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Abstract — In this paper, we focus on power optimization of 
real-time applications with conditional execution running on a 
dynamic voltage scaling (DVS) enabled multiprocessor system. 
The targeted system consists of heterogeneous processing 
elements with non-negligible inter-processor communication 
delay and energy. Given a conditional task graph (CTG), we 
have developed novel online and offline algorithms that perform 
simultaneous task mapping and ordering followed by task 
stretching. Both algorithms minimize the mathematical 
expectation of energy dissipation of non-deterministic 
applications by considering the probabilistic distribution of 
branch selection. Compared with existing CTG scheduling 
algorithms, our online and offline scheduling algorithms reduce 
energy by 28% and 39% in average, respectively.  

I. INTRODUCTION  
Multiprocessor System-on-Chip (MPSoC) is becoming a major 

system design platform for general purpose and real-time 
applications, due to its advantages in low design cost and high 
performance. Minimizing the power consumption is one of the major 
issues in designing battery operated MPSoC. One of the widely used 
power reduction technique is Dynamic Voltage Scaling (DVS), which 
allows the processor to dynamically alter its speed and voltage at run 
time to trade power for performance.  

In a multiprocessor system, the mapping and ordering of tasks 
changes the task slack time, i.e. the intervals when a processing 
element (PE) is idle, and hence have a significant impact on the 
efficiency of DVS. As the system complexity grows, the latency and 
energy of inter-processor communication increases. A holistic 
technique must be developed for task mapping, ordering and 
stretching to reduce both communication and computation energy. 

Many of the real-time applications are non-deterministic. The 
application is divided into several tasks. Some tasks are activated 
only if certain conditions evaluated by previously executed tasks are 
true. A conditional task graph (CTG) [4]~[7] captures such relation 
and hence enables us to model more general application.  

Although conditional branch prediction is a common practice in 
high performance processors, the prediction will not be perfect. 
Furthermore, the task graphs that we are working with are high level 
descriptions of large applications. Their selection of conditional 
branches depends mostly on the input data, which are random. 
Techniques that dynamically assign confidence levels [8] or 
probabilities [9] to the conditional branches have been proposed by 
previous research works. 

In this work, we propose a set of communication aware and 
profile-based (CAP) scheduling algorithms for CTG on a DVS 
enabled multiprocessor system. The targeted system has a set of 
heterogeneous PEs, such as DSPs, FPGAs or ASICs, that are 
connected by interconnect network. The energy and delay for inter-
PE communication is not negligible. Each PE has DVS capability. 
We assume that the branch probabilities are available through static 
or dynamic branch profiling. 

Online and offline CAP scheduling algorithms are presented in 
this paper. They consider task mapping, task ordering and task 
stretching altogether to minimize energy dissipation and also satisfy 
the performance constraint. The task mapping and task ordering are 
performed simultaneously and their goal is to minimize the inter-
processor communication and maximize the task slack. The task 
stretching algorithm finds the best speed and starting time for each 
task so that the computing energy is minimized. The algorithms 
consider the branch probabilities and they minimize the mathematical 
expectation of energy dissipation.  

The offline CAP algorithm formulates and solves the task 
stretching problem as a linear programming (LP) problem which is 
time consuming. The online CAP algorithm replaces the LP based 
algorithm with a heuristic algorithm. Experimental results show that 
compared with the offline algorithm, the online CAP heuristic is 
120,000X faster and almost as effective as offline CAP.   

Many techniques have been proposed that consider the task 
mapping and ordering for DVS [1]~[3]. However, these algorithms 
only consider traditional data-flow graph without conditional 
execution. One of the major characteristic of CTG is that some tasks 
are mutually exclusive. These tasks can be mapped to the same PE at 
the same time. Reference [4] and [5] consider scheduling and 
mapping for CTG, however, they do not minimize energy dissipation. 
Wu et al. [6] proposed an algorithm for task ordering and stretching 
of CTGs running on a DVS enabled system. They search for the 
optimal task mapping using genetic algorithm (GA). The proposed 
algorithm provides a complete solution for power optimization of 
CTGs. However, it does not consider the branch probabilities. An 
implied assumption of this technique is that all the conditional 
branches will be selected with equal probability. Furthermore, the GA 
based task mapping algorithm has high complexity because the inner 
loop of this algorithm needs to perform the task ordering and 
stretching of the entire CTG. Shin et al. [7] proposed an algorithm for 
task ordering and stretching of CTG which considers the run-time 
behavior. They refer this approach as condition aware scheduling. 
Under condition aware scheduling, a task has different start time and 
speed for different combinations of possible branch selections. 
Therefore, a large table is needed to store the scheduling result. The 
probabilistic distribution of the branch selections is considered only 
during task stretching. Another limitation of this algorithm is that it 
takes task mapping as a fixed input so that the communication 
overhead cannot be considered.  

