance metric only provides a first order approximation of the free en-
ergy of binding of DNA duplexes. To improve the quality of DNA codes, more accu-
rate metrics based on the thermodynamics of binding of DNA duplexes must be con-
sidered. This paper focuses on implementing the nearest-neighbor based free energy 
calculation on a reconfigurable hardware accelerator. We present a transformed algo-
rithm to calculate the maximum weight of the 2-stem common subsequence of two 
DNA oligonucleotides. The result is the key part of the Gibbs free energy of the DNA 
cross-hybridized (CH) duplexes based on the nearest-neighbor model. The trans-
formed algorithm preserves the physical data locality and hence is suitable for im-
plementation using a systolic array. A new hardware accelerator for accelerating the 
discovery of locally optimum DNA codes with thermodynamic constraints is de-
scribed. At this writing the proposed architecture provides more than 250X speed-up 
compared to a software only implementation.  

The remainder of this paper is organized as follows: Section 2 describes the trans-
formed algorithm and its hardware implementation using a 2D systolic array. Section 
3 presents our formulation of the problem, and the solution technique in hardware 
GA. Section 4 provides a performance comparison between the software version and 
the hardware version of the codeword search. Section 5 presents final conclusions. 

2   Calculation of NN Free Energy Using 2D Systolic Array 

The thermodynamics of binding of nucleic acids has been widely studied and re-
ported in the literature. The nearest-neighbor (NN) model [10] was proven to be an 
effective and accurate estimate of the thermodynamic binding energy. The NN model 



assumes that stability of a DNA duplex depends on the identity and orientation of 
neighboring base pairs. There are 10 possible NN pairs: AA/TT, AT/TA, TA/AT, 
CA/GT, GT/CA, CT/GA, GA/CT, CG/GC, GC/CG, and GG/CC. Based on the NN 
model, the total free energy change of a DNA duplex at temperature T can be calcu-
lated by the following equation: 
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 where initiationTG ,
ο∆  is the initiation energy,  symmetryTG ,

ο∆  is a parameter that re-

flects whether the duplex is self-complementary, Terminal , ATTGο∆ is a parameter that 
accounts for the differences between duplexes with terminal AT versus terminal GC, 
and )(, iG stackT

ο∆  gives the thermodynamic energy of Watson-Crick NN duplex i, 
which is determined by the structure of the primary sequence of the DNA duplex. 
This work focuses on accelerating the calculation of NN free energy using recon-
figurable hardware and applies it to hardware based DNA code word search. 

We developed a dynamic programming algorithm to calculate the NN free energy 
based on the technique presented in [12]. Given a CH duplex ': yx , where 'y  is the 
Watson-Crick complement of y, we define 3 matrices. They include a suffix matrix (s) 
which stores the longest common suffix between x and y, a weighted suffix matrix 
(ws) which stores the accumulated weight of each common stem-2 and an energy ma-
trix (e) which stores the accumulated free energy of the possible NNs. The value of 
the ijth entry of these matrices can be calculated using the following equations. 
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The parameter w(a[i-1],a[i]) is the stack-pair free energy between nearest-neighbor 

base pairs a[i-1] and a[i]. The bottom right entry of the e matrix gives the NN free 
energy of ': yx .  

Systolic array processing has been widely used in parallel computing to enhance 
computational performance.  The general systolic architecture has N×N connected 
processors, as shown in Figure 1 (b). Each processor performs an elementary calcula-
tion. The processor P(i,j) reads data from its up stream neighbors P(i-1,j), P(i,j-1) and 
P(i-1, j-1), and propagates the results to its down stream neighbors P(i+1,j), P(i,j+1) 



and P(i+1, j+1). After an initialization, or latency period that fills the pipeline, the ar-
ray generates one result per 2 clock periods. 

Equations (2)~(4) cannot be directly mapped to a 2D systolic array architecture 
because to calculate ije  we need the value of djdiws −− , ( djdie −− , ), ijsd ≤≤1 . 

