
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

AnRAD: A Neuromorphic Anomaly Detection
Framework for Massive Concurrent

Data Streams
Qiuwen Chen, Ryan Luley, Qing Wu, Member, IEEE, Morgan Bishop, Member, IEEE,

Richard W. Linderman, Fellow, IEEE, and Qinru Qiu, Member, IEEE

Abstract— The evolution of high performance computing tech-
nologies has enabled the large-scale implementation of neu-
romorphic models and pushed the research in computational
intelligence into a new era. Among the machine learning
applications, unsupervised detection of anomalous streams is
especially challenging due to the requirements of detection
accuracy and real-time performance. Designing a computing
framework that harnesses the growing computing power of
the multicore systems while maintaining high sensitivity and
specificity to the anomalies is an urgent research topic. In this
paper, we propose anomaly recognition and detection (AnRAD),
a bioinspired detection framework that performs probabilistic
inferences. We analyze the feature dependency and develop a
self-structuring method that learns an efficient confabulation
network using unlabeled data. This network is capable of fast
incremental learning, which continuously refines the knowledge
base using streaming data. Compared with several existing
anomaly detection approaches, our method provides competitive
detection quality. Furthermore, we exploit the massive parallel
structure of the AnRAD framework. Our implementations of
the detection algorithm on the graphic processing unit and the
Xeon Phi coprocessor both obtain substantial speedups over the
sequential implementation on general-purpose microprocessor.
The framework provides real-time service to concurrent data
streams within diversified knowledge contexts, and can be applied
to large problems with multiple local patterns. Experimental
results demonstrate high computing performance and memory
efficiency. For vehicle behavior detection, the framework is
able to monitor up to 16 000 vehicles (data streams) and their
interactions in real time with a single commodity coprocessor, and
uses less than 0.2 ms for one testing subject. Finally, the detection
network is ported to our spiking neural network simulator to
show the potential of adapting to the emerging neuromorphic
architectures.

Index Terms— Anomaly detection, general purpose graph-

Manuscript received April 20, 2016; revised September 5, 2016 and
January 11, 2017; accepted February 17, 2017. This work was supported
by the Air Force Research Laboratory under Contract FA8750-12-1-0251.

Q. Chen is with the Department of Electrical Engineering and Computer
Science, Syracuse University, NY 13224 USA during the time of the work
(e-mail: qchen14@syr.edu).

R. Luley, Q. Wu, and M. Bishop are with the Air Force Research
Laboratory, Information Directorate, RITB, Rome, NY 13441 USA (e-mail:
ryan.luley@us.af.mil; qing.wu.2@us.af.mil; morgan.bishop@us.af.mil).

R. W. Linderman was with the Air Force Research Laboratory, Information
Directorate, RITB, Rome, NY 13441 USA. He is now with the Office of
the Under Secretary of Defense (Acquisition, Technology and Logistics),
Washington, DC 22202 (e-mail: richard.w.linderman.civ@mail.mil).

Q. Qiu is with the Department of Electrical Engineering and Computer Sci-
ence, Syracuse University, Syracuse, NY 13244 USA (e-mail: qiqiu@syr.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2676110

ics processing unit (GPGPU), heterogeneous systems, machine
learning, neuromorphic computing.

I. INTRODUCTION

DETECTING abnormal data stream is not a trivial
task. First of all, labeled training data are often diffi-

cult or expensive to obtain, and not all abnormal classes appear
in the available training set. Second, the algorithm must be
capable of real-time learning and detection in order to handle
nonstopping incoming data streams. Third, anomalies occur
in different contexts, and thus it is desirable for the detection
framework to handle diverse data distributions adaptively.
These restrictions exclude most of the classical anomaly detec-
tion approaches, which rely on classification or off-line exam-
ination. Although many novel techniques have been proposed
to address the aforementioned challenges [10], a few of them
are specially tuned to harness the ever-growing computing
power of the parallel architecture.

This paper presents anomaly recognition and detec-
tion (AnRAD), an autonomous anomaly detection framework
on heterogeneous multicore platforms, which provides real-
time unsupervised learning and prompt anomaly detection in
time series data streams. It is motivated by the idea that human
information processing is massively parallel and the learning
is from the associations among the features extracted from
unlabeled data. Those correlated features form an expectation
of normality and any unexpected patterns will cause surprises.

The AnRAD framework learns the structure of a probabilis-
tic inference network [15] using unlabeled training data. The
configuration is comprised of a brief arrangement of nodes,
which express certain features or feature compositions. These
nodes are referred to as lexicons, since they store the symbols
of all conceivable features. In this paper, we refer to node
and lexicon interchangeably. The connections between nodes
capture their associativity. Among the nodes, those with fan-
in connections are key nodes, which serve as the primary
testing units. With a learned topology, the network ingests
new data and refines the link weights. The collection of
weights between the symbols of two lexicons is implemented
as conditional probability matrices, whose nonzero elements
are named knowledge links. A new input pattern is tested with
respect to the trained network for the “amount of surprises”
in each key node, and the results are accumulated to make a
network-wide decision. Parallel implementations are deployed

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

to speed up the calculation. Our framework is applied to a
variety of tasks, including vehicle behavior monitoring and
host/network-based intrusion detection.

The approach has several desirable characteristics. First,
it does not assume the availability of labeled training data.
Second, it considers both the spatial and temporal association
among features; hence it can detect either an abnormal data
point or abnormal time series. Third, the learning and infer-
ence resemble the neuron system, thus can be implemented
using neuromorphic hardware/software. Finally, by pushing
the complexity to the feature (lexicon) space during the
self-structuring stage, AnRAD is able to perform accurate
detection with simple network topology, which enables fast
online learning and high concurrency. From the implementa-
tion perspective, the framework is inherently parallel: networks
constructed for different testing instances can be processed
independently; within each network, the inconsistency tests
of different key nodes can be processed in parallel; for each
key node, the likelihoods of all possible observations are also
assessed concurrently. The parallelism in different layers can
be exploited by the state-of-the-art many-core processors to
offer computation acceleration and model scalability.

This paper focuses on both the algorithm design and the
implementation. On the one hand, we investigate the learning
and model construction techniques that improve the detection
accuracy. On the other hand, we exploit high performance
computing architectures to enable real-time performance and
scalability. The main contributions are summarized as follows.

1) An algorithm analysis is presented that compares the
training complexity of AnRAD with that of a neural
network. It shows that the Bayesian property of AnRAD
enables it to use much less training samples to achieve
the asymptotic error. The discovery explains some of
our design choices adopted for network structuring and
incremental learning.

2) The detection accuracy of the self-structuring network is
evaluated with discussed experimental setups, and com-
pared with both traditional and neuromorphic detectors.

3) We extend the self-structured network [15], which
handles single data stream and single normal model,
to a more general framework that monitors concurrent
streams following diversified behavioral patterns.

4) The complexity of the recall algorithm is ana-
lyzed. Fine-grained parallelization as well as effi-
cient design of memory layout are implemented and
benchmarked on different multicore architectures. More
than 1000× speedup over CPU program is achieved.
Up to 16 000 subjects can be handled in real time using
a commodity coprocessor.

5) The tradeoff between computational speed and power
consumption is tested and analyzed.

6) We port the AnRAD network to our spiking neural
network (SNN) simulator [3] to demonstrate its close
relevancy to emerging neuromorphic architectures.

The rest of this paper is organized as the following.
Section II reviews some existing works in anomaly detec-
tion and machine learning using High Performance Com-
puting (HPC). Section III introduces and analyzes the

detection algorithm. Section IV extends the framework
and reviews the self-structuring method. Section V eval-
uates the detection accuracy and compares AnRAD with
the baselines. Section VI implements the parallel recall
algorithm on computing platforms, and presents testing results
under different setups. In Section VII, we run the detection
network on spiking neural simulator. Finally, Section VIII
concludes this paper.

II. RELATED WORKS

Many studies have been carried out for outlier detec-
tion [5], [10], [11]. Classification methods, such as support
vector machine [27], use labeled data to train classifiers
that assign input samples into normal or abnormal classes.
Density-based detectors assume that outliers are distant from
their neighbors. Local reachability distance [6] or distance
ranking [24] has been used to measure the local density. Online
approaches [28], [39] are also studied. Clustering methods do
not require labels, and expect that regular samples appear in
clusters while outliers are sparse [9]. The parametric statistical
models learn the normal data distributions and suppose the
abnormal data happen with low probability [43]. Graphic
models, such as conditional random fields [1], are studied
to capture the spatial-temporal features [45]. AnRAD is also
a graph-model-based approach. It differs from the previous
works, because our self-structuring algorithm enables a short
and concurrent inference pipeline for parallel implementations.

