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Abstract—Among different languages’ sentence completion 
and parsing, Chinese is of great difficulty. Chinese words are not 
naturally separated by delimiters, which imposes extra challenge. 
Cogent confabulation based sentence completion has been 
proposed for English. It fills in missing words in an English 
sentence while maintains the semantic and syntactic consistency. 
In this work, we improve the cogent confabulation model and 
apply it to sentence completion in Chinese. Incorporating trained 
knowledge in parts-of-speech tagging and Chinese word 
compound segmentation, the model does not only fill missing 
words in a sentence but also performs linguistic analysis of the 
sentence with a high accuracy. We further investigate the 
optimization of the model and trade-offs between accuracy and 
training/recall complexity. Experimental results show that the 
optimized model improves recall accuracy by 9% and reduces 
training and recall time by 18.6% and 53.7% respectively. 

Keywords—Chinese sentence completion; parts-of-speech 
tagging; word segmentation; mutual information; cogent 
confabulation  

I. INTRODUCTION 

As an important part of text recognition, sentence 
completion and prediction, which stands for the capability of 
filling missing words in an incomplete sentence, has attracted 
much attention. The first step of sentence completion is 
syntactic parsing of the input text. Among different languages, 
Chinese is a great challenge due to its linguistically isolating. 
Each Chinese character generally corresponds to exactly one 
morpheme and multiple semantic meanings. Moreover, there 
has been a strong tendency in the Chinese language family 
over the last 2000 years for single morpheme words to develop 
into compounds of two or more morphemes [8], which makes 
Chinese language linguistically more flexible and complex. All 
of the above makes Chinese sentence completion extremely 
difficult.  

In our previous research [1] [2] [3] [4], a cogent 
confabulation based sentence completion framework is 
developed. A sentence is represented by a set of lexicons 
corresponding to its words, word pairs, and part-of-speech tags. 
The conditional probability between neighboring lexicons are 
learned from training corpus. During recall, the missing 
information (including unknown word and part-of-speech tags 
for both unknown and given words) is selected that maximizes 
the likelihood of observed information (i.e. those words 

already given in the input sentence). Due to the difference 
between linguistic structures, this framework has to be 
modified for Chinese sentences. First of all, each Chinese 
character, which is represented as a 3-byte UTF-8 code, is 
analogy to an English word. In the rest of the paper, we use 
character and word interchangeably, as they are the same in 
Chinese. Secondly, the part-of-speech tagging of Chinese is 
usually associated with each multi-character compound. 
Correct segmentation is essential to syntactic parsing of the 
sentence.  

We improve previous cogent confabulation model and 
apply it to Chinese sentence completion. Besides integrating 
parts-of-speech (POS) tagging that identifies the function of 
each word, in the Chinese sentence confabulation, 
segmentation label for multi-character compound is added, 
which identifies word compound consisting of 1~4 Chinese 
characters. 

This work focuses on developing, optimizing and 
evaluating a confabulation model for Chinese sentence 
completion with high accuracy. It has three major contributions: 

1) We extend the original sentence confabulation model to 
consider linguistic properties of Chinese language. 
Segmentation labels and beginning of sentence markers are 
specifically added to the model. Knowledge links (KL) are 
shared to reduce complexity and improve performance as 
well. Experiment results shows that the extended Chinese 
sentence confabulation model achieve 76.9% sentence recall 
accuracy with reduced memory and computing complexity.  

2) We analyze the mutual information between source and 
target lexicons of each knowledge link in the confabulation 
model and assign weight to these knowledge links 
accordingly. Compared to the original model, the model with 
weighted knowledge link has 9% higher recall accuracy.  

3) The mutual information of KLs is also exploited to find 
the best training set size, which gives the best tradeoffs 
between training effort and recall accuracy.  

The rest of this paper is organized as follows: A brief 
introduction of background is provided in Section II. In section 
III, the modeling and operation of Chinese sentence 
confabulation is introduced. The comparison of different 
configuration models of Chinese sentence confabulation and 
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experimental results are presented in Section IV. Section V 
gives the conclusions. 

II. BACKGROUND  

A. Cogent confabulation 

Inspired by human cognitive process, cogent confabulation 
[7] mimics human information processing including Hebbian 
learning, correlation of conceptual symbols and recall action 
of brain. The model describes the target using a set of 
orthogonal features that are mapped to a set of lexicons. The 
observed value of the feature is considered as a random 
variable in a discrete space represented by a set of symbols. 
The operation involves two important steps: training and 
recall. In training process, posterior probabilities between 
observations of two lexicons are collected and referred as the 
knowledge links. The collection of all knowledge links in the 
model forms its knowledge base (KB). 