The variable ije  is calculated by processor P(i,j). The variables djdiws −− , and 

djdie −− ,  are calculated by processor P(i-d, j-d). If the calculation of ije  is per-

formed at clock period t, then the calculations of djdiws −− , and djdie −− ,  for the 

same DNA duplex are performed at clock period dt 2− . Because cells in the systolic 
array will register the new input and update their results every 2 clock periods, it is 
not possible for us to access the values of djdiws −− , and djdie −− , at clock period t 

if d is greater than 1. One way to handle this problem is to store the values of 
djdiws −− , and djdie −− , in memory or in registers. Because the maximum value of 

sij can be as high as the length of the DNA strand, which in our case is 16, this solu-
tion would require duplication of each cell in the systolic array 16 times. This is not 
practical as it significantly increases the hardware cost. 

In this work, we use function transformation to simplify the hardware design. We 
define a minimum weighted suffix matrix (min_ws) which stores the minimum value 
of the difference between djdiws −− , and 1,1 −−−− djdie , where ijsd ≤≤1 . The ijth 

entry of min_ws can be calculated as  
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when ][][ jyix ≠ , min_wsij will be set to an extremely large number, otherwise, it is 
the minimum between min_wsi-1,j-1 and wsij-ei-1,j-1. The calculation of eij and wsij is 
transformed into the following equations. 
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Equations (5)~(7) are equivalent to equations (2)~(4), however, only information 

from adjacent cells is needed in the calculation, hence, they can be implemented us-
ing the systolic array architecture.  



Fig. 1. 2D systolic array for maximum weighted 2-stem common subsequence 
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(a) Cell architecture (b) 2D systolic array 

The hardware design of the 2D systolic array can be derived directly from equa-
tions (5)~(7). The systolic array is an n×n array of identical cells. Each cell in the ar-
ray has 7 inputs, among which the inputs ei-1,j and x[i-1, j] are from the cell that is lo-
cated above, the inputs ei,j-1 and y[i, j-1] are from the cell that is located to the left, 
and the inputs ei-1,j-1, wsi-1,j-1 and min_wsi-1,j-1 are from the cell that is located to the 
upper left. Each cell performs the computations that are described in equations 
(5)~(7). For cell (i,j), the outputs xi,j and yi,j are equal to the inputs xi-1,j and yi,j-1. Fig-
ure 1 (a) gives the structure of each cell, including its input/output connections and 
the computation implemented. The variables xi,j and yi,j are represented as 2 bit binary 
numbers with A=00, C=01, G=10, and T=11. The variables ei,j, wsi,j and min_wsi,j are 
represented as 14 bit signed integer numbers. 

The overall architecture of the 2D systolic array as well as the data dependency 
and timing information are shown in Figure 1 (b). In order to prevent ripple through 
operation, the cells in the even columns and even rows or odd columns and odd rows 
are synchronous to each other and perform computations in the same clock period. 
The rest of the cells are also synchronous to each other but perform the computation 
in the next clock period. Streams of operands enter a set of shift registers along the 
edges of the array that synchronize the presentation of bases in the operands with the 
results of calculations that propagate through the array diagonally.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3   Problem Formulation and Solution Technique 

We consider each DNA codeword as a sequence of length n in which each symbol is 
an element of an alphabet of 4 elements. Let ):( yxG  denote the nearest neighbor 
free energy of duplex ': yx .  In this work, we focus on searching for a set of DNA 
codeword pairs S, where S consists of a set of DNA strands of length n and their re-



verse complement strands e.g. {(s1, s1’), (s2, s2’), …}, where (s1, s1’) denotes a strand 
and its Watson-Crick complement.  The problem can be formulated as the following 
constrained optimization problem: 
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where g and range are user defined threshold called CH upper bound and CH range. 
Equation (8) indicates that our objective is to maximize the size of the DNA code-
word library. Constraints (9)~(10) specify that the NN free energy of any CH du-
plexes must be lower than or equal to g but greater than or equal to g-range. The 
range was initially introduced because we thought that adding the code words that are 
too far away from the rest of the library would restrict future growth of the library. 
Therefore, we only add code words that are “just good enough”. Later in the experi-
ments we found that the range has little impact on library size, however, it has a sig-
nificant impact on the convergence speed of the GA. 

The optimization problem is solved using a genetic algorithm. A genetic algorithm 
(GA) is a stochastic search technique based on the mechanism of natural selection 
and recombination. Potential solutions, which are also called individuals, are evolved 
from generation to generation, with selection, mating, and mutation operators that 
provide an effective combination for exploring the global search space.  

