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Abstract In this paper we present a methodology and 
techniques for generating cycle-accurate macro-models for 
RT-level power analysis. The proposed macro-model 
predicts not only the cycle-by-cycle power consumption of 
a module, but the power profile of the module over time. 
The proposed methodology consists of three steps: module 
equation form generation and variable selection, variable 
reduction, and population stratification. First order 
temporal correlations and spatial correlations of up to 
order 3 are considered to improve the estimation accuracy. 
Experimental results show that, the macro-models have 15 
or less variables and exhibit <5% error in average power, 
and <15% errors in cycle-by-cycle power compared to 
circuit simulation results using Powermill.  

I. INTRODUCTION 
Due to rapid progress in the semiconductor manufacturing, 
the device density and operating frequency have greatly 
increased, making power consumption a major design 
concern. High power consumption exacerbates the 
reliability problem by raising the die temperature and by 
increasing current density on the supply rails. It also 
reduces battery life which is a key concern in portable 
devices. Therefore, low power design requirements are 
driving a new breed of design automation methodologies 
and tools which in turn rely on accurate and efficient 
estimation tools at various design levels. 
Power estimation at RT level is crucial in achieving a short 
design cycle. Macro-modeling is the major technique for 
power estimation at RT-level. In this technique, low-level 
simulations of modules is replaced by power macro-model 
equation evaluation (which can be performed very fast). 
Macro-modeling techniques use capacitance models for 
circuit modules and activity profiles for data or control 
signals [1-3]. The simplest form of the macro-model 
equation is given by: 

                  SWCfVPower eff ⋅⋅⋅= 2
2
1                     (1.1) 

where Ceff is the effective capacitance, SW is the mean of 
the input switching activity, and f is the clock frequency. 
The Power Factor Approximation (PFA) technique uses an 
experimentally determined weighting factor, called the 
power factor, to model the average power consumed by a 
given module over a range of designs. 
To improve the accuracy, more sophisticated macro-model 
equations have been proposed. Dual Bit Type model, 
proposed in [2], exploits the fact that, in the data path or 
memory modules, switching activities of high order bits 
depend on the temporal correlation of data when lower 
order bits behave similarly to white noise data. Thus a 
module is completely characterized by its capacitance 
models in the MSB and LSB regions. The break-point 
 

 between the two regions is determined based on the signal 
statistics collected from simulation runs. The Activity-
Based Control (ABC) model [4] is proposed to estimate the 
power consumption of random-logic controllers. All of the 
above macro-models assume some statistics or properties 
about the input sequence. 
All of the above techniques are suitable for estimating the 
average-power dissipation (and are referred to as 
cumulative power macro-model). In some applications, 
however, estimation of average power is just one task in the 
broader sense of power evaluation.  Other tasks include the 
estimation of the moving average of the power, power 
profiling on a cycle-by-cycle basis, and rate of current 
change estimation. This type of information is crucial for 
system reliability analysis and DC/AC noise analysis. If the 
macro-modeling technique does not provide such 
information, the circuit designers will have to resort to 
gate-level or circuit-level simulator again. Consequently, 
this kind of macro-model is considered to be less useful. 

The notion of cycle-accurate macro-models was proposed 
in [5]. Let Pjk denote the power consumption of module j in 
clock cycle k, then we can write:  
                               ),( ,1, kjkjjjk VVFP −=                     (1.2) 

where Vj,k and Vj,k-1 denote the input vectors for module j at 
cycles k and k-1, and Fj is some function of the input vector 
pairs. The goal of power macro-modeling is to find 
function Fj given an input vector sequence V (the so called 
training set) for module j and given the corresponding 
power consumption values. Cycle based macro-models can 
be easily transformed into cumulative macro-models [5]. 
This paper improves results of [5] in the following 
directions. A new variable selection methodology is applied 
to capture the relation between power consumption and 
module inputs/outputs. The spatial correlation among 
inputs are considered up to order three. Because we use 
integer variables instead of 0-1 variables as in [5], our 
macro-models have fewer variables (fewer than 15 
variables compared to 40~100 variables in [5]) and higher 
accuracy (10% error on cycle-by-cycle basis compared to 
11.2% in [5]. In addition, we use population stratification to 
obtain a macro-model with higher fidelity.  
This paper is organized as follows. Section II gives the 
theoretical background for regression analysis.  Section III 
discusses a procedure of building the macro-model whereas 
Section IV presents the experimental results. Section V will 
discuss some applications of cycle-accurate macro-models. 