 If we consider symbols as neurons and lexicons as 
categories, then the model consists neurons (i.e. symbols) in 
different categories (i.e. lexicons). When a symbol is 
observed, then the corresponding neuron fires. The neurons 
belonging to the same lexicon are connected via inhibitory 
synapses, as they are exclusive to each other, while those 
belonging to different lexicons can be connected via excitatory 
synapses. The strength of an excitatory synapse from sender 
(s) to receptor (t) is defined as ݈݊ሾܲሺݐ|ݏሻ ⁄ ሿ where ܲሺݐ|ݏሻ is 
the probability that s is observed given the condition that t is 
observed, and p0 is a small constant to make the result 
positive. This definition agrees with the Hebbian theory, 
which specifies that the synaptic strength increases when two 
neurons constantly firing together. 

The input of the recall process is a noisy observation of the 
target. In this observation, certain features are observed with 
great ambiguity, therefore multiple symbols are assigned to 
the corresponding lexicons. The goal of the recall process is to 
resolve the ambiguity and select the set of symbols for 
maximum likelihood using the statistical information obtained 
during the training process. This is achieved using a procedure 
similar to the integrate-and-fire mechanism in biological 
neural system. Each neuron receives an excitation, which is 
the weighted sum of its incoming excitatory synapses. Among 
neurons in the same lexicon, those that are least excited will 
be suppressed and the rest will fire and become excitatory 
input of other neurons. Their firing strengths are normalized 
and proportional to their excitation levels. As neurons 
gradually being suppressed, eventually only the neuron that 
has the highest excitation remains firing in each lexicon and 
the ambiguity is thus resolved.  

A computational model for cogent confabulation is 
proposed in [7]. Let a set of symbols associated to lexicon A is 
denoted as ܵ. A KL from lexicon A to B is a ܯ ൈܰ matrix 
where source lexicon A has M symbols and target lexicon B 
has N symbol. Each row in KL represents a source symbol in 
A and each column represents a target symbol in B. The 
ሺ݅, ݆ሻ th entry of the matrix represents the strength of the 
synapse, called contribution, between the source symbol ݏ 
and the target symbol ݐ . It is quantified as the conditional 
probability ܲሺݏ|ݐሻ, where ݏ  is the ith symbol in lexicon A 
and ݐ  is the jth symbol in lexicon B. During recall, the 

excitation levels of all ambiguous symbols are evaluated. Let ݈ 
denote a lexicon, ܨ  denote the set of lexicons that have 
knowledge links going into lexicon ݈, and ܵ denote the set of 
symbols that belong to lexicon ݈ . The excitation level of a 
symbol ݐ	in lexicon ݈ can be calculated as 

ሻݐሺܫ  ൌ ∑ ∑ ሻݏሺܫ ቂln ቀ
ሺ௦|௧ሻ

బ
ቁ  ቃ௦∈ௌೖ∈ிܤ , ݐ ∈ ܵ    (1) 

The function ܫሺݏሻ  is the excitation level of the source 
symbol ݏ. The parameter  is the smallest meaningful value 
of ܲሺݏ|ݐሻ . The parameter B is a positive global constant 
called the bandgap. The purpose of introducing B in the 
function is to ensure that a symbol receiving ܰ  active 
knowledge links will always have a higher excitation level 
than a symbol receiving ሺܰ െ 1ሻ	 active knowledge links, 
regardless of the strength of the knowledge links. 

B. Processing the training text 

Our training text is segmented and tagged using Standford 
Part-of-speech (POS) tagger [5]. It is one of the most matured 
Natural Language Processing software based on probabilistic 
tagging systems. First, the Chinese training sentences are 
segmented using Stanford Chinese word Segmenter, which is 
based on a linear-chain conditional random field (CRF) 
model. The tool partitions sentence into compound words 
consisting of single or multiple Chinese characters. And then 
Stanford POS Tagger takes segmented sentence as input and 
assigns a part-of-speech tag to each compound. Stanford POS 
Tagger for Chinese Language exploits 33 word level Chinese 
tags specified by the Penn Treebank Tagging System [6]. 
TABLE I.  lists some examples of these Tags. 

The information of POS tags and segments will be built 
into the knowledge base during training. However, the POS 
tagger cannot be used to process sentences with missing 
words. Therefore during recall, we cannot use POS tagger for 
syntactic analysis. Our solution is to rely on the confabulation 
model to recall the segments and tags during the same time 
when the missing words are filled in. The basic idea is to 
assume that all tags and segment partitions are possible at the 
beginning, and gradually eliminate the ambiguity during the 
recall process. This approach is feasible since the number of 
tags and possible segment partitions is limited. Our 
experimental results show that considering tags and 
segmentations at the same time helps to improve the accuracy 
of sentence completion.  

TABLE I.  PENN TREEBANK TAG LIST 

Tag Function Examples 

VA Predicative Adjective 很(very),雪白(snow white)… 

VC Copula 是(be),为(be),不是(not be)… 

VE 有(have) as the main verb 有(have), 没有(have),无(not have)… 

VV Other verb 想(want to),走(walk),喜欢(like)… 

NR 
Proper Nouns(location, 

newspaper…) 
北京(Beijing),纽约时报(New York 

Times)… 

NT Temporal Nouns 一月(Janurary),汉朝(Han Dynasty)… 

NN All other Nouns 书(book),房子(house)… 



Tag Function Examples 

PN Pronoun 我(I),你(you),这(this)… 

… … … 

III. CHINESE SENTENCE CONFABULATION 

The Chinese sentence confabulation is an extension of the 
framework proposed in [3], which is designed for English text.  