Given a codeword library S, the fitness of each individual d reflects how well the 
corresponding codeword fits into the current codeword library. Two values define the 
fitness, the reject_num and max_match. The reject_num is the number of codewords 
in the library which do not satisfy the condition (9)~(10) and 
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A traditional GA mutation function might randomly pick an individual in the 
population, randomly pick a pair of bits in the individual representing one of its 16 
bases, and randomly change the base to one of the 3 other bases in the set of 4 possi-
ble bases. In the proposed algorithm, however, we randomly select an individual, but 
then exhaustively check all of the 48 possible base changes.  This is an attempt to 
speed beneficial evolution of the population by minimizing the overhead that would 
be associated with randomly picking this individual again and again in order to test 
those mutations.  We also specify that if none of the 48 mutations were beneficial, a 
random individual will be generated to replace the individual. For more details about 
the genetic algorithm and its hardware implementation, refer to [8]. In this work, we 
extend the architecture of the hardware GA presented in [8] to incorporate the con-
sideration of nearest-neighbor free energy. The 2D systolic array that is presented in 
section 4 is used as the fitness evaluation module and the main state machine control-
ler of the GA is modified so that it checks constraints (9)~(10). 



4   Experimental Results and Discussions 

A hardware accelerator that uses a stochastic GA to build DNA codeword libraries of 
codeword length 16 has been designed, implemented, and tested. The design was im-
plemented on the reconfigurable computing platform that is composed of a desktop 
computer and an Annapolis WildStar–Pro FPGA board [9].  The FPGA board is 
plugged into the PCI-X slot of the host system. The WildStar-Pro uses one XC2VP70 
FPGA that has 74,448 programmable logic cells. The hardware accelerator uses about 
80% of the logic resources. It runs at a 45 MHz clock frequency. A hardware based 
code extender that uses exhaustive search to complete the codeword library generated 
from GA was also designed and implemented. All the code word libraries that have 
been found are verified using the online tool SynDCode[11]. Since the GA is a sto-
chastic algorithm, all results reported are the average of 5 runs. 

The first set of experiments compares the performance of the hardware-based and 
the software-only DNA codeword search. Two versions of each search algorithm 
were implemented. They are denoted as “deterministic search” (DS) and “randomized 
search” (RS).  A population  size of 16 was used for both versions.  The population 
for DS was initialized using 16 sequential integer values from 0x000003F0 to 
0x000003FF, which correspond to DNA codewords 3’AATTTAAAAAAAAAAA’5  
through 3’TTTTTAAAAAAAAAAA’5, while the population for RS was initialized 
randomly. When a new codeword is found, or when none of the mutated codewords 
has lower fitness than the original individual, a new individual is generated to replace 
the original one. In DS, a counter is used to generate the new individual. The counter 
is initialized to 0x000006D6. In RS, the new individual is generated randomly. We 
found that random search is more effective than the deterministic search. However, in 
order to compare the speed of hardware-based implementation and software-based 
implementation, we must ensure that the two systems perform exactly the same com-
putation tasks.  This is achievable only with a deterministic algorithm. All experi-
ments were run with g = 8.5 and range = 1.0, and were terminated after 300 code 
word pairs were found.  

 
Figure 2 shows the time required to build large thermodynamically constrained 

DNA code word libraries, for software running on a single processor workstation, 
and for the hardware accelerator. The lower curves indicate faster speed. As we can 
see, the software-based deterministic search has the lowest performance, while the 
hardware-based random search has the highest performance. The hardware-based de-
terministic search provides approximately 240X speed-up compared to the software-
only version while the hardware-based random search provides approximately 260X 
speed-up compared to the software-only version. Compared to deterministic search, 
random search provides approximately 3.7X and 4X speed-ups using software-only 
and hardware-based implementations respectively. The plot also shows that the 
curves for software-only implementation and the hardware-based implementation are 
almost parallel to each other, which indicates that they both have the same complex-
ity. Therefore, the performance gain that has been achieved by using hardware accel-
eration is a constant ratio.  