II. BACKGROUND 
Based on the theory of regression analysis, we define the 
relation between power and input vector pair characteristics 
as a statistical relation, which can be expressed as : 
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                   ε+= ),....,( 21 nXXXfY                   (2.1) 

where ε is a random error term of normal distribution with 
the mean 0}{ =εE  and the variance 22 }{ σεσ = , and X1, 
X2, …, Xn are the characteristic variables related to the 
input vector pairs. (2.1) is different from a functional 
relation in that: 1) same variable assignment may produce 
different Y values because different vector pairs which 
result in different power consumption may produce the 
same set of characteristic values, and 2) Y is thus regarded 
as a random variable with  mean ),....,()( 21 nXXXfYE = .  

We define the cycle-accurate macro-model as a linear 
function describing the statistical relationship between 
power dissipation of a vector pair and the characteristic 
values of the vector, that is, we write: 
              kk XXXP ββββ ++++= L22110            (2.2) 

where P is the power (which is the power estimated from a 
circuit-level simulator, such as Powermill [7]), β β β0 1, , ,L k  
are constants called the regression coefficients of the 
macro-model, and X X X k1 2, , ,L  are characteristic 
variables extracted from the input vector pair.   
Assume that we have been given the equation form of the 
macro-model as (2.2), and have performed Powermill 
simulations (observations) on m randomly sampled vector 
pairs in the population (this set of m vector pairs is referred 
to as the training set) so that we have obtained m 
simulation results (observation values) of power. The linear 
regression model for vector pairs from the training set can 
be written as: 
P x x x i mi i i k i k i= + + + + + =β β β β ε0 1 1 2 2 1 2, , , , , , ,L L    (2.3) 

or in matrix form as:  
                                     P X= +β ε                               (2.4) 

where Pi’s are random variates corresponding to 
observations: ( x x xi i i k, , ,, , ,1 2 L ) mi ,..,2,1= ; β β β0 1, , ,L k  
are the regrssion coefficients; x x xi i i k, , ,, , ,1 2 L  are known 
values derived from the input vector pair (V Vi i, ,,1 2 ); and 
εi’s are independent random variates representing deviation 
from the mean value of power with variance 

,][ 2σε =iVAR  and 0],[ =ji εεCov , for ji ≠ . 
Consequently, the random vector P has an expected value 
of E[P]=Xβ and the variance-covariance matrix of P is 

IPCov 2][ σ= , where I is the identity matrix. 

The least square estimator for the coefficients β is: 

                        b X X X P= ⋅ ⋅ ⋅−( )T T1                         (2.5) 
where 

                          [ ]b
( )

, , ,
k kb b b

+ ×
=

1 1 0 1 L
T                       (2.6) 

It has been proved in [6] that the lest square estimator is an 
unbiased estimator for β, which means E[b]= β.The 
estimated (fitted) power from macro-model is given by: 

                       [ ]$ $ , $ , , $P Xb= =P P Pm1 2 L                        (2.7) 

and the residual terms (error) are defined as the difference 
between the fitted power and observed (actual) power: 

                  [ ]e P P P Xb= = − = −e e em1 2, , $L            (2.8) 

 In the following, we define some relevant terms for 
regression analysis [6]. 

sum of squares error: SSE ei
i

m
=

=
∑ 2

1
 

mean squares error: MSE SSE m k= − −( )1  

regrssion sum of squares: SSR P Pi
i

m
= −

=
∑ ( $ )2

1
 

regrssion mean squares: MSR SSR k=  

coefficient of correlation: )( SSESSRSSRR +=  

The statistical nature of the macro-model enables us to 
predict the accuracy level of fitted power value as follows. 
Given any input vector pair, the values of its characteristic 
variables (x1, x2, …, xk) are first computed. The fitted 
(predicted) power is given by kk xbxbxbbP ++++= L22110

ˆ . 
Given a confidence level 1-α, the confidence interval of the 
actual power P is defined as an interval [P1, P2] such that 
the probability that the actual power value lies inside this 
interval is    1-α. We can thus compute the confidence 
interval for P at any confidence level 1-α as: 

]][)1;21(ˆ],[)1;21(ˆ[ PskmtPPskmtP ⋅−−−+⋅−−−− αα (2.9) 
where t(1-α/2;m-k-1) is the (1-α/2)×100 percentile point of 
the t distribution with degree of freedom of (m-k-1) and 
s[P] is the standard deviation of the new observation which 
is given by: 

                ))(1(][ 1TT XXMSEPs −+⋅= XX           (2.10) 

where X and MSE are the variable matrix and mean squares 
error of the training set, respectively. 
The quality of the macro-models can be evaluated in terms 
of the following criteria: 
1. Correlation coefficients: Coefficient of multiple 

correlation R is a general measure of the quality of a 
regression model since it represents linearity of the 
model and the magnitude of the error. From its 
definition, 10 ≤≤ R . Furthermore, the higher the R 
value, the better the quality of the regression model. 
The R value may differ from one population to next for 
the same macro-model. Therefore, the R values of 
different macro-models should be compared only when 
they are subjected to the same input population. 

