
Power Optimization for Conditional Task Graphs in DVS Enabled
Multiprocessor Systems

Parth Malani, Prakash Mukre, Qinru Qiu
Department of Electrical and Computer Engineering, Binghamton University

Binghamton, NY 13902
{parth, pmukre1, qqiu} @binghamton.edu

Abstract — In this paper, we focus on power optimization of
real-time applications with conditional execution running on a
dynamic voltage scaling (DVS) enabled multiprocessor system.
The targeted system consists of heterogeneous processing
elements with non-negligible inter-processor communication
delay and energy. Given a conditional task graph (CTG), we
have developed novel online and offline algorithms that perform
simultaneous task mapping and ordering followed by task
stretching. Both algorithms minimize the mathematical
expectation of energy dissipation of non-deterministic
applications by considering the probabilistic distribution of
branch selection. Compared with existing CTG scheduling
algorithms, our online and offline scheduling algorithms reduce
energy by 28% and 39% in average, respectively.

I. INTRODUCTION
Multiprocessor System-on-Chip (MPSoC) is becoming a major

system design platform for general purpose and real-time
applications, due to its advantages in low design cost and high
performance. Minimizing the power consumption is one of the major
issues in designing battery operated MPSoC. One of the widely used
power reduction technique is Dynamic Voltage Scaling (DVS), which
allows the processor to dynamically alter its speed and voltage at run
time to trade power for performance.

In a multiprocessor system, the mapping and ordering of tasks
changes the task slack time, i.e. the intervals when a processing
element (PE) is idle, and hence have a significant impact on the
efficiency of DVS. As the system complexity grows, the latency and
energy of inter-processor communication increases. A holistic
technique must be developed for task mapping, ordering and
stretching to reduce both communication and computation energy.

Many of the real-time applications are non-deterministic. The
application is divided into several tasks. Some tasks are activated
only if certain conditions evaluated by previously executed tasks are
true. A conditional task graph (CTG) [4]~[7] captures such relation
and hence enables us to model more general application.

Although conditional branch prediction is a common practice in
high performance processors, the prediction will not be perfect.
Furthermore, the task graphs that we are working with are high level
descriptions of large applications. Their selection of conditional
branches depends mostly on the input data, which are random.
Techniques that dynamically assign confidence levels [8] or
probabilities [9] to the conditional branches have been proposed by
previous research works.

In this work, we propose a set of communication aware and
profile-based (CAP) scheduling algorithms for CTG on a DVS
enabled multiprocessor system. The targeted system has a set of
heterogeneous PEs, such as DSPs, FPGAs or ASICs, that are
connected by interconnect network. The energy and delay for inter-
PE communication is not negligible. Each PE has DVS capability.
We assume that the branch probabilities are available through static
or dynamic branch profiling.

Online and offline CAP scheduling algorithms are presented in
this paper. They consider task mapping, task ordering and task
stretching altogether to minimize energy dissipation and also satisfy
the performance constraint. The task mapping and task ordering are
performed simultaneously and their goal is to minimize the inter-
processor communication and maximize the task slack. The task
stretching algorithm finds the best speed and starting time for each
task so that the computing energy is minimized. The algorithms
consider the branch probabilities and they minimize the mathematical
expectation of energy dissipation.

The offline CAP algorithm formulates and solves the task
stretching problem as a linear programming (LP) problem which is
time consuming. The online CAP algorithm replaces the LP based
algorithm with a heuristic algorithm. Experimental results show that
compared with the offline algorithm, the online CAP heuristic is
120,000X faster and almost as effective as offline CAP.

Many techniques have been proposed that consider the task
mapping and ordering for DVS [1]~[3]. However, these algorithms
only consider traditional data-flow graph without conditional
execution. One of the major characteristic of CTG is that some tasks
are mutually exclusive. These tasks can be mapped to the same PE at
the same time. Reference [4] and [5] consider scheduling and
mapping for CTG, however, they do not minimize energy dissipation.
Wu et al. [6] proposed an algorithm for task ordering and stretching
of CTGs running on a DVS enabled system. They search for the
optimal task mapping using genetic algorithm (GA). The proposed
algorithm provides a complete solution for power optimization of
CTGs. However, it does not consider the branch probabilities. An
implied assumption of this technique is that all the conditional
branches will be selected with equal probability. Furthermore, the GA
based task mapping algorithm has high complexity because the inner
loop of this algorithm needs to perform the task ordering and
stretching of the entire CTG. Shin et al. [7] proposed an algorithm for
task ordering and stretching of CTG which considers the run-time
behavior. They refer this approach as condition aware scheduling.
Under condition aware scheduling, a task has different start time and
speed for different combinations of possible branch selections.
Therefore, a large table is needed to store the scheduling result. The
probabilistic distribution of the branch selections is considered only
during task stretching. Another limitation of this algorithm is that it
takes task mapping as a fixed input so that the communication
overhead cannot be considered.