A. Basic confabulation framework 

Inheriting from original sentence confabulation framework 
[3], we assume that the maximum length of a sentence is 20 
words and sentence with more than 20 words will be 
truncated. We pad the sentence that has less than 20 words 
with special character ‘`’ to represent the end of a sentence. 
Anything beyond the end of sentence will be ignored during 
training and recall. 

Original Sentence confabulation framework has two levels 
of lexicons – word and word pair. Lexicons 0 to 19 correspond 
to single English word at location 0 to 19 in a sentence. 
Lexicons 20 to 38 correspond to 19 word pairs combining 
word from lexicon 0~19 and its right adjacent neighbor. Each 
lexicon stores tremendous number of symbols (words or word 
pairs) that appears in the corresponding location.  

In original framework, a KL is created between any two 
lexicons. In training process, we build all KL matrices to form 
knowledge base. And during recall, observed symbols will be 
set active in each lexicon. When there is no ambiguity in 
observation, only one symbol in a lexicon will be set active. 
Multiple symbols in the same lexicon will be set active as a 
result of ambiguous observation. They are referred as 
candidates. When a lexicon is not observable, all possible 
symbols will be set active to indicate the highest ambiguity. 
The excitation level of each candidate in the lexicon with 
ambiguity will be calculated and the symbols that is least 
excited will be suppressed. This procedure repeats until there 
is only one symbol left in each lexicon.  

B. Chinese Sentence confabulation model 

Each Chinese character is encoded using 3 bytes of UTF-8 
code. As mentioned before, we regard each Chinese character 
as a “word” and they occupy the word level lexicons in the 
confabulation framework. Modern Chinese language is based 
on word compound, which consists of 1~4 single Chinese 
characters. These word compounds are not delimited, 
however, they can be found with the help of tools, such as the 
Stanford POS tagger. We label each Chinese character based 
on its position in a word compound, and refer this as 
segmentation label. For example, in a two character word 
compound 书籍(book), 书(book) is located at the first position 
of the two character word compound, therefore, it is marked as 
1IN2, and 籍 (book) is marked as 2IN2. In this work, ten 
segmentation labels are used. They are: 1IN1, 1IN2, 2IN2, 
1IN3, 2IN3, 3IN3, 1IN4, 2IN4, 3IN4, and 4IN4. Please note 
that segmentation label is only needed in Chinese sentence 
confabulation. This is a major difference between Chinese and 
western languages. In Section IV we will show the necessity 
of including segmentation label in the confabulation model. 

  In the improved confabulation model, new lexicons are 
created for tags and segmentation labels. Moreover, instead of 
having lexicons for two adjacent words, we create lexicons for 
three adjacent words in order to adapt to semantic compounds 
of multiple Chinese characters. Therefore, lexicons in the new 
confabulation model can be divided into four levels: lexicons 
0~19 correspond to single Chinese word; lexicons 20~37 
correspond to Chinese word triplets; lexicons 38~57 
correspond to POS tags and lexicons 58~77 correspond to 
segmentation labels. 

The original sentence confabulation framework has a 
knowledge link between any two lexicons. Therefore, the size 
of knowledge base increases exponentially with the number of 
lexicons. In this way, 78 ൈ 77 ൌ 	6006	KLs will be generated 
for the Chinese sentence confabulation model, which takes 
tremendous resources.  

To reduce the complexity of our computational model, two 
actions are jointly taken. First is to share KL matrix between 
lexicons that have the same relative position in sentence. For 
example, the distance from lexicon 0 to lexicon 1 is the same 
as the distance from lexicon 1 to lexicon 2, so the KLs 
between 0~1 and 1~2 are merged and shared.  

The second action is to only create KLs between lexicons 
within N-neighborhood in the same lexicon level or across 
lexicon levels. In [10], experimental results show that 
considering words with low correlation in speech recognition 
making the performance poor. Empirically, 5-neighborhood is 
a best trade-off for accuracy and complexity. Therefore, we 
only generate knowledge links between two lexicons whose 
horizontal distance is within -5 to 5. We refer to the new 
sentence confabulation model with these two changes as 
circular model as the knowledge links are circulated among 
lexicons. 

Segmented and tagged training text is used during training. 
Characters, tags and segment labels are placed in 
corresponding lexicons. KLs are established not only between 
two lexicons in the same level, but also between lexicons in 
different levels, as long as their distance is less than 5. 
However, there is no KL between tag and segmentation label 
lexicons, because tags and segments are derivatives of the 
Chinese characters, and Stanford tools are not able to ensure 
100% accuracy in tagging. Keeping KL between tag and 
segment lexicons will introduce noise in the confabulation 
procedure. 