2. Errors: Error in cycle power (ECP) gives the average 
error when estimating power on cycle by cycle basis 
while error in average power (EAP) gives the average 
error when estimating the average power. More 
precisely, we can write: 
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III. GENERATING THE MACRO-MODEL 
3.1 Variable Selection 
3.1.1 Theoretical foundation of macro-model equation 
If we ignore power consumption of the floating nodes 
within gates (it is <5% in practice), the power consumption 
of a combinational module is only a function of transitions 
at the primary inputs and can be written as: 
                            ),,,( 21 ktttfP

v
L

vv
=                             (3.1) 

where k is the number of inputs and kttt
v

L
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,,, 21  are the so 
called transition variables which encoded by a bit vector as 
following: 
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Note that the function is defined as a mapping from vector 
space to real numbers. Equation (3.1) can be expanded 
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where  
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By redefining the constants in (3.3), we can write: 
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where it
v

 is called order 1 transition variable of input i, 

ji tt
vv

⊗  is called order 2 joint transition variable of inputs i 
and  j, etc. Entries of these vector variables are either 0 or 1 
and the sum of entries in each vector add up to 1. 
Theorem 1 Equation (3.4) gives the exact power 
consumption for any vector pair applied to the inputs of 
any combinational module with k inputs. Furthermore, 
coefficients in the equation are unique for given module. 
3.1.2 Relevant input correlations 
It is obvious that a0 = 0 since power consumption for vector 
pair (00…0)→(00…0) must be zero. All other coefficients 
in equation (3.4) can be uniquely determined from circuit-
level simulation on some specific vector pairs.  
Definition Inputs i1,i2,…,ij are transitive fanout correlated 
iff their transitive fanout cones in the circuit have at least 
one common node, that is, there exists at least one node of 
the module whose logic function includes all these inputs. j 
is called the order of the correlation. 
For sake of simplicity, we use “correlation” to mean 
“transitive fanout correlation” in the rest of this paper. 
The coefficients in (3.4) essentially reflect the correlation 
between the corresponding (joint) transition probabilities 
and the power consumption in a circuit.   

Proposition 1 If  i1,i2,…,ij are not correlated, all entries of 

jiiia ,,, 21 L
v  are zero. 

Corollary If J is the highest order of correlation among 
inputs of a module, the first J+1 terms of equation (3.4) are 
sufficient to model the exact power for any input vector 
pair applied to the module. 
3.1.3 The macro-model equation 
We have empirically observed that, on average, low order 
joint transition variables have higher coefficient values for 
most circuits. Based on this observation, we approximate  
(3.4) by ignoring the high order terms. Our first 
approximation function is written as: 
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where ε is the error caused by approximation. 



 

We can minimize error ε  by re-computing the coefficient 
values doing least-square fitting for (3.5). However (3.5) is 
too large to be our macro-model equation because the 
number of variables in it is 32 2793 kk CCk ⋅+⋅+⋅ , which is 
too high! The use of 0-1 variables in (3.5) makes it difficult 
to reduce the number of variables using regression 
approach.  
We thus use a variable partitioning approach which offers 
two advantages: 1) uses integer variables, 2) has constant 
number of variables independent of k. 
We define G1 as the set of all inputs, G2 as the set of all 
possible combinations of two inputs, G3 as the set of all 
possible combinations of three inputs: 
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Note that G1 consists of indices for order 1 transition 
variables; G2 consists of indices for order 2 transition 
variables, etc. The variable partitioning technique divides 
G1 into L subsets, G2 into M subsets, and G3 into N subsets 
such that: 
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where K is some user-specified bound. The size constraint 
is specified to manage the complexity of macro-model 
equation characterization and evaluation.  
We approximate equation (3.5) by assuming that: 
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To minimize the error introduced by the above 
approximation, we should do a careful variable partitioning 
because variables may have very different coefficients. In 
our approach, the partitioning criteria are based on the 
coefficients in (3.4) which are computed as: 
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increasing order of the corresponding criteria values and 
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We can thus introduce our cycle-accurate macro-model as 
follows: 
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In terms of L,M,N values, the number of variables in the 
macro-model is 3L+9M+27N, which is independent of the 
number of circuit inputs k. 
Table 1 shows the experimental results for three macro-
models using different number of groups and using 
different grouping strategies. For Macro-model 1, L = 1, M 
= 1, N = 1; For Macro-model 2, L = 8, M = 8, N = 2, and 
the single inputs, input pairs, and input triplets are grouped 
randomly; For Macro-model 3, L = 8, M = 8, N = 2, and our 
variable partitioning heuristic is used. The input sequence 
are randomly generated. We did not include biased 
sequence into this experiment because the R values are so 
high that it is difficult to assess the merit of each method. 
From Table 3,  we can draw the following conclusions: 
• In general, input grouping improves the quality of 