The characteristics of the proposed CAP algorithms are described
as follows.

1. The proposed algorithms consider task mapping, ordering and
task stretching altogether for energy reduction.

2. We consider the application with conditional execution as a
random procedure. The algorithm explores the fact that the
conditional branches will be selected with different probabilities. The
algorithm utilizes the probabilistic information that is collected
through static or dynamic branch profiling. Its objective is to
minimize the mathematical expectation of energy dissipation.

3. Offline and online versions of the CAP algorithm are proposed.
The offline algorithm is a compile time scheduling algorithm while
the online algorithm has very low complexity so that it can be used
with runtime branch prediction for dynamic scheduling.

The experimental results show that, comparing with the
scheduling algorithms presented in [7], the offline and online CAP
algorithms provide an average of 39% and 28% energy saving
respectively.

The rest of this paper is organized as follows. Section II
introduces the application and hardware architecture models. Section
III provides detailed introduction of our scheduling algorithm.
Sections IV and V present the experimental results and conclusions.

II. APPLICATION AND ARCHITECTURE MODELING
The CTG that we are using is similar as the one specified in [7].

A CTG is an acyclic graph <V, E>. Each vertex τ∈V represents a
task. An edge e=(τi, τj) in the graph represents that the task τi must
complete before τj can start. A conditional edge e is associated with a
condition C(e). We use prob(e) to denote the probability that the
condition C(e) is true. The node with output conditional edge is a
branch fork node.

A node can be either and-node or or-node. An and-node is
activated when all its predecessor nodes are completed and the
conditions of the corresponding edges are satisfied. On the other
hand, an or-node is activated when one or more predecessors are
completed and the conditions of the corresponding edges are
satisfied.

The condition that the task τ is activated is denoted as X(τ). The
condition of an and-node τi can be written as ())(),(kikk XC ττττ ∧∧ ,

where τk is the predecessor of τi. The condition of an or-node τj can
be written as ())(),(kjkk XC ττττ ∧∨ , where τk is the predecessor of

τj. A minterm m is a possible combination of all conditions of the
CTG. We use M to denote the set of all possible minterms of a CTG.
A task τ is associated with a minterm m if m⊆X(τ). In another word, a
task τ is associated with a minterm m if X(τ) will be true when m is
evaluated to be 1. The set of minterms with which τ is associated is
denoted as Γ(τ). Two tasks τi and τj are mutually exclusive if they
cannot be activated at the same time, i.e. X(τi) ⊕ X(τj)=0. To simplify
the implementation and discussion, we refer the condition “1” (i.e.
always true) as one of the minterms as well.

The volume of data that pass from one task to another is also
captured by the CTG. Each edge (τi, τj) in the CTG associates with a
value Comm(τi, τj) which gives the communication volume in the
unit of Kbytes. Finally, we assume a periodic graph and use a
common deadline for the entire CTG.

Example 1: Figure 1 shows an example of a CTG. All nodes
except node τ8 are and-nodes. The edges coming out from τ3 and τ5
are conditional edges. The symbol marked beside a conditional edge
gives the condition under which the edge will be activated. For
example C(τ3, τ4) = a1. There are total of 4 minterms in the CTG and
M={1, a1, a2b1, a2b2}. We have }1{)()()(321 =Γ=Γ=Γ τττ ,

}{)(14 a=Γ τ , }{)(25 a=Γ τ , }{)(126 ba=Γ τ , }{)(227 ba=Γ τ and
},1{)(18 a=Γ τ . The execution profile and communication volume are

given beside the CTG. The fact the τ8 is an or-node indicates that if
condition a1 is true then τ8 cannot start until τ2 and τ4 finish and if
condition a1 is false then τ8 does not have to wait for τ4. Note that, in
reality, we do not know weather a1 is true or false until τ3 finishes.
Therefore, in any case, τ8 must wait until both τ2 and τ3 finish. This
example shows an implied dependency between an or-node and the
branch fork node. More detailed discussion will be provided in the
next section.

The following models the architecture of an MPSoC:

• The set of PEs, },...,,{ 21 npppP =

• The energy E(τi, pj) and worst case execution time WCET(τi, pj),
∀τi∈V and ∀pj∈P. These values give the energy and delay of each
task when it is running on different PEs at the nominal VDD.

• The bandwidth B(pi, pj) and transmission energy Etr(pi, pj), ∀pi,
pj∈P. These values specify the bandwidth as well as the
transmission energy per byte of the communication link between pi
and pj. We modeled a point-to-point communication link for our
interconnect network and dedicated communication resource for
each PE. We also assume that the voltage scaling cannot be applied
to the communication tasks.

Figure 1 An example of CTG.