Since AnRAD features a bioinspired detection mechanism,
we are interested in other neuromorphic approaches for anom-
aly detection. Replicator neural network (RNN) [20] trains
symmetric hidden layers to reconstruct the input sample, and
uses the reconstruction error as the anomaly indicator. Self-
organized map (SOM) [8], [42], [44] leverages competitive
training to map the high-dimensional data into 2-D neuron
layers. Testing samples’ abnormalities are ranked based on
their distances to the best matching units (BMUs). Grow-
ing hierarchy self-organizing maps [26], [38] are studied to
overcome the static network structures. Hierarchical temporal
memory (HTM) [19] is a neuromorphic model based on
the cortical learning algorithm. Anomalies are identified by
the percentage of active pooler columns that were falsely
forecasted [36]. Most existing methods are the derivations of
neural networks, and a very few are based on the inference
networks.

In recent years, the joint design of learning models and
its parallel implementation has received extensive considera-
tion [4]. The intelligent text recognition system [40] explores
the confabulation [21] network to achieve machine read-
ing on heterogeneous platform with IBM cell processors.
Ahmed et al. [2] further accelerated the pattern matching
stage of the system with Intel Xeon Phi coprocessor. However,
the association stage still uses CPU-based multithreading. Our
preceding works [13]–[15] adopt the concept for anomaly
detection. But they only considered single data stream with
single knowledge context. The Bayesian network, as a kin
to cogent confabulation, was also studied from the HPC
perspective. Linderman et al. [29] focused on accelerating
the Bayesian network learning process on graphics processing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: AnRAD: A NEUROMORPHIC ANOMALY DETECTION FRAMEWORK FOR MASSIVE CONCURRENT DATA STREAMS 3

units (GPUs). Besides HPC systems, efforts were devoted to
neuromorphic architecture [18], [31] featuring SNN, which
was also proposed to efficiently represent spatial-temporal
memory [23].

III. DETECTION ALGORITHMS

A. Confabulation-Based Anomaly Detection

Following our previous work [14], [15], we adopt cogent
confabulation [21] as the computing model for probabilistic
inference. Cogent confabulation is an association-based cog-
nitive model, which connects the dependent symbolic features.
It describes the basic dimensions of the observation using a set
of features (e.g., color and shape). The attributes of a given fea-
ture (e.g., red color and round shape) are called symbols, which
analogize the biological neurons. Their pairwise conditional
probabilities are called knowledge links, which are equivalent
to the interneuron synapse plasticity. The link updates follow
Hebbian learning, and can be potentially learned using Spike
Time Dependent Plasticity (STDP) rule [34], which is known
to be the biological process to adjust the strength of neuron
connections. The neurons capturing the same feature (e.g.,
shapes) are collected in the same lexicon, while the knowledge
links among neurons of two lexicons are stored as a matrix
of conditional probabilities, where the i, j th element of the
matrix is the probability p(si |t j) of symbol si in the source
lexicon given t j in the target lexicon. We refer to the presence
of such probability matrix as a connection between two lex-
icons. The lexicons and their connections constitute a graph;
accordingly, we also denote lexicons as nodes. The knowledge
links are formed and tuned when the corresponding neurons
are activated simultaneously.

Whenever a feature input is received, the associated neuron
is triggered, and an activation is transmitted to other neurons
over the knowledge links. For a neuron t in lexicon l, its
excitation is computed as the sum of all fan-in links by

y(t) =
∑

k∈Fl

⎧
⎨

⎩
∑

s∈Sk

[
I (s) ln

p(s|t)
p0

]
+ B

⎫
⎬

⎭, t ∈ Sl (1)

where t denotes one of the neurons in lexicon l. Fl is
the set of lexicons that connect to l, and Sk is the set of
symbols in lexicon k. Given the occurrence of symbol s,
I (s) indicates 0 or 1. p0 is the minimum probability empir-
ically selected to ensure that t has positive excitations. B is
called bandgap; it favors those neurons that gather more exci-
tations from distinct nodes. We use B = 0 in this paper to let
the abnormality be determined only by the synaptic weights.
Basically, the excitation level of neuron t is its log-likelihood
given the status of other neurons. In the implementation,
we store v(s, t) = ln((p(s|t))/p0) as the value of knowledge
links for faster calculation.

A set of lexicons are selected and referred to as the key
lexicons. They are the essential testing entities. The rests are
not tested, and are called the supporting lexicons. Knowledge
links are formed from supporting lexicons to key lexicons
and among key lexicons. Equation (1) computes the excitation
levels of all neurons in a key lexicon, and the one with the

highest likelihood is elected as the predicted symbol tmax.
Given the input t , the anomaly score of a key lexicon is
evaluated using

αl(t) = y(tmax)− y(t)

y(tmax)
, t, tmax ∈ Sl . (2)

As shown in (2), we use the normalized discrepancy between
excitations of the input symbol t and the reference symbol tmax
as the node anomaly score. Here, tmax is the symbol that holds
the highest excitation y(tmax) in lexicon l. The score indicates
the cogency between the context and the input. The individual
key lexicons are merged to obtain the network anomaly score
by weighting their excitation levels with the priors y∗(t) =
y(t)+ ln(p(t)/p0. Substituting y in (2) with y∗, the network
anomaly score A is obtained by

A(tl=1...L) =
∑L

l=1 α∗l (tl)

L
(3)

α∗l (t) = y∗(tmax)− y∗(t)
y∗(tmax)

, t, tmax ∈ Sl (4)

where L is the total number of key lexicons. tl is the observed
symbol of lexicon l, and α∗l is the prior-weighted node score.
The accumulated score is in the range of [0, 1].

B. Algorithm Analysis

While most existing neuromorphic methods are based on
neural networks, we choose inference network instead. The
motivation lies in the size of the training sample for anom-
aly detection. According to Zimek et al. [47], ensemble
of models with smaller samples is preferable for anomaly
detection compared with training a large model with all the
data. Although confabulation network, which models p(s, t),
is supposed to have a higher asymptotic error than that of
neural network which directly learns p(t|s), it approaches the
bound faster. In other words, the inference network provides
the foundation for learning accurate models with small sample
(Section IV-B).

In (1), p(s|t) is learned by p̂(s|t) = c(s, t)/c(t), where
c(.) counts the occurrences of the event in the training set
{si , t i }Mi=1. Here, M is the training sample size. To simplify the
analysis, let B = 0, Sl = {t, t ′}, and

∑
s∈Sk

I (s) = 1, k ∈ Fl .
A threshold of 0 is used for (2), i.e., raising alarms whenever
t �= tmax. Let sk denotes the only activated input symbol in
the kth supporting lexicon. Assume that the observation t is
abnormal, it can be detected if and only if inequity (5) hold
true

ϕl(s) =
|Fl |∑

k=1

ln
p̂(sk |t ′)
p̂(sk |t) > 0. (5)

That said, under the input, t ′ is predicted as tmax
(i.e., the expected symbol). If ϕl(s) < 0, a false negative
error is generated. In the following, we focus our discussion
only on how to bound the false negative error; the discussion
of false positive error is similar by taking the reciprocals
for each summation term in (5). With two symbols in the
key lexicon, the anomaly detection problem is simplified
to a binary classification problem. The classifier is defined

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

hCFB : s → Sl and the asymptotic version is h∞CFB, which is
trained by infinite amount of data. We compare hCFB with
logistic regression hNN as an example for neural networks,
and use the same incoming connections Fl .

We use ε(.) to denote the error rate of a mapping. According
to previous studies [35], the asymptotic error rate is smaller
for neural networks, i.e., ε(h∞NN) < ε(h∞CFB). However, for
some constant ε0, to make ε(hNN) ≤ ε(h∞NN) + ε0 with high
probability, we need sample size M = �(|Fl |), i.e., in the
order of the learned parameters.