A test sentence with missing characters will be given 
during recall. For those lexicons that are partially observable, 
a set of candidates that compliant with the partial observation 
is activated. If a lexicon is completely unobservable, then all 
possible symbols are activated as potential candidates. Since 
the test sentence originally is provided without tags and 
segmentation labels, the confabulation model automatically 
activates all tags and segmentation labels as possible 
candidates for each tag and segmentation label lexicon 
respectively.  

C. Training and Recall functions 

Given the confabulation model, the training and recall 
procedures are developed.  



The training process establishes knowledge base on tagged 
and segmented text. Taking following sentence  “国王#NN 
(The king)有#VE (has)两#CD 个#M (two)儿子#NN (sons)” as 
example, the corresponding tagged and segmented training 
text is as follows, and the confabulation model constructed 
based on the training text is given in Fig. 1. 

国 王 有 两 个 儿 子

国王有 王有两 有两个 两个儿 个儿子

NN NN VE CD M NN NN

1IN2 2IN2 1IN1 1IN1 1IN1 1IN2 2IN2

`

`

`

Lex 0 Lex 1 Lex 2 Lex 3 Lex 4 Lex 5 Lex 6

Lex 38 Lex 39 Lex 40 Lex 41 Lex 42 Lex 43 Lex 44

Lex 58 Lex 59 Lex 60 Lex 61 Lex 62 Lex 63 Lex 64

Lex 20 Lex 21 Lex 22 Lex 23 Lex 24

^

^

^国王

^

Lex 25

Lex 7

Lex 45

Lex 65

...

...儿子`

...

...

Lex 8

Lex 26

Lex 46

Lex 66  
Fig. 1. Lexion Structure of confabulation model 

As shown in Fig. 1, a special symbol “^” is assigned to the 
first lexicon in each level. Those words that frequently appear 
at the beginning of a sentence will have strong link with this 
special symbol. The indication of beginning of sentence is 
especially important for circular model, because its knowledge 
base only contains relative position information. The 
beginning of sentence symbol acts as anchors that provide 
absolute position information.  

We can also see from Fig. 1 that the sentence is extended 
to 20 characters that are symbols assigned to lexicons 0 to 19 
respectively. Those 20 characters will generate 18 three-word 
triplets and be assigned to lexicons 20~37, 20 tags and 20 
segmentation labels will enter lexicons 38~57 and lexicons 
58~77 respectively. Knowledge links between lexicons will be 
established as explained in Section III.B. At the end of 
training, the system will calculate the symbol to symbol 
conditional probability to fill in the KL matrix entry. For 
example, ܲሺ"国"|"王"ሻ will be stored as an entry in the KL 

connecting lexicons 1 and 2, and ܲሺ"国"|"NN"ሻ will be stored 
as an entry in the KL connecting lexicons 1 and 39. 

国 ? 有 ... 子

国?有 王有两 有两个

? ? ? ... ?

? ? ? ... ?

...

...

...

...

?

^

^国?

?

Lex 0 Lex 1 Lex 2 Lex 3 Lex 7

Lex 20 Lex 21 Lex 22 Lex 23

Lex 38 Lex 39 Lex 40 Lex 41 Lex 45

Lex 58 Lex 59 Lex 60 Lex 61 Lex 65
 

Fig. 2. Lexion Structure of confabulation model (Any arrow is from source 
lexicon to target lexicon. Orange arrows represents Knowledge Links from 
observable lexicons to unobservable or partially observable lexicons; Green 
arrows represents Knowledge Links between lexicons in same level; Blue 
arrows represents Knowledge Links from unobservable or partially observable 
lexicons to observable lexicons) 

During recall, sentences with missing characters will be 
given. Taking the same sentence in Fig. 1 as example, Fig. 2 

gives a simple explanation how the model works. Assume that 
the third character “王(king)” is partially observable, and the 
ambiguous observation gives two candidates: “王(king)” and “
工(labor)”. Symbols in lexicons are activated according to the 
observation. Hence lexicon 2 has two symbols “王(king)”, “工
(labor)” activated. And since no tags and segmentation labels 
are provided for the test sentence, all tags and segmentation 
labels are activated in tag and segmentation label lexicons. 
The lexicons with only one candidate are regarded as known 
lexicons and others are regarded as unknown lexicons. 
Through KLs, active symbols in source lexicons will excite 
candidate symbols in target lexicons. Each candidate’s 
excitation level is calculated based on (1). The least excited 
one is eliminated from candidate list and others are set to be 
active. It is noted that no matter a source lexicon is known or 
not, as long as its candidates are set to be active, the active 
symbols will always excite the symbols in unknown lexicons. 
In this example, “^” in lexicon 0 will excite tag candidates in 
lexicon 38, and active symbols in lexicon 38 will then excite 
tag candidates in lexicon 40, while the active symbols in 
lexicon 40 excite candidates, “ 王 (king)”, “ 工 (labor)” 
respectively  in unknown lexicon 2. This procedure iterates so 
that unknown character will be determined gradually by 
eliminating weak candidates in unknown tag lexicons, 
segmentation lexicons and word triplet lexicons. Finally only 
one candidate is left in each lexicon and the candidate will be 
chosen as the most likely result and “王(king)” is recalled for 
the missing character. 