III. PROPOSED SCHEDULING ALGORITHM

A. Offline CAP algorithm

This section provides an insight into the offline version of the
communication aware profile-based (CAP) scheduling algorithm. The
algorithm can be divided into two steps. The first step finds task
mapping and ordering while the second step finds the task starting
time and task speed.

1) Task mapping and ordering
Both online and offline CAP algorithms use the same task

mapping and ordering algorithm. It is based on Dynamic Level based
Scheduling (DLS) proposed by [10]. The DLS algorithm is a list
scheduling algorithm. It considers computation scheduling and
communication scheduling altogether. The ready list is a list of tasks
whose predecessors have been scheduled and mapped. For each task
τi in the candidate list, the dynamic level DL(τi, pj) is calculated using
the following formula:

[])(),,(max)(),(jjiiji pTFpDASLpDL τττ −= , (1)

where pj is one of the processing elements, SL(τi) is the static level of
task τi, which is equal to the longest distance from node τi to any of
the end nodes in the task graph, DA(τi, pj) is the earliest time that all
data required by node τi is available at the jth PE with the
consideration of both computation and communication delay, and
TF(pj) is the time that the last task assigned to the jth PE finishes its
execution. The pair of (τi, pj) which gives the maximum dynamic
level will be selected and the mapping is performed accordingly. The
task is scheduled to be started at the time [])(),,(max jji pTFpDA τ .
After that, the candidate list is updated and the dynamic level of each
task in the candidate list is re-calculated.

In this work, we modified the DLS algorithm to consider the
mutual exclusiveness among conditional tasks and also consider the
probabilistic distribution of branch selection.

The static level SL(τi) is calculated using a dynamic program. The
algorithm starts calculating SL of end nodes first and traversing whole
graph upwards by updating SL of each node. Since we assume
heterogeneous processor environment, we take the average WCET

τ1

τ8

τ3

τ6

τ5

τ2

τ7

a1
a2

b1
b2

prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
comm(τ1, τ2)=1kB
comm(τ2, τ8)=2kB
comm(τ3, τ4)=0.1kB
comm(τ3, τ5)=10kB
comm(τ5, τ6)=0.5kB
comm(τ5, τ7)=0.5kB
comm(τ4, τ8)=0.8kB

Communication
Volume

τ4

τ1

τ8τ8

τ3

τ6τ6

τ5τ5

τ2

τ7τ7

a1
a2

b1
b2

prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
prob(a1)=0.8
prob(a2)=0.2
prob(b1)=0.5
prob(b2)=0.5

Execution Profile
comm(τ1, τ2)=1kB
comm(τ2, τ8)=2kB
comm(τ3, τ4)=0.1kB
comm(τ3, τ5)=10kB
comm(τ5, τ6)=0.5kB
comm(τ5, τ7)=0.5kB
comm(τ4, τ8)=0.8kB

Communication
Volume

τ4τ4

T3 T6 T9

T1 T2 T4 T8

T7
T10T5

10 13 14

Mapping and ordering with probability

T3

T1 T2 T4 T8

T7

T6 T9 T5

T10

Mapping and ordering w/o probability

T3T3 T6T6 T9T9

T1T1 T2T2 T4T4 T8T8

T7T7
T10T5T5

10 13 14

Mapping and ordering with probability

T3

T1 T2 T4 T8

T7

T6 T9 T5

T10

T3T3

T1T1 T2T2 T4T4 T8T8

T7T7

T6T6 T9T9 T5T5

T10

Mapping and ordering w/o probability

(a) Conditional Task Graph (b) GANTT chart of the schedule results

T1

T2 T3

T4

T8T7

T5

T10

T6

T9

2

3 2

2 3 3

1
2 3 4

a1 a2

T1

T2 T3

T4

T8T7

T5

T10

T6

T9

2

3 2

2 3 3

1
2 3 4

a1 a2

(denoted by *WCET) for each task to account for variability in
execution time on different processors.

The static level of a non-branching node is the maximum static
level of its successors plus the *WCET of itself. Let S(τi) be the set of
successor nodes of τi, equation (2) calculates the static level of a non-
branching node.

)(),(max)(*)(ijjii SSLWCETSL τττττ ∈+= (2)
The static level of a branch fork node is the mean of the static

level of all its successors plus the *WCET of itself. Let cij denote the
condition of edge (τi, τj), equation (3) calculates the static level of a
branch fork node.

)(,)(*)()(*)(ijj jijii SSLcprobWCETSL τττττ ∈∑+= (3)

The main idea of our mapping and ordering algorithm is to find
the most critical path in terms of execution cycles for each node while
considering probability of execution for each path. The SL remains
constant for each node once calculated. We also modified the
calculation of Dynamic Level (DL) to account for the mutual
exclusiveness among conditional tasks. The dynamic level of task
processor pair (τi, pj) can be calculated as the following.