macro-models. 
• A good input grouping technique is very important to 

obtain a high quality macro-model. 

Table 1 Experimental results of input partition 

 Macro-model 1 Macro-model 2 Macro-model 3 
Module R ECP 

(%) 
R ECP 

(%) 
R ECP 

(%) 
C1355 0.7037 8.07 0.6041 9.2 0.7788 7.8 
C1908 0.5387 15.4 0.5456 15.0 0.7987 11.2 
C2670 0.3940 11.7 0.4022 11.6 0.6225 14 
C3540 0.5439 17.5 0.6583 15.5 0.7599 12.2 
C432 0.3169 29.1 0.3260 29.0 0.7706 20.2 

C5315 0.4128 9.9 0.4813 9.4 0.8012 8.1 
C6288 0.7318 8.1 0.7717 7.6 0.8011 6.8 
C7552 0.1852 33.0 0.3176 31.0 0.9184 9.2 
C880 0.5421 19.8 0.4854 20.8 0.6976 16.3 
Mul16 0.7568 8.9 0.7813 8.3 0.8139 7.0 

Adder16 0.7151 8.6 0.7268 8.4 0.8687 6.2 

3.2 Population Stratification 
From our experiments we have found that the regression 
correlation R between the estimated power and the actual 
power varies for different power ranges. This means that 
the regression model is not strictly linear over the range of 
possible power values. The reason for the lack of linearity 
is that the macro-model equation is only an approximation 
to the power-transition function. During the variable 
selection, we discard the high order terms in the power-
transition function and group subsets of variables of given 
order together. The approximation introduces some non-
linearity into the macro-model equation. This effect is more 
pronounced when the number of variables is small. 
To improve the quality of our macro-model, we refine the 
macro-model to a piece-wise linear regression model [6]. 
At the first step, we stratify the training set into several 
disjoint subsets (strata) based on the switching activity of 
the vector pairs in the training set. A vector pair will fall 
into one and only one of these strata. Then the macro-
model is trained separately for each subset of the training 
set. When we apply this piece-wise linear macro-model to 
estimate the power for a given vector pair, we first examine 
the switching activity range of the vector pair, and then 

invoke the macro-model equation which was trained using 
vector pairs with a similar switching activity. 
Theorem 2 The regression coefficient R of the macro-
model in population stratification approach is always larger 
than or equal to that one without population stratification, 
i.e., 
                                    nostrstr RR ≥  
Experimental results in Table 2 shows the improvement on 
the regression coefficient R of the macro-model with the 
population stratification approach (Macro-model 1) and 
without it (Macro-model 2). The experiment sequence 
contains both biased and random vectors. 

Table 2 Experimental results of population 
stratification approach 

Macro-model 1 Macro-model 2 Module 
R ECP (%) R ECP (%) 

C1355 0.9806 7.86 0.9691 8.76 
C1908 0.9603 9.34 0.9507 11.19 
C2670 0.9786 8.77 0.9747 10.22 
C3540 0.9743 11.45 0.9566 12.88 
C432 0.9196 19.07 0.9001 22.96 

C5315 0.9819 7.64 0.9812 8.72 
C6288 0.9892 6.03 0.9864 7.16 
C7552 0.9885 6.58 0.9871 7.36 
C880 0.9506 14.19 0.9509 15.32 
Mul16 0.9832 6.32 0.9819 6.90 

ADDER16 0.9868 5.64 0.9725 6.73 

3.3 Variable Reduction 
In the macro-model equation (3.6), the number of variables 
is about 150. Although the large number of variables will 
improve the quality of the macro-model, we cannot afford 
to evaluate a large macro-model equation for every clock 
cycle at RT-level. Therefore, we must reduce the number of 
variables in the equation. 
In our approach, the search method develops a sequence of 
regression models. At each step, one X variable is added 
into or deleted from the final macro-model equation. The 
criterion used for adding or deleting variables is the F* 
statistics of the regression theory [6]. The algorithm is 
described next: 
Input of the algorithm: Given are a set of candidate 
variables { X1, X2, …, Xn } which is in the initial macro-
model, a training set (values of variables for input vector 
pair and corresponding Powermill power value), a low 
threshold t0 for deleting a variable, a high threshold t1 for 
adding a variable, an upper bound of number of variables 
MAXvar, S is the set of selected variables. 
Step 0 (Initialization) : Set S = Φ and C = { X1, X2, …, Xn } 
Step 1 (Find the first variable) : Fit a one-variable linear 
regression model for each variable Xi in C. The F* test for 
each model is given by: 
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Assume that Xj is the variable with the maximum F* value. 
If F tj

* ≥ 1  then move Xj from C to S and denote it as X1
* . 