The characteristics of the proposed CAP algorithms are described 
as follows. 

1. The proposed algorithms consider task mapping, ordering and 
task stretching altogether for energy reduction. 

2. We consider the application with conditional execution as a 
random procedure. The algorithm explores the fact that the 
conditional branches will be selected with different probabilities. The 
algorithm utilizes the probabilistic information that is collected 
through static or dynamic branch profiling. Its objective is to 
minimize the mathematical expectation of energy dissipation. 



3. Offline and online versions of the CAP algorithm are proposed. 
The offline algorithm is a compile time scheduling algorithm while 
the online algorithm has very low complexity so that it can be used 
with runtime branch prediction for dynamic scheduling.  

The experimental results show that, comparing with the 
scheduling algorithms presented in [7], the offline and online CAP 
algorithms provide an average of 39% and 28% energy saving 
respectively.  

The rest of this paper is organized as follows. Section II 
introduces the application and hardware architecture models. Section 
III provides detailed introduction of our scheduling algorithm. 
Sections IV and V present the experimental results and conclusions.  

II. APPLICATION AND ARCHITECTURE MODELING 
The CTG that we are using is similar as the one specified in [7]. 

A CTG is an acyclic graph <V, E>. Each vertex τ∈V represents a 
task. An edge e=(τi, τj) in the graph represents that the task τi must 
complete before τj can start. A conditional edge e is associated with a 
condition C(e). We use prob(e) to denote the probability that the 
condition C(e) is true. The node with output conditional edge is a 
branch fork node. 

A node can be either and-node or or-node. An and-node is 
activated when all its predecessor nodes are completed and the 
conditions of the corresponding edges are satisfied. On the other 
hand, an or-node is activated when one or more predecessors are 
completed and the conditions of the corresponding edges are 
satisfied. 

The condition that the task τ is activated is denoted as X(τ). The 
condition of an and-node τi can be written as ( ))(),( kikk XC ττττ ∧∧ , 

where τk is the predecessor of τi. The condition of an or-node τj can 
be written as ( ))(),( kjkk XC ττττ ∧∨ , where τk is the predecessor of 

τj.  A minterm m is a possible combination of all conditions of the 
CTG. We use M to denote the set of all possible minterms of a CTG. 
A task τ is associated with a minterm m if m⊆X(τ). In another word, a 
task τ is associated with a minterm m if X(τ) will be true when m is 
evaluated to be 1. The set of minterms with which τ is associated is 
denoted as Γ(τ). Two tasks τi and τj are mutually exclusive if they 
cannot be activated at the same time, i.e. X(τi) ⊕ X(τj)=0. To simplify 
the implementation and discussion, we refer the condition “1” (i.e. 
always true) as one of the minterms as well. 

The volume of data that pass from one task to another is also 
captured by the CTG. Each edge (τi, τj) in the CTG associates with a 
value Comm(τi, τj) which gives the communication volume in the 
unit of Kbytes. Finally, we assume a periodic graph and use a 
common deadline for the entire CTG. 

Example 1: Figure 1 shows an example of a CTG. All nodes 
except node τ8 are and-nodes. The edges coming out from τ3 and τ5 
are conditional edges. The symbol marked beside a conditional edge 
gives the condition under which the edge will be activated. For 
example C(τ3, τ4) = a1. There are total of 4 minterms in the CTG and 
M={1, a1, a2b1, a2b2}. We have }1{)()()( 321 =Γ=Γ=Γ τττ , 

}{)( 14 a=Γ τ , }{)( 25 a=Γ τ , }{)( 126 ba=Γ τ , }{)( 227 ba=Γ τ  and 
},1{)( 18 a=Γ τ . The execution profile and communication volume are 

given beside the CTG. The fact the τ8 is an or-node indicates that if 
condition a1 is true then τ8 cannot start until τ2 and τ4 finish and if 
condition a1 is false then τ8 does not have to wait for τ4. Note that, in 
reality, we do not know weather a1 is true or false until τ3 finishes. 
Therefore, in any case, τ8 must wait until both τ2 and τ3 finish. This 
example shows an implied dependency between an or-node and the 
branch fork node. More detailed discussion will be provided in the 
next section. 