),),()(),(jpijpiATiSLjpiDL τδτττ (+−= (4)

The term δ(τi, pj) is the difference between *WCET(τi) and
WCET(τi, pj) which accounts for heterogeneous processor
architecture. Adding this offset ensures correct evaluation of a task’s
DL for different processors since SL is computed using average
WCET. AT(τi, pj) is the earliest time that task τi can start on processor
pj. It must satisfy the following two conditions:

 At time AT(τi, pj) all the data required by τi is available at pj, i.e.
AT(τi, pj) ≥ DA(τi, pj).

 If task τj is scheduled during the interval [),(ji pAT τ ,
),(),(jiji pWCETpAT ττ +], then τj and τi are mutually

exclusive. This condition allows two mutually exclusive tasks to
share the same processor at the same time, and thus making the
schedule more efficient.

Computations and communications could be overlapped
considering the availability of dedicated communication resource.
Multiple data transfers from same node to different nodes are
serialized provided the data values are different.

Our mutual exclusion detection procedure for each task is based
on branch labeling method discussed in [5]. Considering example
CTG of Figure 1 our algorithm detects tasks τ6 and τ7 to be mutually
exclusive. Some other combinations are not mutually exclusive. For
example, when condition a2 is evaluated to be true, both τ8 and τ5 will
be executed, and thus are not mutually exclusive. Our algorithm also
detects the mutual exclusiveness among data transfers.

Figure 2 shows the flow diagram of our task ordering algorithm.
The algorithm begins with the generation of initial ready list which
has all start nodes. For each possible (τi, pj), where τi is one of the
tasks in the ready list, the algorithm calculates the static level and
then finds the best pair that has the highest DL given by (4). Task τi is
then scheduled on pj at time AT(τi, pj). Since the schedule of τi
imposes new precedence order between τi and other tasks that are
scheduled on the same processor, we also update the CTG to reflect
this change. After that, the ready list will be updated and the above
mentioned procedure will repeat until the ready list is empty.

Our algorithm that searches for AT(τi, pj) is similar to the
Find_AvailableTime() routine in [7]. However, in the
Find_AvailableTime() routine, τi will be scheduled immediately after
the first available time is found and the CTG will be updated. Our

algorithm simply returns the first available time without modifying
the CTG because not all τi will be scheduled to its first available time.
We will update the CTG after the best pair of (τi, pj) is selected and
scheduled. The term AT(τi, pj) also captures communication
scheduling. For example, in Figure 1 if τ3 is scheduled before τ2,
comm(τ1, τ3) will be scheduled before comm(τ1, τ2) as the data
transfers from τ1 are serialized.

Figure 2 Task ordering algorithm flow.

 Unlike the algorithm presented in [7], our task mapping and
ordering algorithm is not condition aware. The mapping and ordering
of each task will not change at runtime even if some conditional
branch has been selected. The benefits of using a condition unaware
scheduling algorithm are low computation complexity and less
storage requirement, both of which are essential for online
scheduling. The offline CAP algorithm is overall condition aware
because it uses a condition aware task stretching algorithm. However,
as we will show later, the online algorithm is condition unaware.
Only one speed will be selected for each task and hence the storage of
the scheduling results is simplified.

Another major difference between the proposed algorithm and the
previous works [6][7] is that the proposed algorithm utilizes the
profiled information of the branch probabilities and it reduces the
average schedule length instead of the worst case schedule length.

Figure 3 Considering branching probabilities in task ordering

 Example 2: Consider the CTG given in Figure 3 (a). The WCET
of each task is given beside the circle. The branches a1 and a2 are
taken with probability 0.9 and 0.1. Assume that the system has 2 PEs
and the latency for inter-processor communication is negligible.
Without considering the branching probability, T4 has higher DL than
T5 and it will be mapped to PE1 and T5 will not be scheduled until the
very end. No matter which branch is taken, the overall schedule

Calculate SL for each node
Generate initial ready list R

For each possible (τ i, p j)

Find AT(τ i, pj) and calculate DL (τ i, p j)

Select the pair of highest DL and
perform the mapping and scheduling.

Update the ready list.

Is ready list enpty ?

Update the CTG to reflect the new precedence order

DONE

Calculate SL for each node
Generate initial ready list R
Calculate SL for each node
Generate initial ready list R

For each possible (τ i, p j) For each possible (τ i, p j)

Find AT(τ i, pj) and calculate DL (τ i, p j)Find AT(τ i, pj) and calculate DL (τ i, p j)

Select the pair of highest DL and
perform the mapping and scheduling.

Select the pair of highest DL and
perform the mapping and scheduling.

Update the ready list. Update the ready list.

Is ready list enpty ? Is ready list empty?