In the case of confabulation, the learned parameters p̂(sk |t)
can approach the asymptotic version p(sk |t) with less data.
Let some ε > 0, c(t) = βM for 0 < β < 1, δ = ε

√
βM ,

by additive Chernoff Bound [33], for each knowledge link,
we have

Pr[| p̂(sk |t)− p(sk |t)| ≥ ε]
= Pr[βM| p̂(sk |t)− p(sk |t)| ≥

√
βMδ]

≤ 2e−2δ2 = 2e−2βMε2
. (6)

Since there are 2|Fl | such parameters, to make the union
bound of the error 2|Fl | · 2e−2βMε2 ≤ ρ for some constant
ρ > 0, it suffices to pick M = O(ln|Fl |). In other words,
with high probability, p̂(sk |t) is within ω = O((ln|Fl |/M)1/2)
of p(sk |t).

To bound the error rate, we consider the case when hCFB
makes a false negative and h∞CFB does not [i.e., ϕ∞l (s) > 0
and ϕl(s) < 0]. This happens when ϕ∞l (s), obtained by
replacing p̂(sk |t) with p(sk |t) in (5), is within (0, ω|Fl |).
So the difference with the ideal model can be represented by

ε(hCFB) ≤ ε
(
h∞CFB

)+ Pr
(
ϕ∞l (s) ∈ (0, ω|Fl |)

)
. (7)

Given the normal pattern t ′, by the nonnegativity of
KL-divergence, each term of ϕ∞l (s) has positive mean and
�(1) of them is far away from 0. So the expectation
E[ϕ∞l (s)] = �(|Fl |) = γ |Fl | for some γ > 0. Based on the
assumption of confabulation model that all p(sk |t) are inde-
pendent, by Chernoff Bound [33], let δ = (γ −ω)/γ ∈ (0, 1),
we have

Pr
[
ϕ∞l (s) ∈ (0, ω|Fl |)

] ≤ Pr
[
ϕ∞l (s) < (1− δ)γ |Fl |

]

< e−δ2γ |Fl |/2 ≤ O(e−(γ−ω)2|Fl |) (8)

which is exponentially small with respect to |Fl | when ω is
a constant. Therefore, by picking M = �(ln|Fl |), with high
probability, we have ε(hCFB) ≤ ε(h∞CFB)+ε0 for some constant
ε0 > 0.

From the analysis, we draw design insights. First of all,
in order to satisfy the assumption of lexicon independence,
we will decouple the lexicons with their feature distance
during the network self-structuring procedure (Section IV-A).
Furthermore, the confabulation model has higher asymptotic
error for classification than a neural network, but can approach
it �(ln|Fl |) faster. So it is beneficial to apply incremental
learning where the network coefficients are learned by merging
the trained results from multiple short episodes of the training
sequences (Section IV-B).

Fig. 1. AnRAD workflow.

IV. NETWORK CONSTRUCTION AND LEARNING

The mechanism of cogent confabulation [21] is similar to
that of a probabilistic graphic model. Activating the power of
such simplified model usually requires carefully tuned network
architecture. Instead of going deep and complicated in the
network inference pipeline, AnRAD pushes the complexity
to the initial structuring stage and builds hierarchical structure
in the lexicon design space. This approach results in a very
succinct network configuration. In fact, the anomaly inference
only propagates two layers (support lexicons to key lexicons
and key lexicons to score), and every excitation integration
can be parallelized (Section VI). The overall model is a
simple but highly concurrent network built on top of unified
processing elements (i.e., neurons), which is analogous to the
massive parallel structure of the biological neural system. The
method enables fast online learning and highly concurrent
detection.

AnRAD is an inference-based anomaly detection frame-
work (Fig. 1), whose inputs can be represented as N streams
{{x1

1, x2
1 , . . . , xt

1, . . .}, {. . . , xt
2, . . .}, . . . , {. . . , xt

N , . . .}}. Here,
xt

n represents a record tuple of the nth stream at time t .
The qth feature of the record is labeled as xt

n(q), while
the total number of features is denoted by Q. An initial
duration of streams at time [0, Tg] is used to configure the
network structure G using our self-structuring algorithm [15].
The topology captures the general correlations between the
lexicons. Combination pooling finds those potentially useful
feature combinations from an enormous number of possible
ones; node reduction selects a succinct set of key lexicons
from the pooling results; the link selection connects lexicons
to learn knowledge associations.

After the network is constructed, we let multiple knowledge
contexts share a global network structure, and train separate
knowledge bases using their local data samples. Take wide
area vehicle behavior monitoring, for example, we break
the area into hundreds of small zones. Data streams (indi-
vidual vehicle trajectories) at time (Tg, T0] are directed to
the local zones � = {1, 2, . . . , Z} to tune the knowledge
bases G

z (Tg : T0), z ∈ � [i.e., modeling p(s|t)’s]. Then,
continuous streams starting from T0 will be tested using these
knowledge bases. Meanwhile, the new samples also improve
the knowledge bases G

z (Tg : t) by performing incremental
learning. A sliding window of length W , {xt−W

n , . . . , xt−1
n , xt

n}
is used at each time frame. The anomaly detection module

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: AnRAD: A NEUROMORPHIC ANOMALY DETECTION FRAMEWORK FOR MASSIVE CONCURRENT DATA STREAMS 5

is accelerated by the state-of-the-art multicore processors for
real-time processing. The performance of the inference net-
work largely depends on the quality of the knowledge graph.
In this section, we inherit the self-structuring procedure [15]
to construct the confabulation network.

A. Self-Structured Inference Network

1) Hierarchical Key Lexicon Organization: Since confabu-
lation only models the first-order dependency of features, more
complex feature interaction has to be captured by building
lexicons that record feature compositions. Our architecture
of network contains lexicon hierarchy in which nodes at
higher levels are constructed as the combinations of nodes
at lower layers. At the bottom level, the lexicons store singe
features. They are referred to as the primary features, and
are predefined to describe the input samples. Those lexicons
at higher levels combine primary features, and they model
more abstract interaction patterns between features. Because
the lexicons store discrete symbols, real-valued features are
quantized using equal-width bins before activating the lexicon
symbols. The combination process is applied to both the
feature and temporal domains. For instance, we can com-
bine multiple features from the same time frame, such as
〈xt

n(q), xt
n(q
′)〉, q, q ′ ∈ Q, or the same feature from multiple

time frames as in 〈xt
n(q), xt−�t

n (q)〉,�t < W . Thus, temporal
patterns can also be modeled.

Such layered feature composition translates data tuples
into neuron activations in the lexicons, but with increasing
Q and W , the network’s complexity may increase exponen-
tially. To reduce the complexity and improve the accuracy,
AnRAD adopts a pooling-and-reduction procedure to optimize
the network structure.

Feature combination pooling generates an initial set of lexi-
con candidates to capture higher order associations. As shown
in [15], combinations of sufficiently correlated features can
detect anomalies that are indistinguishable to single features.
Therefore, we define d(qi , q j) = [1 −MI(qi , q j)] ∈ [0, 1] as
the feature distance, in which MI(.) calculates the normalized
mutual information between the features qi and q j . A smaller
distance indicates higher correlation between the two features.
To determine whether a composition Ql is kept in the lexicon
candidate set, the pooling process performs a relevancy test as
in

�(Ql) =
∏

qi ,q j∈Ql

I [d(qi , q j) < dprox] (9)

where I (.) is the identity function that equals to 1 when the
test result is true.

The test ensures that all component features of composition
Ql are close to each other. The pooling process applies the
test to a subset of composition features whose cardinality is
less than a predefined max_order. The features, which pass
the relevancy test, will be chosen as the lexicon candidates.
We use parameter dprox to control the size of the candidate
pool.

2) Key Lexicon Reduction: After the pooling, a set of most
relevant lexicon candidates are selected, and node reduction

further packs them into smaller size. Since the training data do
not contain labels, we adapt a feature clustering approach [32]
to remove the redundant candidates. The process clusters the
compositions based on the feature distance, and then uses
only the medoids to represent the clusters of candidates. Using
the normalized mutual information as the distance d(Ql , Ql′)
between the combinations, the algorithm repeatedly prunes
the candidate set by K-nearest-neighbor approach. At every
iteration, the node who has the smallest K-distance is chosen,
while its K neighbors are eliminated from the candidates.
Then, the K value is reduced until the next most compact
candidate has a K-distance smaller than the given thresh-
old [15]. We repeatedly prune until K reduces to 1. The
selected medoids form the key lexicons.

In order to detect abnormal patterns in temporal domain,
we extend the feature composition to the temporal domain.
The lexicons sampled from different frames form a new set
of primary features Q−t

l = {Q0
l , Q−1

l , . . . , Q−W
l }, where

the superscripts give their time stamp. The similar key lex-
icon selection method is then applied on the feature set to
construct new combinations and a key node is expressed
as a 2-D composition Rl ∼ [(ql1, ql2, . . . , qli , . . .)