The following models the architecture of an MPSoC: 

• The set of PEs, },...,,{ 21 npppP =  

• The energy E(τi, pj) and worst case execution time WCET(τi, pj), 
∀τi∈V and  ∀pj∈P. These values give the energy and delay of each 
task when it is running on different PEs at the nominal VDD. 

• The bandwidth B(pi, pj) and transmission energy Etr(pi, pj), ∀pi, 
pj∈P. These values specify the bandwidth as well as the 
transmission energy per byte of the communication link between pi 
and pj. We modeled a point-to-point communication link for our 
interconnect network and dedicated communication resource for 
each PE. We also assume that the voltage scaling cannot be applied 
to the communication tasks. 

 

 

 

 

 

 

Figure 1 An example of CTG. 

III. PROPOSED SCHEDULING ALGORITHM 

A. Offline CAP algorithm 

This section provides an insight into the offline version of the 
communication aware profile-based (CAP) scheduling algorithm. The 
algorithm can be divided into two steps. The first step finds task 
mapping and ordering while the second step finds the task starting 
time and task speed.  

1) Task mapping and ordering 
Both online and offline CAP algorithms use the same task 

mapping and ordering algorithm. It is based on Dynamic Level based 
Scheduling (DLS) proposed by [10]. The DLS algorithm is a list 
scheduling algorithm. It considers computation scheduling and 
communication scheduling altogether. The ready list is a list of tasks 
whose predecessors have been scheduled and mapped. For each task 
τi in the candidate list, the dynamic level DL(τi, pj) is calculated using 
the following formula: 

[ ])(),,(max)(),( jjiiji pTFpDASLpDL τττ −= ,       (1) 

where pj is one of the processing elements, SL(τi) is the static level of 
task τi, which is equal to the longest distance from node τi to any of 
the end nodes in the task graph, DA(τi, pj) is the earliest time that all 
data required by node τi is available at the jth PE with the 
consideration of both computation and communication delay, and 
TF(pj) is the time that the last task assigned to the jth PE finishes its 
execution. The pair of (τi, pj) which gives the maximum dynamic 
level will be selected and the mapping is performed accordingly. The 
task is scheduled to be started at the time [ ])(),,(max jji pTFpDA τ . 
After that, the candidate list is updated and the dynamic level of each 
task in the candidate list is re-calculated.  

In this work, we modified the DLS algorithm to consider the 
mutual exclusiveness among conditional tasks and also consider the 
probabilistic distribution of branch selection.  

The static level SL(τi) is calculated using a dynamic program. The 
algorithm starts calculating SL of end nodes first and traversing whole 
graph upwards by updating SL of each node. Since we assume 
heterogeneous processor environment, we take the average WCET 
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(denoted by *WCET) for each task to account for variability in 
execution time on different processors.  

The static level of a non-branching node is the maximum static 
level of its successors plus the *WCET of itself. Let S(τi) be the set of 
successor nodes of τi, equation (2) calculates the static level of a non-
branching node. 

)(),(max)(*)( ijjii SSLWCETSL τττττ ∈+=                   (2) 
The static level of a branch fork node is the mean of the static 

level of all its successors plus the *WCET of itself. Let cij denote the 
condition of edge (τi, τj), equation (3) calculates the static level of a 
branch fork node. 

)(   ,)(*)()(*)( ijj jijii SSLcprobWCETSL τττττ ∈∑+=                 (3) 

The main idea of our mapping and ordering algorithm is to find 
the most critical path in terms of execution cycles for each node while 
considering probability of execution for each path. The SL remains 
constant for each node once calculated. We also modified the 
calculation of Dynamic Level (DL) to account for the mutual 
exclusiveness among conditional tasks. The dynamic level of task 
processor pair (τi, pj) can be calculated as the following. 