D. Knowledge Link Weighting 

In the basic confabulation model, the excitation level of a 
candidate is the sum of contributions from active symbols in 
other lexicons. Intuitively, however, different source lexicons 
do not contribute equally to a target lexicon. For example, the 
lexicon right next to an unknown word obviously gives more 
information in determining the unknown word than the 
lexicon that is five words away. This motivates us to weight 
KL’s contribution during recall.  

The basic idea is to weight the contribution of each KL 
based on the Mutual information (MI) [9] between its source 
and target lexicons. Mutual information of two random 
variables is a measure of variables’ mutual independence. In 
our work, mutual information is calculated as 

;ܣሺܫ  ሻܤ ൌ ∑ ∑ ,ሺܽ ܾሻ݈݃∈∈ ቀ
ሺ,ሻ

ሺሻሺሻ
ቁ          (2) 

where A is the source lexicon and a represents symbols in 
A; B is the target lexicon and b represents symbols in 
B.	ሺܽ, ܾሻ is the joint probability of symbol a and b; ሺܽሻ and 
ሺܾሻ  are the margin probability of symbol a and b 
respectively. ܫሺܣ; ;ܣሺܫ ሻ is nonnegative. The value ofܤ  ሻ willܤ
increase when the correlation of symbols in lexicon A and B 
get stronger. Because each knowledge link has its source and 
target lexicons, in the rest of the paper when we say the MI of 
a KL we refer to the MI of the source and target lexicons of 
that KL. 

In Section IV, detailed analysis of mutual information is 
presented and compared among different KLs. Based on the 
comparison different weighting scheme is explored to improve 



performance. Another useful function of mutual information is 
to guide the training process. As the training progresses, by 
monitoring the change of the mutual information of each 
knowledge link, we can see how much knowledge is gained 
and hence decide the effectiveness of the training. More 
discussion will be provided in the next section. 

IV. EXPERIMENTAL RESULTS 

In this section, we compare the performance of different 
models and show how the analysis of mutual information can 
help to improve the efficiency of the confabulation modeling 
and recall.  

We train the Chinese confabulation model with a corpus of 
10  sets of collected fairy and folk tales. We choose Chinese 
version of worldwide fairy tales such as Hans Christian 
Andersen's Fairytales, Grimm's Fairy Tales and also Chinese 
folk tales, because those works use vivid and common 
language, which will lead to a statistically meaningful 
knowledge base. The training set includes 364709 sentences 
and 3232600 words, and is chunked into 1328 small files with 
equal size. The test document includes 91 sentences extracted 
from elementary school textbook on Chinese language art. 
Each test sentence has 1~4 randomly picked missing Chinese 
words. For each missing word, 2~5 possible candidates will be 
given. Accuracy is measured as the rate of successfully 
confabulated sentences, which must be identical to the original 
sentences. 

A. Necessity of incorporating segmentation labels and 
circular Knowledge Base 

The first thing we want to show is the importance of 
including segmentation labels in the confabulation model. In 
this experiment, all knowledge links have the equal weight. We 
compare the recall accuracy of confabulation models with and 
without segmentation labels. The result is shown in Fig. 3. As 
we can see, adding segmentation label improves recall 
accuracy by 4.4%.  

 
Fig. 3. Recall accuray of sentence confabulation model with/without 
segmentation label  

Another experiment compares the training time, recall time 
and accuracy between non-circular model and circular model. 
TABLE II. shows that non-circular model takes about four 
times training effort more than the circular model, and 17.5% 
more recall time, but gives 13% lower recall accuracy. 

TABLE II.  COMPARISON OF NON-CIRCULAR AND CIRCULAR MODEL 

 Non-circular Circular Improvement(%) 

Training time(s) 489180 144540 70.45% 

Recall time(s) 6317.22 5207.83 17.56% 

accuracy 54.95% 68.13% 13.18% 

B. Analysis of mutual information 

In the second set of experiments, we demonstrate how the 
change of mutual information (MI) relates to the effectiveness 
of the training process. We continuously monitor the mutual 
information of each KL as the training process progresses. The 
1328 files of the training corpus is processed one by one. The 
MI of each KL is calculated each time after a training file is 
processed.  