−t1, (. . . ,
qli , . . .)

−t2, . . . (. . . , qli , . . .)
−t j , . . .].

3) Link Selection: We use the mutual information among
lexicons to identify the set of supporting lexicons that best
infer the symbols in the key lexicon. The link selection
maximizes the relevancy between key nodes and their sup-
porting nodes, and minimizes the dependency among those
supporting nodes connecting to the same key node. Here,
the supporting nodes are selected from those primary features,
because we have already modeled the composition features
with key lexicons. For each key lexicon, we select lexicons
representing single features {q−t , q ∈ Q, t < W }. Starting
from a target key node Rl , the method [15] first sorts the
candidates by their feature distance to Rl in ascending order.
Traversing the sorted list, the process puts the feature to result
supporting nodes only when: 1) it does not belong to the
feature combination of Rl ; 2) it has close distance to Rl ; and
3) it is distant from those supporting nodes that have already
been selected for Rl .

After the processes, the network is configured properly.
Note that the structuring stage only configures the connections
among the lexicons, but the knowledge links of the con-
nections (between symbols) are established and strengthened
during the online learning of local knowledge bases.

B. Incremental Learning

Based on the network configuration, AnRAD builds the
knowledge bases using the new data streams. It could simply
count co-occurrences c(s, t) from all the training samples,
which works fine for prediction tasks. However, a large
training set size does not necessarily improve the accuracy
of anomaly detection. Based on the analysis in Section III-B,
our framework uses incremental learning with episodes [15].
We periodically reset the co-occurrence counters after time T .
New counter values merge into those of the previous episodes
to update the knowledge link weights

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

v�+1(s, t) = v�(s, t)� + ln[p(s|t)/p0]
�+ 1

(10)

v0(s, t) = ln

(
p(s|t)

p0

)
(11)

where v� is the stored knowledge value at episode �. It can
be substituted to excitation y(t) = ∑

k∈Fl
{∑s∈Sk

[I (s)v�

(s, t)] + B}. In the first training episode, i.e., v0, the
knowledge value is calculated following (1). Basically,
the episode update functions as the ensemble of subsamples
in time domain.

V. EVALUATIONS

A. Data Sets

Three different tasks are studied for evaluating the AnRAD
framework.

1) Vehicle Traces [13], [14]: In this task, vehicle behav-
ior data are collected from a road network. The data are
processed to obtain ten primary features, among which five
are related to an individual vehicle (vehicle size, coordination,
velocity, and direction), and the other five are related to
vehicle interactions (the distance to neighboring vehicles,
their relative speeds, positions, directions, and sizes). The
data are collected at a sampling period of 1 s. The area
is partitioned into 342 detection zones using traffic density
balance method [14]. The training set contains normal records
with length of 240 min. The testing set contains 10 min of
unseen records

2) DARPA Intrusion Detection Data Set [30]: We extract
network traffic statistics from the DARPA 1998 packages.
Data tuples are generated in 300-ms sampling frames for each
endpoint pair; 21 primary features are extracted, which contain
information, such as port number, byte/package count, TCP
flags, and so on. Since we focus on real-time detection of
concurrent streams, we did not use the preprocessed KDD
99 [48], because it lumps data sequence into sessions and
the detection can only be made at the end of a session. The
model construction is fully automated with almost no expert
knowledge of attacks. The normal data for learning have 20k
frames sampled from the seven weeks of training period. For
testing, the data contain 7k normal streams and 422 abnormal
streams from 24 attack classes.

3) ADFA-LD [16], [17]: The data set consists of syscall
traces of malicious and benign programs. A clean training
set containing around 10k system calls are sampled. Also,
we build another tainted training set of about 50k system calls,
among which 1/5 of the samples are randomly extracted from
the attacks and treated as normal during training. This is to
evaluate the detection performance under nonideal or compro-
mised training set. For testing, the normal data contains 6k
programs and the abnormal data has 746 attacks.

B. Comparison Methods

1) Incremental Local Outlier Factor [39]: It is the incre-
mental version of the classical density-based local outlier fac-
tor (LOF) detector [6]. Given a testing subject, the method uses

TABLE I

AUC SCORES FOR LOCAL KNOWLEDGE BASES

the ratio between the neighbors’ local reachability distances
and that of the testing sample’s as the anomaly indicator.

2) Cross-Feature Analysis [7]: This is a fast rule-based
unsupervised detector. For each feature, the method builds a
CART decision tree and uses the other features to infer the
probability of the target feature. Then, the probabilities from
all trees are summed to indicate the abnormality.

For neuromorphic baselines, we reproduce the followings.
3) Replicator Neural Network [20]: Similar to an autoen-

coder, the method builds a symmetric five-layer neural network
and uses back propagation to minimize the reconstruction
error. The mean squared error between the input features and
the reconstruction outputs is used for the anomaly score.

4) Self-Organizing Map: The neural network uses competi-
tive learning to map the high-dimensional data to a 2-D neural
layer. It was used for anomaly detection in various fashions [8],
[42]. In this baseline, we use the sum of input’s distances to
its nearest BMU to detect anomalies [44].

5) Hierarchical Temporal Memory [19]: The emerging neu-
romorhpic model based on cortical learning algorithm and
sparse coding [41] identifies anomaly by the percentage of
active spatial pooler columns that were incorrectly predicted
by the temporal pooler [36]. The method works in streaming
fashion and does not require sliding windows for the input
sequences. For multifeatured data set (DARPA), we train
predictive models for each feature, and generate the anom-
aly score by summing up scores from each feature model.
All hyperparameters are selected using the in-package swarm
algorithm.

All evaluation methods output anomaly scores for each data
frame. We use the leaky bucket method to make an anomaly
decision from the score sequences. Whenever a score exceeds
a threshold, we add one unit to the bucket. Otherwise, one unit
is leaked from the bucket. An anomaly sequence is reported if
the bucket overflows. We vary the score threshold to find trade-
off between detection rate and false alarm and also to analyze
the sensitivity of the bucket size. The comparative studies are
conducted on the fully labeled public data sets (DARPA and
ADFA-LD). For methods requiring continuous features (LOF,
RNN, and SOM), one-hot encoding is applied to the system
calls. Different AnRAD configurations are tested on all three
data sets.

C. Vehicle Behavior Detection Over Zones

AnRAD trains local knowledge bases for different zones.
To evaluate the effectiveness of the design, we pick four zones
out of the whole area. A zone contains 20 to 70 normal
vehicles during the 10-min test period. To each zone, five or six
synthetic anomalies (speeding, deviating from roads, tailgat-
ing, and so on) are inserted randomly.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: AnRAD: A NEUROMORPHIC ANOMALY DETECTION FRAMEWORK FOR MASSIVE CONCURRENT DATA STREAMS 7

Fig. 2. Comparison between local and single knowledge bases. (a) Zone 1.
(b) Zone 2.

Fig. 3. Results on DARPA data set. (a) ROC curves with bucket size 4.
(b) AUC with different buckets.

We first build separated local knowledge bases for each zone
using their own vehicle traces. We collect the receiver oper-
ation curve (ROC) area under curve (AUC) scores generated
from the test set. A high AUC score means high detection rate
and low false alarm. As shown in Table I, scores of 1 or almost
1 are achieved in the four zones and the localized training is
very effective with the vehicle traces.

We then compare the localized knowledge base with a
single large knowledge base built for all four zones. While the
single knowledge base can also achieve high detection rates,
the localized training method responds better to the normal
vehicles in all zones. In Fig. 2, the Y -axis gives the false
positive rates when the detection rate is 1, and the X-axis
specifies the thresholds of anomaly scores. The false positive
rates using the local knowledge bases are about 40% lower
than that of the single knowledge base at the same thresholds.

D. Comparative Evaluations

For the DARPA data set, the ROC for the comparison
methods is shown in Fig. 3(a). The X-axis shows the false
positive rate, and the Y -axis shows the true positive rate. The
rates are the averages of all abnormal classes. The decisions
are generated from the scores using leaky bucket of size 4 for
all methods. LOF outperforms cross-feature analysis (CFA),
because it works better with continuous features. Both neural
network methods, RNN and SOM, obtain similar curves and
perform better at low-false-positive region. HTM does not
adapt well, because the original models are tuned for single
features, and they probably should not be linearly combined.
AnRAD outperforms the baselines especially at operation
region with high detection rates. It also achieves the best AUC
score, as shown in Table II column 2.