),),()(),( jpijpiATiSLjpiDL τδτττ (+−=                               (4) 

The term δ(τi, pj) is the difference between *WCET(τi) and 
WCET(τi, pj) which accounts for heterogeneous processor 
architecture. Adding this offset ensures correct evaluation of a task’s 
DL for different processors since SL is computed using average 
WCET. AT(τi, pj) is the earliest time that  task τi can start on processor 
pj. It must satisfy the following two conditions: 

 At time AT(τi, pj)  all the data required by τi is available at pj, i.e. 
AT(τi, pj)  ≥ DA(τi, pj). 

 If task τj is scheduled during the interval [ ),( ji pAT τ , 
),(),( jiji pWCETpAT ττ + ], then τj and τi are mutually 

exclusive. This condition allows two mutually exclusive tasks to 
share the same processor at the same time, and thus making the 
schedule more efficient.  

Computations and communications could be overlapped 
considering the availability of dedicated communication resource. 
Multiple data transfers from same node to different nodes are 
serialized provided the data values are different. 

Our mutual exclusion detection procedure for each task is based 
on branch labeling method discussed in [5]. Considering example 
CTG of Figure 1 our algorithm detects tasks τ6 and τ7 to be mutually 
exclusive. Some other combinations are not mutually exclusive. For 
example, when condition a2 is evaluated to be true, both τ8 and τ5 will 
be executed, and thus are not mutually exclusive. Our algorithm also 
detects the mutual exclusiveness among data transfers. 

Figure 2 shows the flow diagram of our task ordering algorithm. 
The algorithm begins with the generation of initial ready list which 
has all start nodes. For each possible (τi, pj), where τi is one of the 
tasks in the ready list, the algorithm calculates the static level and 
then finds the best pair that has the highest DL given by (4). Task τi is 
then scheduled on pj at time AT(τi, pj). Since the schedule of τi 
imposes new precedence order between τi and other tasks that are 
scheduled on the same processor, we also update the CTG to reflect 
this change. After that, the ready list will be updated and the above 
mentioned procedure will repeat until the ready list is empty.  

Our algorithm that searches for AT(τi, pj) is similar to the 
Find_AvailableTime() routine in [7]. However, in the 
Find_AvailableTime() routine, τi will be scheduled immediately after 
the first available time is found and the CTG will be updated. Our 

algorithm simply returns the first available time without modifying 
the CTG because not all τi will be scheduled to its first available time. 
We will update the CTG after the best pair of (τi, pj) is selected and 
scheduled. The term AT(τi, pj) also captures communication 
scheduling. For example, in Figure 1 if τ3 is scheduled before τ2, 
comm(τ1, τ3) will be scheduled before comm(τ1, τ2) as the data 
transfers from τ1 are serialized. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 Task ordering algorithm flow. 

 Unlike the algorithm presented in [7], our task mapping and 
ordering algorithm is not condition aware. The mapping and ordering 
of each task will not change at runtime even if some conditional 
branch has been selected. The benefits of using a condition unaware 
scheduling algorithm are low computation complexity and less 
storage requirement, both of which are essential for online 
scheduling. The offline CAP algorithm is overall condition aware 
because it uses a condition aware task stretching algorithm. However, 
as we will show later, the online algorithm is condition unaware. 
Only one speed will be selected for each task and hence the storage of 
the scheduling results is simplified. 

Another major difference between the proposed algorithm and the 
previous works [6][7] is that the proposed algorithm utilizes the 
profiled information of the branch probabilities and it reduces the 
average schedule length instead of the worst case schedule length.  

 

 

 

 

Figure 3 Considering branching probabilities in task ordering  

 Example 2: Consider the CTG given in Figure 3 (a). The WCET 
of each task is given beside the circle. The branches a1 and a2 are 
taken with probability 0.9 and 0.1. Assume that the system has 2 PEs 
and the latency for inter-processor communication is negligible. 
Without considering the branching probability, T4 has higher DL than 
T5 and it will be mapped to PE1 and T5 will not be scheduled until the 
very end. No matter which branch is taken, the overall schedule 
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length is 13. With the branching probability, T5 has higher DL than 
T4. Therefore, it is mapped to PE1 before T4. The schedule length is 
10 or 14 depending on whether the branch a1 or a2 is taken. 
Therefore, the average schedule length is 10.4. The reduced schedule 
length will be transformed to energy saving using task stretching. 
Table 3 (b) shows the GANTT chart of the schedule results with or 
without considering the profile information. 