 The line chart in Fig. 4 shows the change of MI for four 
selected KLs as the number of processed training files 
increases. The blue line gives the MI of KL0, which connects 
two word lexicons of immediate neighbor.  We can see that as 
more files are trained; the MI of KL0 gets smaller. The grey 
and yellow lines in the figure give the MI of KL72 and KL94 
respectively. They are the knowledge links between a single 
word lexicon and its corresponding tag lexicon. The MI of 
these KLs fluctuate within a very small range at the beginning 
of training. When more training files are processed, they 
converge to a stable value. This is because every Chinese 
character has its specific semantic and syntactic function and 
the relation between tags (or segmentation labels) and words 
are relatively fixed. Very few new character-tag or character-
segment relationship will be learned after certain amount of 
training. In other words, the knowledge base becomes saturated 
at certain point.  

The orange line gives the MI of KL50 that connects 
between single word lexicon and its corresponding word triplet 
lexicon. Our results show that there is a strong correlation 
between a word and its corresponding word triplet. This means 
a character always co-occur with a limited number of word 
triplets. Similar to the MI of KL0, 72 and 94, when more 
training files are processed, the MI of KL50 increases and then 
gradually saturates to a stable value.  

 
Fig. 4. Mutual Information trend chart for 4 kinds of Knowledge Links 

The convergence of MI of KLs indicates that adding more 
training files will not necessarily increase the learned 
knowledge. At certain point, the knowledge acquiring speed 
slows down and further learning will not be as effective as 
before. It is the time that we should either stop the training or 



switch to another set of training text that has significantly 
different style.  

Our experimental data show that most Knowledge Links’ 
mutual information will reach 5% and 3% of its stable value 
after the model is trained with 30 and 100 files respectively. 
We take the knowledge base generated at different stages of 
training and apply them to sentence completion test. Their 
recall accuracy is given in Fig. 5. The X-axis gives the number 
of training files used to generate the knowledge base and the 
Y-axis give the recall accuracy. The graph shows that when 
training set size exceeds 300, the recall accuracy has stabilized 
at around 68%, and when the training set size reaches 170, the 
recall accuracy is already close to its peak. However, if the 
training set size is too small, the recall quality is not acceptable. 
This result agrees with Fig. 4, which shows that the MI of 
knowledge links starts to converge after 170 training files and 
becomes very stable after 300 training files. Based on the 
above discovery, we set the saturation threshold of the training 
set size at 300. Our previous work [3] shows that the training 
time is linearly proportional to the size of training data. 
Limiting the training set size to the saturation threshold can 
sharply reduce training time with very little sacrifice of 
accuracy. 

 
Fig. 5. Recall accuracy of different training set size 

C. Quantified Knowledge Link Weighting scheme 

The goal of next experiment is to find a systematic way to 
assign KL weight. Previous works [4] have shown that 
weighing the contribution of KLs based on their significance 
can improve recall accuracy, however, their weight is assigned 
only in an ad-hoc way. We believe that the significance of a 
KL can be measured by the mutual information between its 
source and target lexicons and therefore the MI of a KL should 
decide its weight.  

Fig. 6 shows the mutual information of all knowledge links. 
Based on their connections, the KLs are divided into 9 groups. 
The group division is described in TABLE III. and labeled in 
Fig. 6 underneath the X-axis. 

TABLE III.  KNOWLEDGE LINK GROUP DIVISION 

KL group KL IDs Connection 
(a) 0~9 Between word lexicons 
(b) 10~19 Between word triplet lexicons 
(c) 20~29 Between tag lexicons 
(d) 30~39 Between segmentation label lexicons 
(e) 40~61 Between word and word triplet lexicons 
(f) 62~83 Between word and tag lexicons 
(g) 84~105 Between word and segmantation lavel 

lexicons 
(h) 106~127 Between word triplet and tag lexicons  
(i) 128~149 Between word triplet and segmentation label 

lexicons 

We can see from Fig. 6 that, from left to right, the MI of the 
KLs in the same group are clustered together. And as the 
distance between the source and target lexicon of the KL 
increases, the MI of the KL decreases. For example, KL0 and 
KL8 belong to the same group, therefore, they have similar MI. 
However, since KL0 connects between two immediate 
neighboring lexicons while KL8 connects between two word 
lexicons that are 4 words apart from each other, the MI of KL0 
is slightly greater than KL8. This agrees with our intuitions that 
adjacent characters have stronger correlations. Second, the KLs 
connecting to word triplet lexicons always give more 
information than others, therefore they should be weighed as 
the biggest during the recall.  

 
Fig. 6. Knowledge Links’ mutual information 

 
Fig. 7. Knowledge Links’ weight 

We assign the weight of a KL as a linear function of its 
mutual information as shown in Fig. 7. We then compare the 
recall accuracy of confabulation models with and without 
weighted KL. Fig. 8 shows the recall accuracy of the two sets 
of confabulation models. For each set of models, the Bandgap 
is varied from 1 to 1000. As we can see, when bandgap value is 
10 or less, assigning weight to KL provides little improvement. 
However, when the bandgap value exceeds 100, assigning 
weight to KLs brings visible benefits; it improves accuracy by 
more than 4%. We also observe that, without weighted KL, 
changing the bandgap value has almost no impact on the recall 
accuracy. However, with weighted KL, increasing the bandgap 
value from 1 to 10 and 100 can increase recall accuracy from 
68.13% to 69.23% and 72.53% respectively. The recall 
accuracy becomes saturated after the bandgap exceeds 100. 