TABLE II

AUC SCORES FOR DIFFERENT DETECTORS

Fig. 4. Mutual Info between ADFA-LD system call and its previous calls.

Fig. 5. Results on ADFA-LD using clean training data. (a) ROC curves with
bucket size 4. (b) AUC with different buckets.

Since leaky buckets are used for all approaches, the bucket
size plays an important role in the output. We also analyze the
sensitivity of the detection with this parameter. In Fig. 3(b),
the X-axis varies the bucket sizes and the Y -axis marks the
AUC scores of the comparison methods. For DARPA data set,
all approaches favor a smaller bucket, because the abnormal
pattern of an intrusion usually occurs within a short time. The
relative standings between the methods do not change much
with different buckets.

For ADFA-LD data set, the length of the moving window
is 20 syscalls, as suggested in [22]. This is justified by Fig. 4,
which plots the mutual information (Y -axis) between a system
call and its previous calls with different offsets (X-axis).
The red line denotes the mutual information of the call with
offset 20, after which the mutual information does not vary
much.

Fig. 5(a) shows the ROC curves when using clean training
set and bucket size 4. HTM has the best result in this
case. Such univariate data do not fully exploit the lexi-
con compositions, but AnRAD still achieves a competitive
result in Table II column 3. Against different bucket sizes
in Fig. 5(b), AnRAD has the most robust performance. HTM
outputs bipolar scores (either near 1 or near 0) alternatively in
this data set, therefore is more sensitive to the buckets.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. Results on ADFA-LD using tainted training data. (a) ROC curves
with bucket size 4. (b) AUC with different buckets.

TABLE III

AUC SCORES FOR DIFFERENT NETWORK STRUCTURES

For compromised ADFA-LD training data, AnRAD uses
the incremental learning algorithm to counter the effects.
In Fig. 6(a), the neural networks and LOF do not perform
well in tainted training data. AnRAD only suffers a small
accuracy degradation according to Table II, and it is advanta-
geous at high-true-positive region. In Fig. 6(b), the AnRAD
performance is stable and leads the AUC scores over different
bucket sizes.

These results show that AnRAD’s detection accuracy is
competitive or superior to the comparison methods.

E. Effects of Self-Structuring

In this section, we present experimental data to show the
advantage of using self-structured network. In this experiment,
the reference designs are a set of randomly generated networks
with the same size (number of key lexicons and connections)
as the self-structured AnRAD network. The reference design
is trained and tested in the same way as in AnRAD.

For the DARPA data set, the self-structured network consists
of 123 key lexicons and 2421 connections. Ten networks
with the same size are randomly generated and their average
performance is reported. It is shown in Table III that the
self-structuring algorithm always has better AUC scores and
outperforms the random network by around 17%. Similar
experiments have been carried out for ADFA-LD data set. The
networks have 40 key lexicons and 410 connections. Table III
shows that the self-structured network has slightly better
performance than the random network with both clean and
compromised training data. The advantage is smaller than that
of DARPA, because system calls within the windows are more
correlated, so even randomly generated feature combinations
could benefit the detection.

Finally, Table IV summarizes the impact of the self-
structuring algorithm to the complexity of the network.
The first two rows give the maximum order of composition in
the feature and temporal domain. The rest of the rows give the
potential number of nodes and connections without reduction

TABLE IV

NETWORK COMPLEXITY IMPACT OF SELF-STRUCTURING

TABLE V

COMPLEXITY ANALYSIS

and the actual number of nodes and links after reduction.
In all three data sets, our self-structuring technique achieves
significant network size reduction.

VI. PARALLEL IMPLEMENTATIONS

Section V demonstrates the framework’s efficiency in anom-
aly detection. But from the aspect of sequential computation
complexity, AnRAD is not superior to the other approaches
during the detection. This section further leverages the highly
concurrent inference structure of AnRAD to deploy the
computation-intensive framework in real-time scenarios using
many-core systems.

A. Complexity Analysis

To accelerate, the algorithm requires an understanding of its
bottleneck first. In Table V, the computation times of different
methods on the same DARPA data stream are collected. The
programs are all single threaded with moderate optimization
effort. In terms of training, AnRAD is much faster than the
others because at each frame, it only updates a single entry in
the corresponding knowledge link matrix. Therefore, real-time
processing and incremental training can be achieved without
much difficulty. However, the detection function of AnRAD
is merely faster than the incremental LOF, whose complexity
scales with the volume of the training samples. Fortunately,
we can exploit the parallel structure of AnRAD to accelerate
the computation.

According to (1) and (2), processing one sample has time
complexity of O(L DF), where L is the number of key

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: AnRAD: A NEUROMORPHIC ANOMALY DETECTION FRAMEWORK FOR MASSIVE CONCURRENT DATA STREAMS 9

lexicons, D indicates the average number of neurons in a
lexicon, and F denotes the average number of incoming
links connecting to one neuron. The score computations of
key lexicons are independent, thus the L lexicons can be
assigned to parallel computation units, such as Compute Uni-
fied Device Architecture (CUDA) [49] blocks. The complexity
terms D and F were induced from accumulating the value of
knowledge links connecting to each candidate symbols. Such
computation can be made parallel by mapping different links
to different CUDA threads or vector processors.

In terms of space complexity, the AnRAD model is dom-
inated by O(L FU) in which U is the average size of the
knowledge link matrices. The actual space consumption can
be lower. For example, features, such as “shared links” [13],
which share the knowledge matrices for links with similar
context meanings (e.g., links from different neighbor vehicles
to the target vehicle), may be adopted to reduce knowledge
base size. Because most of the connections are sparse matrices,
a compact storage format is preferable.

B. Baseline Solutions

Two baseline solutions are considered in this paper.
1) CPU Multithreading: A straightforward parallel imple-

mentation is to map each evaluation of (4) to one thread.
Basically, a thread pool is allocated with a maximum number
of simultaneous threads. A workload dispatcher assigns key-
lexicon computations to the available threads, or waits if all the
worker threads were occupied. Obviously, the limited number
of CPU cores prevents us from fully exploiting the structural
parallelism of AnRAD.

2) Naive GPU Implementation: General Purpose
GPUs (GPGPUs) provide a potential option to fully
parallelize the key-lexicon computations, because even a
low-end GPU has more cores than a state-of-the-art CPU.
A simple design is to directly replace each CPU thread with
a GPU thread using kernel Algorithm 1. Each CUDA thread
handles one key lexicon. This design may introduce the
following two major problems.

Algorithm 1 Naive Recall Kernel
1: procedure naive_recall(KB, IN): # KB: knowledge

base; IN: input symbols
2: ref ← 0
3: for symbol t ∈ KB.lexicons[threadIdx.x]:
4: initialize y
5: for kl ∈ KB.lexicons[threadIdx.x].links:
6: y += kl[t][IN[link.input_idx]] + band_gap
7: ref = max(ref, y)
8: obs = y if t == IN[threadIdx.x]
9: Score[threadIdx.x] = (ref − obs)/ref

First of all, it gives inefficient knowledge base management.
The knowledge base is a set of sparse matrices. Certain
types of compression are required for efficient storage. In the
original CPU implementation, the knowledge link matrices
are stored in hash tables, which provide efficient memory
usage and O(1) lookup time. However, massive concurrent

Fig. 7. In-memory knowledge base layout.

random accesses from GPUs will severely degrade the cache
performance and induce a lot of stalls. Second, it will lead to
imbalanced workload distribution among threads. The number
of symbols in different key lexicons is determined by the
nature of the targeted application and they vary in a wide
range. Such workload imbalance may produce serious control
divergence, since the CUDA threads are executed in warps.
If the threads had to wait for their neighbors for outstanding
workloads, the acceleration would be completely diminished.

To address the above-mentioned limitations, we further
improve the GPU implementation from the perspectives of
knowledge base storage and workload distribution. We also
generalize the design to other parallel architectures, such as
the Xeon Phi coprocessor [25].

C. In-Memory Knowledge Base

To fully utilize the computing resources on the GPU,
knowledge bases storage needs to be designed for both space
efficiency and query convenience.