Update the CTG to reflect the new precedence orderUpdate the CTG to reflect the new precedence order

DONE

NO

length is 13. With the branching probability, T5 has higher DL than
T4. Therefore, it is mapped to PE1 before T4. The schedule length is
10 or 14 depending on whether the branch a1 or a2 is taken.
Therefore, the average schedule length is 10.4. The reduced schedule
length will be transformed to energy saving using task stretching.
Table 3 (b) shows the GANTT chart of the schedule results with or
without considering the profile information.

2) Task stretching
The task stretching routine finds the best starting time and speed

of each task that minimizes energy while meeting the performance
constraints. The problem is formulated and solved as a constrained
linear program. The task stretching algorithm consists of three steps:

Step1: Preprocess the CTG to capture the implied control
dependency between the or-node and its related branch fork nodes.
As example 1 shows, the precedence requirements of an or-node is
unknown until all of its related branch fork nodes have finished.
Therefore, for an or-node τi and a condition c, if c is one of the literals
in Γ(τi) and τj is the branch fork node of c, then an edge (τj, τi) must
be inserted into the CTG.

Step 2: Duplicate the task graph. For each minterm m∈M, a task
graph Gm=(Vm, Em) is created based on the CTG. A task τi∈Vm, if τi is
activated when m is true, i.e. m⊕X(τi)≠0. For two nodes τi and τj in
Vm, if there is an edge (τi, τj) in the original CTG, then the same edge
will be added in Gm.

Step 3: Formulate and solve the task stretching problem as a
linear program (LP). For each task τ and a minterm)(τΓ∈m , two
variables)(mτσ and)(mfτ are defined. They represent the start time
and speed of τ respectively when minterm m is true. The task
stretching problem can be formulated into the following linear
program:

∑ ∑
≠∈ ∈1,

2)(
),()(min

mMm Vm
mF
pEmprob

τ τ

ττ s.t. (5)

)(
),(

),(

)(

),(
)(m

ppB

Comm

mF

pWCET
m j

ji

ji

i

ii
i τ

τττ

τ
τ σ

τττ
σ ≤++ ,

mjimji EVmMm ∈∈∀≠∈∀),(and ,,1, ττττ (6)

deadline
mF

pWCET
m

i

ii
i ≤+

)(
),(

)(
τ

τ
τ

τ
σ ,

mi VmMm ∈∀≠∈∀ τ,1, . (7)

In the above equations, pτ is the processor that task τ is mapped
to. prob(m) is the probability that minterm m is true. It can be
calculated based on the branch probability. The
symbol)(mFτ is)(mfτ , if)(τΓ∈m ; otherwise, it is)'(mfτ , where

)(' τΓ∈m and 0' ≠⊕mm .

Equation (5) specifies that the objective of the LP is to minimize
the mathematical expectation of the energy dissipation. Equation (6)
and (7) specify the precedence constraints and deadline constraints of
the tasks.

Example 2: Consider the CTG given in Figure 1. Because
},1{)(18 a=Γ τ and the branch fork node of condition a1 is τ3, the

edge (τ3, τ8) is inserted to represent the control dependency between
the or-node τ8 and the branch fork node τ3. Then for each minterm in
M a task graph is generated, which consists of only the nodes that will
be activated in the corresponding minterm. Figure 4 (a)~(c) show the

new task graphs. The probabilities of minterms are: prob(a1)=0.8,
prob(a2b1)=0.1, and prob(a2b2)=0.1.

The LP has 18 variables:

 σ1(1), f1(1), σ2(1), f2(1), σ3(1) and f3(1) are the start time and
speed of task τ1~τ3. They do not depend on which condition
branch is selected.

 σ4(a1) and f4(a1) are the start time and speed of task τ4 when
branch a1 is selected.

 σ5(a2) and f5(a2) are the start time and speed of task τ5 when
branch a2 is selected.

 σ6(a2b1) and f6(a2b1) are the start time and speed of task τ6 when
branch a2 and b1 are both selected.

 σ7(a2b2) and f7(a2b2) are the start time and speed of task τ7 when
branch a2 and b2 are both selected.

 σ8(a1) and f8(a1) are the start time and speed of task τ8 when
branch a1 is selected while σ8(1) and f8(1) are the start time and
speed of task τ8 when branch a2 is selected.

Based on the definition of Fτ(m), the symbol Fτ8(a1), in equation
(5)~(6) will be replaced by fτ8(a1), while Fτ8(a2b1) and Fτ8(a2b2) will
be replaced by fτ8(1).

Figure 4 Task graph duplication.

B. Online CAP algorithm

Although solving a constrained linear program is a tractable
problem, it is still time consuming. As we show in our experimental
results, the runtime of the algorithm is significantly high especially
for the graphs with many nodes.