Thus for the rest of the experiments, we fix the bandgap value 
to be 100. 

 
Fig. 8. Recall Accuracy of basic confabulation model of different bandgap 
value with/without weighting 

D. Confabulation model optimization 

Modern Chinese language is based on word compounds 
that consists of two or three single character words. 
Considering only word triplets in the confabulation model will 
lose information of two-word compound. Thus we add one 
more level of lexicons for adjacent word pairs. This brings the 
confabulation lexicon structure to five levels: words, word 
pairs, word triplets, tags, and segmentation labels. We then 
repeat the previous experiments to assign KL weights and 
evaluate the recall accuracy. Fig. 9 shows two sets of recall 
accuracy. The blue bars give the recall accuracy of the original 
4-level confabulation model and the red bars give the recall 
accuracy of the new 5-level model. Both models are evaluated 
with and without KL weight and with two different bandgap 
values. The results show that adding one more layer of lexicon 
does not improve the recall accuracy when the KLs are not 
weighted and the improvement is limited if bandgap is small. 
However, it does make visible differences when KLs are 
properly weighted and bandgap is set large enough. The overall 
recall accuracy can be 76.9%, which is about 9% higher than 
the basic model without weighted KL.  

 
Fig. 9. Recall Accuracy of confabulation model with/without word pair 
lexicons (non-weighted-10 represents recall accuracy with bandgap value of 
10 and without weighting scheme; non-weighted-100 represents recall 
accuracy with bandgap value of 100 and without weighting scheme; 
Weighted-10 represents recall accuracy with bandgap value of 10 and 
weighting scheme; Weighted-100 represents recall accuracy with bandgap 
value of 100 and weighting scheme) 

 
Fig. 10. Recall accuracy between different models(sentence accuracy is 
evaluated by the amount of sentences recalled identically to original 
sentences; word accuracy is evaluated by the amount of missing Chinese 
charaters recalled identically to the original) 

As a reference, we compare the confabulation model with a 
recurrent neural network (RNN) model [11]. Please note that 
the RNN model identifies the missing word from the list of 
candidates by evaluating the probability of the sentence that 
they could make. Therefore, it has to create a sentence for each 
combination of the candidates and calculate its probability. The 
complexity of the RNN is an exponential function of the 
number of missing words, while the complexity of 
confabulation model is a linear function of the number of 
missing words. Fig. 10 compares the recall accuracy of the 
RNN model and confabulation model. It shows that these two 
has comparable recall accuracy and the confabulation model 
has slightly better word recall accuracy. 

One of the advantages of using the confabulation model is 
that it performs syntactic parsing at the same time of sentence 
completion. It does not only fills in the missing characters, but 
also finds out the tags and segmentation labels for all words in 
the sentence. Fig. 11 gives the tag and segmentation label 
recall accuracy. Overall, 82.6% of the words are tagged 
correctly with POS tagging and 86.2% of the words are 
correctly labeled with their segmentation information. We can 
see that even those unknown characters are tagged and labeled 
with quite high accuracy. Their tagging accuracy is 75.6% and 
segmentation accuracy is 84.3%.  

 
Fig. 11. Recall accuracy of tags and segmentation labels(Overall denotes 
accuracy for all characters in sentences; Unknown denotes accuracy for 
unknown missing characters, Known denotes accuracy for known characters) 

Observing the mutual information, we realize that the 4th 
and 5th neighbors of a lexicon provide far less information than 
other closer neighbors. The MI of these KLs is approximately 
20%~60% of the average of other KLs. This motivates us to 
use KLs only up to the 3rd-neighborhood. This simplification 



does not only reduce KB size but also save training and recall 
time. Fig. 12 compares the training and recall time of the 
original model (5-neighbor) and simplified model (3-neighbor). 
Experiments show that these two models give the same recall 
accuracy, which is 76.9%. However, the training time is 
decreased by 18.6% and the recall time is decreased by 53.7%. 
This is because the KB size is reduced from 226 to 142 by 
removing KLs connecting between lexicons and their 4th and 
5th neighbors. These data show that, the mutual information of 
KLs does not only help us to assign weight to KLs for better 
recall accuracy, but also facilitate the decision on removing 
KLs with small contribution for lower model complexity 
without significantly sacrificing the accuracy. 

 
Fig. 12. Training time and recall time of different KL structure 

All above results are based on the restriction that only 
sentences identical to the original are considered as correct. 
Many recalled sentences are actually syntactically correct and 
semantically close to the original sentence. For example, for 

the original sentence: 妈妈是一个很温(柔)的人(Mother is a gentle 

person), our recalled sentence is 妈妈是一个很温(和)的人(Mother 

is a gentle and mild person), in which 温柔(gentle) and 温和 
(gentle and mild) are synonyms. Even though the recalled 
sentence is not identical to the original sentence, it has very 
close meaning. If we treat all grammatically correct recalled 
sentences as successful recall, the accuracy will increase to 
80%. 