The knowledge base of confabulation network is flattened
and stored in the device memory. There can be multiple
knowledge bases on the device, and Fig. 7 shows the structure
of one knowledge base. It maintains a Block List. Each entry
in the Block List is the record of a key lexicon. It contains
a pointer to the list of all incoming connections (KL List) to
this lexicon. The key lexicon neurons’ excitation levels are
stored in the shared memory, and the usage of shared memory
determines how many blocks can be coscheduled on a stream
processor. Hence, a key lexicon may be divided into multiple
blocks based on the size of its candidate symbols in order to
optimize the GPU occupancy. A KL entry in the KL List has
a pointer that points to the corresponding knowledge matrix.
Because the matrix usually has a very high sparsity, it is stored
in a list of list format (LIL). Each entry of the LIL gives the
conditional probability p(s j |ti), where s j and ti are symbols in
corresponding support lexicon and target lexicon, respectively.
Let each row of the knowledge matrix correspond to a symbols
s j and each column correspond to a symbol ti , the LIL is
arranged in row-major order. Each entry in the Strip List repre-
sents a row in the matrix, and each entry in the Knowledge List
represents a nonzero entry in that row. Since different target
candidates ti , ti ∈ key_lexicon need knowledge links from the
same support symbol s j , s j ∈ support_lexicon to calculate
their excitation level, this arrangement makes sure that the
algorithm accesses Knowledge List sequentially for a better
memory locality. Finally, the block entry also contains pointers
to the prior probabilities (Prior List) of the key symbols for
the calculation of (3).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Memory usage of individual models. (a) DARPA and ADFA usages.
(b) Vehicle usage of zone 190.

The size of the trained knowledge bases for DARPA and
ADFA data sets is plotted in Fig. 8(a). The naive imple-
mentations (DARPA_N, ADFA_N) give the potential size
of knowledge base without compression. As we can see,
the memory usages grow quickly as the size of the training
data increases. The compressed implementation (DARPA_C,
ADFA_C) compresses the sparse matrices using LIL and
reduces the memory consumptions significantly. For DARPA
and ADFA data sets, it gives 67% and 95% reduction in
memory usage, respectively. Such improvement is particu-
larly notable for ADFA, because features associated with the
system calls are extremely sparse. For both implementations,
we can see that the size of knowledge base gradually becomes
stabilized.

Shared knowledge link is also implemented, where the
knowledge links connecting different neighbor vehicles to the
target vehicle are merged into the same probability matrices
[e.g., 〈neighbor(1).distance〉 and 〈neighbor(2).distance〉
can share the same knowledge matrix]. This not only makes
the nodes of interactive features more general and expose
them to more training samples, but also reduces the memory
usage. As Fig. 8(b) shows, using the compressed knowledge
storage reduces the memory requirement by 60%, and further
implementing the shared knowledge link (C+S) can give an
additional 78% of memory reduction.

D. Workload Mapping and Anomaly Score Computation

Instead of mapping each key lexicon to individual threads,
we map it to a CUDA block, which consists of up to
192 threads. Such implementation has two benefits: first,
blocks can be dynamically scheduled, thus uneven workloads
among different lexicons would no longer introduce control
divergence; second, given the large number of threads in
a CUDA block, different symbols in the key lexicon and
different knowledge links associated to the symbol can be
processed in parallel at thread level. Hence, it reduces the
runtime by a factor of D and F as defined in Section VI-A).

Such workload partition and mapping is limited by the
amount of hardware resources. A large key lexicon with many
symbols will have to be divided and mapped to multiple
CUDA blocks, in order to fit all symbols in the shared memory.
When initializing the system, the learned knowledge bases
are off-loaded to the device memory. The testing data are
then transformed into corresponding format and dispatched

to GPU frame by frame. Each CUDA block corresponds to a
key lexicon. For those large lexicons, multiple CUDA blocks
are assigned to them.

The kernel for computing anomaly score follows the typical
MapReduce style. Two stages are defined: excitation mapping
and score reduction, as shown in Fig. 9.

The mapping stage calculates the excitations of the symbols
in a key lexicon, and stores them in the shared memory buffer.
Consider a key lexicon l with symbol set Sl and supporting
lexicon set Fl . When the kernel receives a new input for
support lexicon k ∈ Fl , it uses the input symbol s ∈ Sk

to locate the activated strip from the knowledge link LILs.
This strip contains the nonzero conditional probability p(s|t),
where t is a symbol in key lexicon. The traditional way to
calculate the anomaly score of a key lexicon is to process its
candidate symbols one by one. For each candidate symbol t ,
strips associated to all the support nodes are searched for the
specific p(s|t) and the values are accumulated. Such approach
constantly loads different strips and hence has a low cache
performance. We adopt a reversed approach that processes
strips one by one. An active strip corresponding to symbol s
in the support lexicon is read by multiple threads, which will
then add the obtained knowledge value p(s|t) to the memory
location that corresponds to the excitation level y(t). Atomic
add is used here since the same variable y(t) is accessed by
multiple threads. To prevent the control divergence, the strip
lengths are warp aligned so that the threads of a warp follow
the same control flow. In this way, the cache performance is
optimized because the strip access patterns are continuous.
The excitations of the key symbols Sl are stored in the
shared memory for efficient atomic addition and interthread
operations. If a lexicon has more symbols than the predefined
shared memory usage Umax (1536 in Fig. 9), it is partitioned
into multiple blocks. The block dimension (192 in Fig. 9) is
jointly chosen with Umax for higher device utilization (on Tesla
C2075, the configuration offers eight concurrent active blocks
on one multiprocessor and a theoretical occupancy of 100%).
The synchronization required by the atomic addition does not
cause much performance degradation. If the lexicon had many
symbols, the possibility that multiple threads writing the same
symbol would be low; if the lexicon had a very few symbols,
the computation of this lexicon itself would be less likely to
be on the critical path.

In the reduction stage, all the excitations {y(t), t ∈ Sl}
buffered in the shared memory are compared and the most
likely symbol tmax is selected. The excitation values of this
reference symbol and the observed symbol generate the key
lexicon anomaly score, which is then collected to calculate the
network anomaly score based on (3). The formal representa-
tion of the process is shown in Algorithm 2.

E. Implementation on Xeon Phi

In addition to the NVIDIA GPU, we investigate the perfor-
mance of AnRAD on another emerging multicore architecture,
the 64-core Intel Xeon Phi processor [25]. In this paper, we use
the coprocessor in offload mode. The same memory layout,
as in Fig. 7, is adopted. The main algorithm is also similar

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: AnRAD: A NEUROMORPHIC ANOMALY DETECTION FRAMEWORK FOR MASSIVE CONCURRENT DATA STREAMS 11

Fig. 9. Anomaly score computation.

Algorithm 2 Optimized Recall Kernel
1: procedure optimized_recall(KB, IN): # KB: knowl-

edge base; IN: input symbols
2: shared memory: exbuf[Umax]
3: block ← KB.blocks[blockIdx.y];
4: N ← block.num_symbols
5: for t = threadIdx.x : blockDim.x : N:
6: exbuf[t]← KB.prior[t]
7: sync threads
8: — # Knowledge mapping
9: for each kl ∈ block.KLs:

10: if IN[kl.input_idx] is empty:
11: continue
12: strip ← kl.strips[IN[kl.input_idx]]
13: for t = threadIdx.x : blockDim.x : strip.len:
14: e ← strip.entries[t]
15: atomicAdd(exbuf[e.key], e.value+B)
16: sync threads
17: — # Excitation reduction
18: obs ← exbuf[IN[block.input_idx]]
19: b ← threadIdx.x
20: for t = b+blockDim.x : blockDim.x : N:
21: exbuf[b]← max(exbuf[b], exbuf[t])
22: sync threads
23: ref ← threadReduceMax(exbuf[0:blockDim.x])
24: Score[blockIdx.x] = (ref − obs)/ref

as in Section VI-D. However, the workloads are mapped to
different units of the coprocessor architecture. Typically, Xeon
Phi KNC chip has less physical cores than GPU does, but
each of the Xeon Phi’s cores is a fully featured processor,
and thus more powerful than the CUDA core in NVIDIA
GPU. In particular, each Xeon Phi core is equipped with a
256-b vector engine, which can be effective in the mapping-
reduction process. Therefore, the lexicon-wised CUDA block
computations are mapped to individual OpenMP threads, and
within each OpenMP thread, vector operation is used to realize
the parallelism originally enabled by the multiple CUDA
threads.