2) Task stretching 
The task stretching routine finds the best starting time and speed 

of each task that minimizes energy while meeting the performance 
constraints. The problem is formulated and solved as a constrained 
linear program. The task stretching algorithm consists of three steps:  

Step1: Preprocess the CTG to capture the implied control 
dependency between the or-node and its related branch fork nodes. 
As example 1 shows, the precedence requirements of an or-node is 
unknown until all of its related branch fork nodes have finished. 
Therefore, for an or-node τi and a condition c, if c is one of the literals 
in Γ(τi) and τj is the branch fork node of c, then an edge (τj, τi) must 
be inserted into the CTG. 

Step 2: Duplicate the task graph. For each minterm m∈M, a task 
graph Gm=(Vm, Em) is created based on the CTG. A task τi∈Vm, if τi is 
activated when m is true, i.e. m⊕X(τi)≠0. For two nodes τi and τj in 
Vm, if there is an edge (τi, τj) in the original CTG, then the same edge 
will be added in Gm.  

Step 3: Formulate and solve the task stretching problem as a 
linear program (LP). For each task τ and a minterm )(τΓ∈m , two 
variables )(mτσ and )(mfτ are defined. They represent the start time 
and speed of τ respectively when minterm m is true. The task 
stretching problem can be formulated into the following linear 
program: 

∑ ∑
≠∈ ∈1,

2)(
),()(min

mMm Vm
mF
pEmprob

τ τ

ττ   s.t.                              (5) 
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In the above equations, pτ is the processor that task τ is mapped 
to. prob(m) is the probability that minterm m is true. It can be 
calculated based on the branch probability. The 
symbol )(mFτ is )(mfτ , if )(τΓ∈m ; otherwise, it is )'(mfτ , where 

)(' τΓ∈m and 0' ≠⊕mm . 

Equation (5) specifies that the objective of the LP is to minimize 
the mathematical expectation of the energy dissipation. Equation (6) 
and (7) specify the precedence constraints and deadline constraints of 
the tasks. 

Example 2: Consider the CTG given in Figure 1. Because 
},1{)( 18 a=Γ τ  and the branch fork node of condition a1 is τ3, the 

edge (τ3, τ8) is inserted to represent the control dependency between 
the or-node τ8 and the branch fork node τ3. Then for each minterm in 
M a task graph is generated, which consists of only the nodes that will 
be activated in the corresponding minterm. Figure 4 (a)~(c) show the 

new task graphs. The probabilities of minterms are: prob(a1)=0.8, 
prob(a2b1)=0.1, and prob(a2b2)=0.1. 

The LP has 18 variables:  

 σ1(1), f1(1), σ2(1), f2(1), σ3(1) and f3(1) are the start time and 
speed of task τ1~τ3. They do not depend on which condition 
branch is selected. 

 σ4(a1) and f4(a1) are the start time and speed of task τ4 when 
branch a1 is selected.  

 σ5(a2) and f5(a2) are the start time and speed of task τ5 when 
branch a2 is selected.  

 σ6(a2b1) and f6(a2b1) are the start time and speed of task τ6 when 
branch a2 and b1 are both selected.  

 σ7(a2b2) and f7(a2b2) are the start time and speed of task τ7 when 
branch a2 and b2 are both selected. 

 σ8(a1) and f8(a1) are the start time and speed of task τ8 when 
branch a1 is selected while σ8(1) and f8(1) are the start time and 
speed of task τ8 when branch a2 is selected. 

Based on the definition of Fτ(m), the symbol Fτ8(a1), in equation 
(5)~(6) will be replaced by fτ8(a1), while Fτ8(a2b1) and Fτ8(a2b2) will 
be replaced by fτ8(1). 

 
 
 
 

 
 

Figure 4 Task graph duplication. 

B. Online CAP algorithm 

Although solving a constrained linear program is a tractable 
problem, it is still time consuming. As we show in our experimental 
results, the runtime of the algorithm is significantly high especially 
for the graphs with many nodes.  