As an alternative solution to the stretching problem we suggest a
heuristic which performs task stretching with negligible runtime at
the reasonable loss of energy saving compared to offline CAP
algorithm. The heuristic is based on critical path based slack
distribution algorithm considering conditional execution and is
similar to the one proposed in [6]. However, there are few noteworthy
changes. 1) The DVS techniques suggested in [6] and [7] have
multiple speeds for a single task corresponding to different minterms.
Therefore, the algorithms have a high complexity and a large
schedule table is needed to store the stretching information. 2) The
technique in [6] applies same stretching ratio at a time to all PEs,
which is suboptimal. 3) The task stretching algorithm in [6] does not
consider the branch probabilities. Unlike these techniques, our
heuristic algorithm is an online approach in that it does not
necessitate a schedule table to store the stretching information and use
it at runtime. It is a profile-based approach considering branch
probabilities. It calculates only single speed for each task and it can
facilitate different scaling ratio for different PEs. Since the heuristic
has very low complexity, the whole online CAP algorithm including
task ordering and stretching can be called iteratively during runtime
when branch probability changes significantly.

Once the CTG is updated, all possible paths in CTG are
calculated using Breadth First Search (BFS) algorithm. Also
associated with each path p is the slack and delay which are denoted

(a) m=a1 (b) m=a2b1 (c) m=a2b2

τ1

τ8

τ3τ2

τ4

τ1

τ8τ8

τ3τ2

τ4τ4

τ1

τ8

τ3

τ6

τ5

τ2

τ1

τ8τ8

τ3

τ6τ6

τ5τ5

τ2

τ1

τ8

τ3

τ5

τ2

τ7

b2

τ1

τ8τ8

τ3

τ5τ5

τ2

τ7τ7

b2

Online CAP task stretching heuristic for CTG G
1. Process initial schedule generated by task ordering algorithm

shown in Figure 2
2. Calculate possible paths in CTG using BFS;
3. For each task τi {
4. CalculateSlack (τi);
5. Stretch τi , lock its schedule and speed;
6. Update the delay and slack of all paths spanning τi ;
7. Update the schedule for CTG G;
 }
CalculateSlack (τi)

1. For each minterm m ∈Γ(τi) {
2. For all paths of m ∈Γ(τi) that span node τi {
3. Find the critical path pworst where prob(pworst, τi) ≠ 1
4. slk1+= prob(pworst,τi) * wcet(τi) *(slk(pworst) / delay(pworst)) *

prob(τi);
 }
 }
5. For each path of m ∈Γ(τi) where prob(m) = 1
6. Find the critical path tworst ;
7. slk2 = wcet(τi) * (slk(tworst) / delay(tworst)) * prob(τi);
8. slk(τi) = min [slk1, slk2];
9. If there is a path p that spans nodeτi and slk(τi)>deadline-delay(p)
10. slk(τi)=deadline-delay(p);

as slk(p) and delay(p) respectively. Associated with each task τ on
path p, there is a probability prob(p, τ), which gives the probability of
path p given the condition that task τ is started. prob(p, τ) is
calculated as the joint probability of all the conditional branches lying
on the path after node τ. For example, consider the example in Figure
1, the probability prob(τ1-τ3-τ5-τ6, τ5)=prob(b1)=0.5 because the only
conditional branch along the path τ1-τ3-τ5-τ6 after node τ5 is b1.

Figure 5 Online CAP task stretching heuristic.

For each task, step4 in Figure 5 determines the available slack by
calling CalculateSlack(τi) routine. This routine finds the most critical
path that has a minimum slack applicable to task τi. In case of
multiple paths pertaining to different minterms with probabilities less
than 1, first the critical path that has the lowest distributable slack
ratio (slk(p)/delay(p)) and has the probability less than 1 is identified
for each minterm. After that the initial slack of τi is taken as a
probability weighted sum of all these critical path slacks
corresponding to each minterm m∈Γ(τi) as shown in step 4 of routine.
Note that the weight for each path is prob(p, τi), which is the
probability of path p given the condition that task τi is started. One
more slack value is calculated as shown in step 7 for critical path with
probability equal to 1. It is noteworthy that both slack values are
further weighted by the activation probability of node τi. More slack
will be allocated to the task that has higher probability to be activated.
The slack of τi is now minimum of these two slack values. Because
the slack is the average for all possible minterms, at the end of the
routine, we need to check for each path that the deadline can be met
otherwise, the slack will be adjusted.

Once slack is calculated for a task, the task is stretched and its
schedule and speed are locked. Next, all paths that span this task are
updated in terms of their respective delay and slack. Updating these
variables dynamically alters the criticality of paths for different nodes
and subsequently releasing the tasks, that have been stretched, from
consideration. The online CAP algorithm then updates CTG and
repeats the above mentioned procedure for another task following the
task order generated by offline CAP.

Given a CTG with total nodes |V| and edges |E|, the time
complexity of the online stretching heuristic (derivation not shown
here due to space limitation) is O (2|V|3 + C|V| + |E|) where constant C
is an upper bound on number of outgoing edges from a node. This

low complexity enables the algorithm to be used for dynamic
scheduling in a system with the capability of runtime branch
prediction.