F. Evaluation on Single Data Streams

We implemented AnRAD in the aforementioned parallel
architecture, including CPU multithreading, naive GPU accel-
eration, optimized GPU acceleration, and Xeon Phi offloading.
We compare the four designs using test data from vehicle

TABLE VI

SINGLE STREAM PER-FRAME RUNTIMES

monitoring, DARPA, and ADFA data sets. For CPU multi-
threading, we use Intel Xeon W5580 with four cores (16 logic
cores) running at 3.20-GHz clock frequency. For GPU-based
implementations, we use NVIDIA Tesla C2075 with 448 cores
running at 1.15-GHz clock frequency and 6-GB device mem-
ory. Umax = 1536 and blockDim.x= 192 are selected to
achieve full theoretical occupancy. The Intel coprocessor
implementation is on a Xeon Phi 5100 with 60 cores running
at 1.053 GHz and 16-GB memory capacity. A maximum
of 240 threads are allocated.

Table VI compares the performance of those different imple-
mentations. As observed from the table, CPU with 16 threads
achieves five to eight times of speedup compared with the
serial implementation. It is not linearly scaled with thread
number mainly due to the memory stalls caused by concur-
rent memory accesses. The naive implementation on GPU,
however, only provides marginal improvement or even runs
slower than the single-thread baseline, because imbalanced
workloads across threads produce control divergences. The
optimized GPU implementation provides substantial speedup
over the baseline methods. Finally, the improvement by Xeon
Phi is also significant, since the workflow follows the same
principle of the GPU implementation. The reason that Xeon
Phi implementation is not as fast as GPU is that the single
testing stream does not generate enough workload for the
maximal 240 threads. For example, the generated DARPA
network has only 123 key lexicons, so can only utilize about
half of the thread capacity. Thus, the GPU may offer better
responsiveness on small and randomly arrived service requests,
while the processing power of Xeon Phi would be better
utilized by larger workload batches.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VII

POWER AND PERFORMANCE

G. Power and Performance Tradeoff

Furthermore, we evaluated the portability and performance
of the AnRAD framework on high-performance workstation
(NVIDIA Tesla K20c GPU) and embedded system (NVIDIA
Jetson TK1). The former has 2496 CUDA cores running at
706-MHz clock frequency and 5-GB device memory; while the
later has 192 CUDA cores running at 852-MHz clock fre-
quency and 1.75-GB device memory. The power consumption
of K20 workstation and Jetson board is 194.7 W and 3.4 W,
respectively, when they are in idle state. We measure active
power as the difference between average executing power and
average idle power. Similar to the earlier analysis, we compare
performance using data from vehicle monitoring, DARPA,
and ADFA.

Table VII compares the performance of the implementa-
tion on both devices. It shows that the K20 GPU achieves
speedup of approximately 30 to 50 times compared with
the Jetson GPU. However, the Jetson system on average
consumes an active power of 2.87 W, while the K20 system’s
average active power is 95.86 W. Our result shows that the
execution on Jetson is effectively energy neutral as compared
with K20 despite the longer runtime per frame. However,
it gives significant efficiency in active power consumption in
all cases. Despite its low power, Jetson still exceeds the real-
time requirements—for example, it achieves a 13.5 ms per
frame processing rate on DARPA stream whose input rate is
only 300 ms per frame.

H. Multistream Extension on Wide-Area Monitoring

The previously discussed parallel implementation assumes
that there is only one active knowledge base and one set of
lexicons. In this section, we use wide-area vehicle behavior
monitoring as a case study to demonstrate how the parallel
implementation extends to concurrent streams with multiple
contexts.

After the universal network structure is built, separate
knowledge bases are trained for each zone using their local
traffic streams. A context selection module is used to associate
the input vehicles with their corresponding zone knowledge
base. Then, the workloads are assigned to the computing
platforms for anomaly scoring. The vehicles’ key lexicons are
mapped to OpenMP (CPU or Xeon Phi) threads or CUDA
blocks (GPU). Using the GPU implementation as an exam-
ple shown in Fig. 10, the concurrent streams (i.e., vehicles
appeared in the same time frame) are mapped into a 2-D

Fig. 10. 2-D workload mapping.

Fig. 11. Memory consumption of multiple zones.

Fig. 12. Vehicle detection throughputs. (a) Tesla C2075. (b) Xeon Phi 5100.

CUDA grid. Distinct vehicles are assigned across the first
dimension of the grid (gridDim.x), and their key lexicons are
mapped to the second dimension (gridDim.y). This design
allows the pipeline to handle input streams with varying
volumes. Finally, the results from the devices are collected
to generate vehicle status reports.

To evaluate the performance of AnRAD in multi-
stream multimodel scenarios, different training set volumes
(small—80 min, medium—160 min, and large—240 min)
are evaluated in order to test the system performance under
different levels of knowledge.

Each zone creates a new knowledge base, and the number
of zone partitions decides the memory usage. Fig. 11 shows
the device memory consumptions for the knowledge bases.
The X-axis gives the number of the detection zones, and the
Y -axis gives the accumulated knowledge base size in
megabytes. As the number of zones increases, the memory
consumption increases nearly linearly, which indicates a bal-
anced distribution of the knowledge. The maximum storage
requirement for all 342 zones ranges from around 3 to 4 GB,
which is much lower than the available device memory of
C2075 (6 GB) or Xeon Phi (8 GB). Therefore, a single device
can support all 342 zones.

Vehicles are represented as concurrent data stream inputs
to the monitoring system. We define the throughput as the
number of vehicles that AnRAD can check (for abnormal
behavior) in each second; 100 zones are randomly picked
and have their throughput collected with different vehicle
densities. Fig. 12 shows the detection throughputs of AnRAD
on Tesla C2075 and Xeon Phi. The X-axis shows the density,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: AnRAD: A NEUROMORPHIC ANOMALY DETECTION FRAMEWORK FOR MASSIVE CONCURRENT DATA STREAMS 13

Fig. 13. Spiking neuron model. (a) Bayesian neuron. (b) Lexicon circuit.

i.e., the average number of vehicles that appear simultane-
ously in a zone. The Y -axis is the overall throughput of
the 100 zones. On both devices, the throughputs drop as the
vehicle density increases, because a denser neighboring among
vehicles induces more processing of the interactive features.
The throughputs get stable when the interaction-related key
lexicons are saturated. GPU generally has smaller variations in
different traffic patterns as in the box plots Fig. 12. Also, larger
knowledge bases cause lower throughputs, but the degradation
is smaller with knowledge bases approaching convergence.
The throughputs of Xeon Phi 5100 on Fig. 12(b) are roughly
twice as high as those in Fig. 12(a) of Tesla C2075. This
generally agrees to the specifications that Xeon Phi 5100 peaks
at 1011Gflop [25] and Tesla C2075 peaks at 515Gflop [37] of
double precision performances.

VII. NEUROMORPHIC IMPLEMENTATION OF AnRAD

In order to achieve even better power and cost efficiency,
AnRAD is also extended to SNN. SNN is capable of modeling
sequence data [46] and providing real-time inferences [12].
It can be implemented on the emerging nonconventional
neuromorphic hardware [31] for performance and energy effi-
ciency. The structure of the AnRAD network can be directly
mapped to an SNN, where neurons representing symbols
and synapses representing knowledge links. The likelihood
calculation can be carried out by the integrate-and-fire function
and we use the neuron’s firing rate to proportionally represent
the likelihood of the input. Furthermore, using the STDP
rule [34], it can be proved that the synaptic strength will
asymptotically approach to the probability of the postsynaptic
neuron firing given the condition of the presynaptic neuron
status. In this paper, we map the AnRAD detection network to
a stochastic SNN [3] to demonstrate that it can be implemented
using this emerging neuromorphic architectures.

We use the Bayesian neuron model [34] to build the infer-
ence network. Fig. 13(a) shows a neuron t , whose membrane
potential u(τ) is computed as

u(t, τ) = w0 +
F∑

i=0

wi si (τ) (12)

where wi is the weight of the synapse connecting t to its
i th presynaptic neuron si . si (τ) is 1 if neuron si issues a
spike at time τ and w0 models the intrinsic excitability of the
neuron t . The firing probability of t depends exponentially
on the membrane potential, p(t fires at time τ) ∝ eu(t,τ). For
the anomaly detection network, every symbol of a lexicon
is mapped to one of the Bayesian neurons, and receives
fan-in synapses from the other lexicons. The weights of the
synapse are the learned p(s|t) from the AnRAD knowledge

Fig. 14. Vehicle trace activities. (a) Correlation of y(t) and spikes(t).
(b) Trace of anomaly scores.

bases. Among a lexicon, the Bayesian neurons also have
1-on-1 inhibitors that competitively suppress the other symbols
as in Fig. 13(b).