As an alternative solution to the stretching problem we suggest a 
heuristic which performs task stretching with negligible runtime at 
the reasonable loss of energy saving compared to offline CAP 
algorithm. The heuristic is based on critical path based slack 
distribution algorithm considering conditional execution and is 
similar to the one proposed in [6]. However, there are few noteworthy 
changes. 1) The DVS techniques suggested in [6] and [7] have 
multiple speeds for a single task corresponding to different minterms. 
Therefore, the algorithms have a high complexity and a large 
schedule table is needed to store the stretching information. 2) The 
technique in [6] applies same stretching ratio at a time to all PEs, 
which is suboptimal. 3) The task stretching algorithm in [6] does not 
consider the branch probabilities. Unlike these techniques, our 
heuristic algorithm is an online approach in that it does not 
necessitate a schedule table to store the stretching information and use 
it at runtime. It is a profile-based approach considering branch 
probabilities. It calculates only single speed for each task and it can 
facilitate different scaling ratio for different PEs. Since the heuristic 
has very low complexity, the whole online CAP algorithm including 
task ordering and stretching can be called iteratively during runtime 
when branch probability changes significantly.  

Once the CTG is updated, all possible paths in CTG are 
calculated using Breadth First Search (BFS) algorithm. Also 
associated with each path p is the slack and delay which are denoted 

(a) m=a1 (b) m=a2b1 (c) m=a2b2 
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Online CAP task stretching heuristic for CTG G 
1.  Process initial schedule generated by task ordering algorithm 

shown in Figure 2 
2.  Calculate possible paths in CTG using BFS; 
3.  For each task τi { 
4.       CalculateSlack (τi); 
5.       Stretch τi , lock its schedule and speed; 
6.       Update the delay and slack of all paths spanning τi ; 
7.       Update the schedule for CTG G;  
    } 
CalculateSlack (τi) 

1. For each minterm  m ∈Γ(τi) { 
2. For all  paths of m ∈Γ(τi)  that span node τi { 
3.        Find the critical path pworst where  prob(pworst, τi) ≠ 1 
4.        slk1+= prob(pworst,τi) * wcet(τi) *(slk(pworst) / delay(pworst) ) * 

prob(τi);     
    } 
   } 
5.  For each path of  m ∈Γ(τi) where prob(m) = 1 
6.  Find the critical path tworst ; 
7.  slk2 = wcet(τi) * (slk(tworst) / delay(tworst) ) * prob(τi); 
8.  slk(τi) = min [slk1, slk2]; 
9. If there is a path p that spans nodeτi and slk(τi)>deadline-delay(p) 
10. slk(τi)=deadline-delay(p); 

as slk(p) and delay(p) respectively. Associated with each task τ on 
path p, there is a probability prob(p, τ), which gives the probability of 
path p given the condition that task τ is started. prob(p, τ) is 
calculated as the joint probability of all the conditional branches lying 
on the path after node τ. For example, consider the example in Figure 
1, the probability prob(τ1-τ3-τ5-τ6, τ5)=prob(b1)=0.5 because the only 
conditional branch along the path τ1-τ3-τ5-τ6 after node τ5 is b1. 

Figure 5 Online CAP task stretching heuristic. 

For each task, step4 in Figure 5 determines the available slack by 
calling CalculateSlack(τi) routine. This routine finds the most critical 
path that has a minimum slack applicable to task τi. In case of 
multiple paths pertaining to different minterms with probabilities less 
than 1, first the critical path that has the lowest distributable slack 
ratio (slk(p)/delay(p)) and has the probability less than 1 is identified 
for each minterm. After that the initial slack of τi is taken as a 
probability weighted sum of all these critical path slacks 
corresponding to each minterm m∈Γ(τi) as shown in step 4 of routine. 
Note that the weight for each path is prob(p, τi), which is the 
probability of path p given the condition that task τi is started. One 
more slack value is calculated as shown in step 7 for critical path with 
probability equal to 1. It is noteworthy that both slack values are 
further weighted by the activation probability of node τi. More slack 
will be allocated to the task that has higher probability to be activated. 
The slack of τi is now minimum of these two slack values. Because 
the slack is the average for all possible minterms, at the end of the 
routine, we need to check for each path that the deadline can be met 
otherwise, the slack will be adjusted. 