Otherwise, no macro-model can be found for the given t1 
value (t1 must be reduced). The algorithm terminates. 

Step 2 (Add a variable) : Assume S = { **
2

*
1 ,,, aXXX L }, 

for each Xi remaining in C, fit the regression model with 
a+1 variables X X X a1 2

* * *, , ,L  and Xi . For each of them, 
the partial F test statistics is: 
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where bi is the estimated value of βi coefficient and s{bi} is 
the standard deviation of bi. Let Xj be the variable with the 
maximum Fi

*  value. If F tj
* ≥ 1  then move Xj form C to S 

and denote it as Xa+1
* , increase a by 1, and go to Step 3; 

Otherwise the algorithm terminates. 

Step 3 (delete a variable) : Assume S={ **
2

*
1 ,,, aXXX L }, 

and X a
*  is the latest variable added in Step 2. Compute the 

partial F test statistics for all other variables in S: 
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Let X j
*  be the variable with minimum F* value. If 

F tj
* < 0  then remove X j

*  form S. 

Step 4 : Repeat Steps 2 and 3 until one of following three 
conditions is true: 
1. Algorithm terminates in Step 2 
2. C=Φ. 
3. The number of variables in S equals to MAXvar 
In our approach, the number of variables in the candidate 
set is 162 at the beginning. We choose t0 = t1 = 10.0, 
MAXvar = 15. For most macro-models, the algorithm 
terminates at the 3rd condition at step 4 when the number of 
variables equals to MAXvar. Only for one of them the 
algorithm terminates at step 3 when 1

* tF j < . 

3.4 Other issues in macro-model generation 
Another important issue in macro-model generation is the 
design of the training set. In our approach the training set is 
designed using stratified sampling techniques proposed in 
[5]. The population (collected or probabilistically generated 
sequence and the corresponding power values) covers the 
whole ranges of macro-model variables and actual power 
values, the training set design technique also ensure that 
these ranges are covered by the training set. The validation 
of macro-model is carried out based on the criteria we 
mentioned in Section II, which are R, ECP, and EAP. 

IV. EXPERIMENTAL RESULTS 
We have built our cycle-accurate macro-models for several 
modules, including the ISCAS-89 benchmarks. In our 
macro-models, we have also used information about 

transitions on circuit outputs, but only for two of the 
circuits (C432 and C880) variables related to outputs 
survive the variable reduction phase. 
The experimental setup is as follows. For each circuit, the 
population size is set to 80,000 vector pairs (constructed by 
both biased and random sequences). We first simulate each 
circuit for the entire sequence using Powermill and record 
the cycle-by-cycle power. Size of the training set is set to 
3,000 . The macro-model is then trained using the training 
set. After the macro-model is built, we apply it to different 
subsets of the population. These subsets are selected such 
that  their power behaviors are different from that of the 
training set. Average ECP and EAP are computed by 
averaging the ECP’s and EAP’s of all  sub-sets. The 
regression coefficient R is computed based on the fitted 
results on the entire population. Experimental results for 
our cycle-accurate macro-models is summarized in Table 3. 
Experimental results shows that our macro-model 
technique are very accurate when estimating power 
consumption at RT-level. The average ECP and EAP are 
10.2% and 2.0%, respectively. 

Table 3 Experimental results of cycle-accurate macro-
models 

Circuit No. of Var. R ECP (%) EAP (%) 
C1355 15 0.9615 9.3 2.7 
C1908 15 0.9343 11.6 2.0 
C2670 15 0.9744 9.6 2.0 
C3540 15 0.9472 12.5 2.0 
C432 14 0.8971 19.3 3.1 
C5315 15 0.9816 7.8 1.6 
C6288 15 0.9902 6.2 1.9 
C7552 15 0.9885 6.9 1.1 
C880 15 0.9405 14.3 3.2 
Mul16 15 0.9853 6.5 1.6 

ADDER16 15 0.9825 6.4 1.1 
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