 



Fig. 2. Comparison between hardware-based and software-based implementation 

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 29 57 85 113 141 169 197 225 253 281

HW-deterministic
SW-deterministic

HW-random
SW-rand

# code word pairs

Ti
m

e 
(s

ec
.) HW -deterministic

HW -random

SW -deterministic
SW -random

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 29 57 85 113 141 169 197 225 253 281

HW-deterministic
SW-deterministic

HW-random
SW-rand

HW-deterministic
SW-deterministic

HW-random
SW-rand
HW-random
SW-rand

# code word pairs

Ti
m

e 
(s

ec
.) HW -deterministic

HW -random

SW -deterministic
SW -random

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second set of experiments evaluates the impact of CH range on the speed and 

quality of the code word search. Figure 3 (a) gives the time to find 400 code word 
pairs for different CH ranges. In the next experiment, we ran the GA until it con-
verged (i.e. could not find any new code words for 10 minutes), and then used ex-
haustive search to complete the codeword library. Figure 3 (b) shows the size of the 
final library. As we can see, the GA converges faster when the range is set to an ap-
propriate value. For example, compared to range = 0.5, the runtime of GA is 26% and 
24% longer at range= 0.05 and 3.0 respectively. Contrary to our original belief, the 
distance range does not have significant impact on library size. The size of final lo-
cally optimum libraries found with the addition of ES differ by only 3%. Exhaustive 
search usually finishes within 2 hours, depending on the number of words not found 
by GA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The third set of experiments compared the search speed for different CH upper 

bounds (g). We varied the CH upper bound from 6.5 to 10.0 and ran GA-based code 
word search. Figure 4 (a) shows the number of code word pairs found in 5 minutes 
for CH upper bounds from 5 to 8.0 while Figure 4 (b) shows the runtime required to 
find 300 code word pairs for CH upper bound from 8.5 to 10.  The results indicate 

(b) Library size under different range 
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Fig. 3. Impact of different ranges on the search speed and library size 



Fig. 4. Code word search under different CH upper bound 
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that the time to find 300 code words increases exponentially as CH upper bound in-
creases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The significance of the hardware accelerator is that for the first time it enables us 

to evaluate different code word search algorithms and explore the lower bound of op-
timal code word library size in a reasonable amount of time. For example, without the 
hardware accelerator, each experiment in our second set would have taken take more 
than 20 days. 

While it is true that the hardware accelerator does not explicitly consider con-
straints preventing bulges or internal loops, the free energy metric checking in a 2D 
systolic does impose those constraints implicitly by covering all sliding of the mers 
against each other.  We believe that it should be possible to extend this work to in-
clude other secondary constraints commonly used in DNA code design, such as CG 
content, disallowing specific sequences, and checking all concatenations of two li-
brary words against each other (i.e. 32 mers vs 32 mers) in future hardware versions. 
Interestingly, scaling up to 32 mer x 32 mer checking may or may not result in longer 
checking times. The challenge of using hardware to calculate the free energy of DNA 
codewords of length 32 is that it may require more programmable hardware resources 
than any present single chip FPGA can provide. Possible solutions are to implement a 
large systolic array using multiple connected FPGAs and perform all computations in 
parallel, or implement a small systolic array on one FPGA and time-multiplex the 
computation, or await larger future generation FGPAs.  While the first two solutions 
are feasible today, compared to the first solution, the second solution has lower cost 
but also lower performance. Careful tradeoff decisions must be made based on the 
available resources, and the given cost and performance requirements.  It is also noted 
that DNA code design problem is only slightly different than the tag-antitag and 
probe set design problems faced in composing diagnostic micro arrays, where mers of 
length 25-60 must be checked in many alignments against longer mers drawn from 
large and potentially multiple genomes.  Hardware accelerators similar to our own 
should be adaptable to that problem.  Finally, DNA codes designed in-silico for both 
problems must be checked by fabrication and wet chemistry experiments run under 
use conditions to verify their true utility  
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5   Conclusions  

In this work, we propose a novel systolic array architecture to calculate the nearest-
neighbor free energy of DNA duplexes that is based on a transformed version of a 
dynamic programming approach. A single chip FPGA hardware accelerator has been 
developed that builds large, locally optimum libraries of DNA codewords with GA 
and exhaustive search, both based on thermodynamic energy constraints. The present 
version, run at 45 MHz clock frequency, provided more than a 250X speedup over a 
software only approach running on a 2.5 GHz Pentium processor. 
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