Once slack is calculated for a task, the task is stretched and its 
schedule and speed are locked. Next, all paths that span this task are 
updated in terms of their respective delay and slack. Updating these 
variables dynamically alters the criticality of paths for different nodes 
and subsequently releasing the tasks, that have been stretched, from 
consideration. The online CAP algorithm then updates CTG and 
repeats the above mentioned procedure for another task following the 
task order generated by offline CAP. 

Given a CTG with total nodes |V| and edges |E|, the time 
complexity of the online stretching heuristic (derivation not shown 
here due to space limitation) is O (2|V|3 + C|V| + |E|) where constant C 
is an upper bound on number of outgoing edges from a node. This 

low complexity enables the algorithm to be used for dynamic 
scheduling in a system with the capability of runtime branch 
prediction.  

IV. EXPERIMENTAL RESULTS 

Simulations have been carried out to evaluate the efficiency of 
the proposed algorithm. Six scheduling algorithms are evaluated in 
the experiments. They are: offline CAP, CAP w/o PM (offline CAP 
without profile-based mapping), CAP w/o PS (offline CAP without 
profile-based stretching), online CAP w/o PM, online CAP and 
Reference algorithm. We implemented the scheduling algorithm in 
[7] according to the best of our ability and denote it as Reference 
algorithm. The Reference scheduling does not consider profile 
information in task ordering and it assumes fixed task mapping. Table 
1 summarizes the characteristics of the 6 scheduling algorithms. For 
all the experiments, we consider the execution of the CTG as a 
random process and we report the mathematical expectation of energy 
dissipation. 

Table 1 Difference of the evaluated scheduling algorithms. 
Task ordering Task stretching 

Algorithm Profile 
based 

Condition 
aware 

Profile 
based 

Condition 
aware 

Flexible 
mapping 

Offline CAP X  X X X 
CAP w/o PM   X X X 
CAP w/o PS X   X X 

Online CAP w/o PM   X  X 
Online CAP X  X  X 
Reference  X X X  

Firstly, a real life example of a vehicle cruise controller system 
[12] is experimented for different algorithms. This application is 
modeled as a CTG with 32 tasks and two branching nodes, each of 
them forking two conditions. The original cruise control model in 
[12] did not have probability information, so it is assigned randomly 
in our experiment. We tested this CTG with fix mapping and no 
communication between tasks. The application is mapped on five 
different PEs. The schedule length of 124ms reported by CAP was 
same as Reference algorithm and the best length reported in [12]. The 
energy consumption is 102 mJ for both CAP offline and online and 
same for the Reference algorithm. The results favor the CAP online 
approach for this application due to its low complexity and equal 
energy compared to other algorithms.  

Next, five test cases are randomly created with different CTGs 
and different MPSoC architecture. The CTGs are modified from the 
random task graphs generated by TGFF [11]. The MPSoC 
architecture consists of either 3 or 4 PEs. 

Table 2 Fixed mapping and zero communication cost. 

CTG a/b/c Offline 
CAP 

CAP w/o 
PS 

Online 
CAP Reference 

1 25/3/3 596 1414 723 874 
2 16/3/1 591 769 641 568 
3 15/4/2 223 490 292 215 
4 15/4/1 386 630 497 386 
5 25/4/3 285 1075 498 501 

The first experiment focuses on demonstrating the effectiveness 
of our task ordering algorithm. The same fixed task mapping is used 
in both Reference and CAP algorithms. The communication cost is 
also set to be 0. Table 2 shows the energy dissipation of different 
scheduling algorithms. Second column of Table 2 displays the 
characteristics of the CTGs we used. We use a triplet (a/b/c) to 
characterize a test case where a represents the number of nodes in the 
CTG, b represents the number of PEs in the MPSoC and c represents 
the number of conditional branching nodes in the CTG. These five 



CTG IDs shown in column 1 are used to report results for all 
experiments in rest of this paper. In average, the CAP has 13% 
energy reduction over the reference scheduling and 49% energy 
reduction over the CAP w/o PS. The online CAP has 11% more 
energy than the Reference algorithm. This is expected since the 
potential of the DLS based algorithm is known to unfold with flexible 
mapping. 