IV. EXPERIMENTAL RESULTS

Simulations have been carried out to evaluate the efficiency of
the proposed algorithm. Six scheduling algorithms are evaluated in
the experiments. They are: offline CAP, CAP w/o PM (offline CAP
without profile-based mapping), CAP w/o PS (offline CAP without
profile-based stretching), online CAP w/o PM, online CAP and
Reference algorithm. We implemented the scheduling algorithm in
[7] according to the best of our ability and denote it as Reference
algorithm. The Reference scheduling does not consider profile
information in task ordering and it assumes fixed task mapping. Table
1 summarizes the characteristics of the 6 scheduling algorithms. For
all the experiments, we consider the execution of the CTG as a
random process and we report the mathematical expectation of energy
dissipation.

Table 1 Difference of the evaluated scheduling algorithms.
Task ordering Task stretching

Algorithm Profile
based

Condition
aware

Profile
based

Condition
aware

Flexible
mapping

Offline CAP X X X X
CAP w/o PM X X X
CAP w/o PS X X X

Online CAP w/o PM X X
Online CAP X X X
Reference X X X

Firstly, a real life example of a vehicle cruise controller system
[12] is experimented for different algorithms. This application is
modeled as a CTG with 32 tasks and two branching nodes, each of
them forking two conditions. The original cruise control model in
[12] did not have probability information, so it is assigned randomly
in our experiment. We tested this CTG with fix mapping and no
communication between tasks. The application is mapped on five
different PEs. The schedule length of 124ms reported by CAP was
same as Reference algorithm and the best length reported in [12]. The
energy consumption is 102 mJ for both CAP offline and online and
same for the Reference algorithm. The results favor the CAP online
approach for this application due to its low complexity and equal
energy compared to other algorithms.

Next, five test cases are randomly created with different CTGs
and different MPSoC architecture. The CTGs are modified from the
random task graphs generated by TGFF [11]. The MPSoC
architecture consists of either 3 or 4 PEs.

Table 2 Fixed mapping and zero communication cost.

CTG a/b/c Offline
CAP

CAP w/o
PS

Online
CAP Reference

1 25/3/3 596 1414 723 874
2 16/3/1 591 769 641 568
3 15/4/2 223 490 292 215
4 15/4/1 386 630 497 386
5 25/4/3 285 1075 498 501

The first experiment focuses on demonstrating the effectiveness
of our task ordering algorithm. The same fixed task mapping is used
in both Reference and CAP algorithms. The communication cost is
also set to be 0. Table 2 shows the energy dissipation of different
scheduling algorithms. Second column of Table 2 displays the
characteristics of the CTGs we used. We use a triplet (a/b/c) to
characterize a test case where a represents the number of nodes in the
CTG, b represents the number of PEs in the MPSoC and c represents
the number of conditional branching nodes in the CTG. These five

CTG IDs shown in column 1 are used to report results for all
experiments in rest of this paper. In average, the CAP has 13%
energy reduction over the reference scheduling and 49% energy
reduction over the CAP w/o PS. The online CAP has 11% more
energy than the Reference algorithm. This is expected since the
potential of the DLS based algorithm is known to unfold with flexible
mapping.

The second experiment focuses on demonstrating the
effectiveness of our task mapping algorithm. In this experiment, the
CAP based algorithms perform task mapping together with task
ordering. The communication cost is again set to 0. Table 3 shows the
energy dissipation of different scheduling algorithms. As we can see,
with flexible task mapping, the offline CAP gives more than 43%
energy reduction over the Reference algorithm. The improvement is
more significant than the first experiment. The difference between
offline CAP versus CAP w/o PS is now 46%. The online CAP has an
average of 39% of energy reduction over the Reference algorithm.
Compared to offline CAP, the online CAP has 8% more energy
dissipation. Average energy dissipation of offline CAP and CAP w/o
PM is almost same while online CAP has 7% less energy than online
CAP w/o PM. This is because offline CAP tries to allocate slack
based on critical path while online CAP stretching heuristic calculates
slack based on average path length.

Table 3 Flexible mapping and zero communication cost.

CTG Offline
CAP

CAP w/o
PS

CAP w/o
PM

Online
CAP w/o

PM

Online
CAP Reference

1 389 1014 382 459 449 874
2 365 498 365 393 393 568
3 158 339 144 187 166 215
4 252 353 260 325 277 386
5 167 422 160 183 173 501

Table 4 shows the comparison of runtime between the offline
CAP and online CAP. Note that the unit of the runtime for offline
CAP is second while the unit for the online CAP is millisecond. The
average speedup of the online CAP is 120,000X. Although the time
reported here includes task ordering, mapping and stretching, because
both the online and offline algorithms use the same task
ordering/mapping routine, the difference in runtime comes only from
task stretching step.