TABLE IV.  EXAMPLES OF CONFABULATED SENTECES 

Original 王明负责(be in charge of)检查卫生工作 

Basic 王明责任(responsibility)检查卫生工作 

Optimized 王明负责(be in charge of)检查卫生工作 

Original 锤炼得更坚强(temper it to be stronger) 

Basic 锤炼的更坚强(tempered stronger) 

Optimized 锤炼得更坚强(temper it to be stronger) 

Original 口号特别震撼人心(Slogan excites people’s mind ) 

Basic 口号特别振撼人心(Slogan shakes people’s mind ) 

Optimized 口号特别震撼人心(Slogan excites people’s mind ) 

Finally, TABLE IV. lists some examples of recalled 
sentences. The rows labeled as “Original” give the correct 
sentences; the rows labeled as “Basic” give the recall sentence 
from the original Chinese confabulation model with only word 

triplet lexicons and without KL weights; and the rows labeled 
as “Optimized” give the recall results from the optimized 
model, which has both word triplet and word pair lexicons as 
well as MI directed KL weights. The text in bold highlights the 
difference between the recall results. We can see that the 
optimized model improves the recall results semantically and 
syntactically. 

V. CONCLUSION AND FUTURE WORKS 

We proposed a Chinese sentence confabulation model by 
refining and modifying the English sentence confabulation 
model. The proposed model exploits semantic information 
including POS tags and segmentation labels, as well as 
optimized method such as circular knowledge storage, marking 
the start of sentence and N-neighborhood lexicon link, to 
successfully complete Chinese sentences with missing 
characters.  Based on the mutual information analysis, a 
saturation threshold is set to the size of training set. This can 
sharply reduce the training time with little sacrifice of 
accuracy. We also found that MI directed KL weights could 
amplify the effect of other optimization actions, such as 
increasing the bandgap value and adding word pair lexicons. 
All together they can improve the recall accuracy by 9%. 
Finally the MI analysis helps us to simplify the model and 
reduces the overall training and recall time by 18.6% and 
53.7% respectively. 

ACKNOWLEDGMENT  

This work is partially supported by the National Science 
Foundation under Grants CCF-1337300, and Air Force 
Research Laboratory under contract FA8750-11-1-0266.  

Any Opinions, findings, and conclusions or 
recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of AFRL or its 
contractors. 

REFERENCES 
[1] Q. Qiu, Q. Wu, and R. W. Linderman, “Unified Perception- Prediction 

Model for Context Aware Text Recognition on a Heterogeneous Many-
Core Platform,” International Joint Conference on Neural Networks, 
July, 2011. 

[2] Q. Qiu, Q. Wu, M. Bishop, R. Pino, and R. W. Linderman, “A Parallel 
Neuromorphic Text Recognition System and Its Implementation on a 
Heterogeneous High Performance Computing Cluster,” IEEE 
Transactions on Computers, vol. 62, pp 886-899, May,2013. 

[3] Q. Qiu, Q. Wu, D. J. Burns, M. J. Moore, R. E. Pino, M. Bishop, and R. 
W. Linderman, “Confabulation Based Sentence Completion for Machine 
Reading,” IEEE Symposium Series on Computational Intelligence, 
April, 2011. 

[4] F.Yang, Q. Qiu, M. Bishop and Q. Wu, “Tag-assisted Sentence 
Confabulation for Intelligent Text Recognition,” IEEE Symposium on 
Computational Intelligence for Security and Defense Applications, July, 
2012. 

[5] The Stanford Natural Language Processing Group, “Chinese Natural 
Language Processing and Speech Processing,” URL: http://nlp.stanford 
.edu/projects/chinese-nlp. shtml. 

[6] Fei Xia, “The Part-Of-Speech Tagging Guidelines for the Penn Chinese 
Treebank,” URL: http://www.cis.upenn.edu/~chinese/posguide.3rd.ch. 
pdf.  

[7] R. Hecht-Nielsen, “Confabulation Theory: The Mechanism of Thought,” 
Springer, August 2007. 



[8] Bill Tong, “Linguistic Features of the Chinese Language Family”, URL: 
http://www.oakton.edu/user/4/billtong/chinaclass/Language/linguistics.h
tm. 

[9] Z. R. Yang, M. Zwolinski, “Mutual information theory for adaptive 
mixture models,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 23, PP 396-403, April, 2001 

[10] F. Jelinek, “Statistical methods for speech recognition,” Proc. of the 
IEEE, vol. 64, pp 532-536, April,1976. 

[11] T. Mikolov, S. Kombrink, L. Burget, J.H. Cernocky, Sanjeev 
Khudanpur, “Extensions of recurrent neural network language model,” 
In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE 
International Conference on, pages 5528–5531, May,2011.

 