The second experiment focuses on demonstrating the 
effectiveness of our task mapping algorithm. In this experiment, the 
CAP based algorithms perform task mapping together with task 
ordering. The communication cost is again set to 0. Table 3 shows the 
energy dissipation of different scheduling algorithms. As we can see, 
with flexible task mapping, the offline CAP gives more than 43% 
energy reduction over the Reference algorithm. The improvement is 
more significant than the first experiment. The difference between 
offline CAP versus CAP w/o PS is now 46%. The online CAP has an 
average of 39% of energy reduction over the Reference algorithm. 
Compared to offline CAP, the online CAP has 8% more energy 
dissipation. Average energy dissipation of offline CAP and CAP w/o 
PM is almost same while online CAP has 7% less energy than online 
CAP w/o PM. This is because offline CAP tries to allocate slack 
based on critical path while online CAP stretching heuristic calculates 
slack based on average path length. 

Table 3 Flexible mapping and zero communication cost. 

CTG Offline 
CAP 

CAP w/o 
PS 

CAP w/o 
PM 

Online 
CAP w/o 

PM 

Online 
CAP Reference

1 389 1014 382 459 449 874 
2 365 498 365 393 393 568 
3 158 339 144 187 166 215 
4 252 353 260 325 277 386 
5 167 422 160 183 173 501 

Table 4 shows the comparison of runtime between the offline 
CAP and online CAP. Note that the unit of the runtime for offline 
CAP is second while the unit for the online CAP is millisecond. The 
average speedup of the online CAP is 120,000X. Although the time 
reported here includes task ordering, mapping and stretching, because 
both the online and offline algorithms use the same task 
ordering/mapping routine, the difference in runtime comes only from 
task stretching step. 

Table 4 Comparison of runtime. 
CTG 1 2 3 4 5 

Offline CAP (sec) 72.69 66.41 37.06 24.11 147.28 
Online CAP (msec) 1.26 0.59 0.37 0.31 0.58 

Table 5 Flexible mapping and non-zero communication cost. 

CTG Offline 
CAP 

CAP w/o 
PS 

CAP w/o 
PM 

Online 
CAP w/o 

PM 

Online 
CAP Reference

1 422 1146 487 534 508 1396 
2 374 522 441 469 404 1206 
3 194 592 237 225 211 356 
4 413 615 455 546 469 805 
5 218 620 254 250 242 777 

The last experiment focuses on demonstrating the communication 
aware capability of our algorithm. In this experiment, we generate the 
communication volume from a node to its successor based on 
Computation to Communication ratio (CCR).For this experiment, we 
chose a value of CCR=1 with some variance (10%) to model data 
transfer from a node to multiple nodes. Table 5 shows the energy 
dissipation of different scheduling algorithms. Since the 
communication cost is non-zero, we can see that the energy 
dissipation for all test cases increases. However, the energy reduction 

of the offline CAP scheduling over the Reference scheduling also 
increases compared with previous two experiments. The average 
energy reduction is now 60%. The differences between offline CAP 
versus CAP w/o PS increases to 51% in this case. The online CAP 
has an average of 56% energy reduction than the Reference 
algorithm. Compared to offline CAP, the online CAP has 12% more 
energy dissipation. The offline CAP has now 14% less energy than 
CAP w/o PM and the improvement of online CAP over online CAP 
w/o PM increases to 8%. 

V. CONCLUSIONS 
Online and offline algorithms are proposed that perform 

simultaneous task mapping and ordering followed by task stretching 
of a conditional task graph (CTG). The algorithms minimize the 
mathematical expectation of energy dissipation of non-deterministic 
applications with random branch selection by utilizing the task 
execution profile. Both communication and computing energy are 
reduced in the scheduled result. The experimental results show that, 
comparing with the previous scheduling algorithm, our offline 
algorithms give more than 39% energy reduction in average. The 
online algorithm gives more than 28% energy reduction in average 
with a speed up of 120,000X over offline algorithm. Our future 
efforts target a development of an adaptive version of CAP online 
algorithm that can fit the changing runtime system conditions and 
utilize the low complexity of CAP. Considering contentions inside 
communication network would also be an interesting analysis.  
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