Table 4 Comparison of runtime.
CTG 1 2 3 4 5

Offline CAP (sec) 72.69 66.41 37.06 24.11 147.28
Online CAP (msec) 1.26 0.59 0.37 0.31 0.58

Table 5 Flexible mapping and non-zero communication cost.

CTG Offline
CAP

CAP w/o
PS

CAP w/o
PM

Online
CAP w/o

PM

Online
CAP Reference

1 422 1146 487 534 508 1396
2 374 522 441 469 404 1206
3 194 592 237 225 211 356
4 413 615 455 546 469 805
5 218 620 254 250 242 777

The last experiment focuses on demonstrating the communication
aware capability of our algorithm. In this experiment, we generate the
communication volume from a node to its successor based on
Computation to Communication ratio (CCR).For this experiment, we
chose a value of CCR=1 with some variance (10%) to model data
transfer from a node to multiple nodes. Table 5 shows the energy
dissipation of different scheduling algorithms. Since the
communication cost is non-zero, we can see that the energy
dissipation for all test cases increases. However, the energy reduction

of the offline CAP scheduling over the Reference scheduling also
increases compared with previous two experiments. The average
energy reduction is now 60%. The differences between offline CAP
versus CAP w/o PS increases to 51% in this case. The online CAP
has an average of 56% energy reduction than the Reference
algorithm. Compared to offline CAP, the online CAP has 12% more
energy dissipation. The offline CAP has now 14% less energy than
CAP w/o PM and the improvement of online CAP over online CAP
w/o PM increases to 8%.

V. CONCLUSIONS
Online and offline algorithms are proposed that perform

simultaneous task mapping and ordering followed by task stretching
of a conditional task graph (CTG). The algorithms minimize the
mathematical expectation of energy dissipation of non-deterministic
applications with random branch selection by utilizing the task
execution profile. Both communication and computing energy are
reduced in the scheduled result. The experimental results show that,
comparing with the previous scheduling algorithm, our offline
algorithms give more than 39% energy reduction in average. The
online algorithm gives more than 28% energy reduction in average
with a speed up of 120,000X over offline algorithm. Our future
efforts target a development of an adaptive version of CAP online
algorithm that can fit the changing runtime system conditions and
utilize the low complexity of CAP. Considering contentions inside
communication network would also be an interesting analysis.

REFERENCES
[1] J. Luo and N. K. Jha, “Static and Dynamic Variable Voltage Scheduling

Algorithms for Real-time Heterogeneous Distributed Embedded
Systems,” Proceeding Of International Conference on VLSI Design,
pp.719-726, 2002.

[2] Y. Zhang, X. Hu, and D. Z. Chen, “Task Scheduling and Voltage
Selection for Energy Minimization,” In Proc. Of Design Automation
Conference, pp.183-188, 2002.

[3] J. Hu and R. Marculescu, “Energy-Aware Communication and Task
Scheduling for Network-on-Chip Architectures under Real-Time
Constraints,” Proceeding of Conference and Exhibition on Design,
Automation and Test in Europe, 2004.

[4] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Scheduling of
Conditional Process graphs for the Synthesis of Embedded Systems,”
Proceedings of Design, Automation and Test in Europe, 1998.

[5] Y. Xie and W. Wolf, “Allocation and Scheduling of Conditional Task
Graph in Hardware/Software Co-synthesis,” Proceedings of
Conference and Exhibition on Design, Automation and Test in Europe,
2001.

[6] D. Wu, B.M. Al-Hashimi and P. Eles, “Scheduling and Mapping of
Conditional Task Graph for the Synthesis of Low Power embedded
Systems,” IEE Proceedings of Computers and Digital Techniques,
Volume 150, Issue 5, pp. 262-273, Sept. 2003.

[7] D. Shin and J. Kim, “Power-Aware Scheduling of Conditional Task
Graphs in Real-Time Multiprocessor Systems,” Proceedings of
International Symposium on Low Power Electronics and Design, 2003.

[8] E. Jacobsen, E. Rotenberg, and J.E. Smith, “Assigning confidence to
conditional branch predictions,” Proceedings of the 29th Annual
International Symposium on Microarchitecture, Nov. 1996.

[9] A. K. Uht and V. Sindagi, ‘‘Disjoint Eager Execution: An Optimal
Form of Speculative Execution,’’ Proceedings of the 28th Annual
International Symposium on Microarchitecture, Nov. 1995.

[10] G.C. Sih and E.A. Lee. “A Compile Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architecture,”
IEEE Transactions on Parallel and Distributed Systems, Volume 4,
Issue 2, Page(s):175 – 187, Feb. 1993.

[11] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”
Proc. of Int. Workshop Hardware/Software Codesign, Mar. 1998.

[12] Paul Pop, "Scheduling and communication synthesis for distributed
real-time systems", Ph.D. thesis, Linkopings University,2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