We run the SNN simulation through 46 frames of the vehicle
traces, and collect 1242 key symbol activities in lexicon
〈speed, neighbor.distance〉. Fig. 14(a) shows the scatter plot
between the AnRAD excitation levels (X-axis) of symbols
in key lexicons and the spike frequencies (Y -axis) of their
corresponding SNN neurons. The frequency is sampled within
a window of 5000 ticks [i.e., τ ≤ 5000] at the beginning of
each frame. Strong correlation is observed and the correlation
coefficient is 0.925, which confirms that the spiking rate
of a neuron can be used to represent the likelihood of its
corresponding symbol. Although excitations are represented
by spike counts over a time span, a rate-coding window-
based pipeline is implemented for event-driven processing.
In Fig. 14(b), we present the normalized spiking rate differ-
ence between the anomaly symbol and the reference sym-
bol, i.e., [spikes(tmax) − spikes(t)]/spikes(tmax). The X-axis
indicates the frames of the vehicle trace, and the Y -axis is
the computed anomaly scores. Compared with the AnRAD
anomaly score calculated by (2), the spike rate clearly reflects
the trend of the anomaly activity. It has a scale shift, which
indicates the need to adjust the decision threshold when
implementing the AnRAD network on SNN architectures.

VIII. CONCLUSION

We have presented an HPC-based neuromorphic anomaly
detection framework that processes concurrent data streams
in real time. The confabulation theory is adopted and incor-
porated as basic testing unit in a hierarchical cognitive
architecture. The framework uses data-driven approach to
configure the network structure for different applications.
Furthermore, the method is accelerated on GPUs and Xeon Phi
processors with fine-grained and coarse-grained paralleliza-
tion. We also implement the network on an SNN simulator
to show that the framework can be extended to emerging
neuromorphic hardware.

ACKNOWLEDGMENT

Received and approved for public release by AFRL on
03/06/2015, case number 88ABW-2015-0875. Any Opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect
the views of AFRL or its contractors.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

REFERENCES

[1] B. Ahmed et al., “Hierarchical conditional random fields for outlier
detection: An application to detecting epileptogenic cortical malforma-
tions,” in Proc. Int. Conf. Mach. Learn. (ICML), 2014, pp. 1080–1088.

[2] K. Ahmed, Q. Qiu, P. Malani, and M. Tamhankar, “Accelerating pattern
matching in neuromorphic text recognition system using Intel Xeon Phi
coprocessor,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2014,
pp. 4272–4279.

[3] K. Ahmed, A. Shrestha, and Q. Qiu, “Simulation of Bayesian learning
and inference on distributed stochastic spiking neural networks,” in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), 2016, pp. 1044–1051.

[4] E. Begoli, “A short survey on the state of the art in architectures and
platforms for large scale data analysis and knowledge discovery from
data,” in Proc. WICSA/ECSA Companion Vol., 2012, pp. 177–183.

[5] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network anomaly
detection: Methods, systems and tools,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 1, pp. 303–336, 1st Quart., 2014.

[6] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF:
Identifying density-based local outliers,” in Proc. Int. Conf. Manage.
Data (SIGMOD), vol. 29. 2000, pp. 93–104.

[7] J. B. Cabrera, C. Gutiérrez, and R. K. Mehra, “Ensemble methods for
anomaly detection and distributed intrusion detection in mobile ad-hoc
networks,” Inf. Fusion, vol. 9, no. 1, pp. 96–119, 2008.

[8] Q. Cai, H. He, and H. Man, “Spatial outlier detection based on
iterative self-organizing learning model,” Neurocomputing, vol. 117,
pp. 161–172, Oct. 2013.

[9] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion
detection systems: Detecting the unknown without knowledge,” Comput.
Commun., vol. 35, no. 7, pp. 772–783, 2012.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, p. 15, 2009.

[11] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection for
discrete sequences: A survey,” IEEE Trans. Knowl. Data Eng., vol. 24,
no. 5, pp. 823–839, May 2012.

[12] Q. Chen and Q. Qiu, “Real-time anomaly detection for streaming data
using burst code on a neurosynaptic processor,” in Proc. Conf. Design,
Autom. Test Eur. (DATE), 2017, pp. 1–6.

[13] Q. Chen, Q. Qiu, H. Li, and Q. Wu, “A neuromorphic architecture
for anomaly detection in autonomous large-area traffic monitoring,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2013,
pp. 202–205.

[14] Q. Chen, Q. Qiu, Q. Wu, M. Bishop, and M. Barnell, “A confabulation
model for abnormal vehicle events detection in wide-area
traffic monitoring,” in Proc. Int. Inter-Discipl. Conf. Cognit.
Methods Situation Awareness Decision Support (CogSIMA), 2014,
pp. 216–222.

[15] Q. Chen, Q. Wu, M. Bishop, R. Linderman, and Q. Qiu, “Self-structured
confabulation network for fast anomaly detection and reasoning,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2015, pp. 1–8.

[16] G. Creech and J. Hu, “Generation of a new IDS test dataset: Time
to retire the KDD collection,” in Proc. Wireless Commun. Netw.
Conf. (WCNC), 2013, pp. 4487–4492.

[17] G. Creech and J. Hu, “A semantic approach to host-based intrusion
detection systems using contiguousand discontiguous system call pat-
terns,” IEEE Trans. Comput., vol. 63, no. 4, pp. 807–819, Apr. 2013.

[18] S. K. Esser et al., “Cognitive computing systems: Algorithms and
applications for networks of neurosynaptic cores,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), 2013, pp. 1–10.

[19] J. Hawkins, S. Ahmad, and D. Dubinsky, “Hierarchical temporal
memory including htm cortical learning algorithms,” Numenta, Inc.,
Palo Alto, CA, USA, Tech. Rep., 2011. [Online]. Available:
https://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf

[20] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier detection
using replicator neural networks,” in Data Warehousing and Knowledge
Discovery. Berlin, Germany: Springer, 2002, pp. 170–180.

[21] R. Hecht-Nielsen, Confabulation Theory: The Mechanism of Thought.
Berlin, Germany: Springer, 2007.

[22] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” J. Comput. Secur., vol. 6, no. 3, pp. 151–180,
1998.

[23] J. Hu, H. Tang, K. C. Tan, and H. Li, “How the brain formulates
memory: A spatio-temporal model research frontier,” Comput. Intell.
Mag., vol. 11, no. 2, pp. 56–68, 2016.

[24] H. Huang, “Rank based anomaly detection algorithms,”
Ph.D. dissertation, Syracuse Univ., Syracuse, NY, USA, 2013.

[25] Intel Xeon Phi Product Family: Product Brief, Intel, Santa Clara, CA,
USA, 2013.

[26] D. Ippoliti and X. Zhou, “A-GHSOM: An adaptive growing hierarchical
self organizing map for network anomaly detection,” J. Parallel Distrib.
Comput., vol. 72, no. 12, pp. 1576–1590, 2012.

[27] I. Kang, M. K. Jeong, and D. Kong, “A differentiated one-class clas-
sification method with applications to intrusion detection,” Expert Syst.
Appl., vol. 39, no. 4, pp. 3899–3905, 2012.

[28] R. Laxhammar and G. Falkman, “Online learning and sequential anom-
aly detection in trajectories,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 6, pp. 1158–1173, Jun. 2014.

[29] M. D. Linderman, R. Bruggner, V. Athalye, T. H. Meng, N. Asadi,
and G. P. Nolan, “High-throughput Bayesian network learning using
heterogeneous multicore computers,” in Proc. Int. Conf. Supercomput.,
2010, pp. 95–104.

[30] R. P. Lippmann et al., “Evaluating intrusion detection systems: The 1998
DARPA off-line intrusion detection evaluation,” in Proc. DARPA Inf.
Survivability Conf. Expo., vol. 2. 2000, pp. 12–26.

[31] P. A. Merolla et al., “A million spiking-neuron integrated circuit with
a scalable communication network and interface,” Science, vol. 345,
no. 6197, pp. 668–673, Aug. 2014.

[32] P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised feature selection
using feature similarity,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, no. 3, pp. 301–312, Mar. 2002.

[33] R. Motwani and P. Raghavan, Randomized Algorithms. London, U.K.:
Chapman & Hall, 2010.

[34] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian compu-
tation emerges in generic cortical microcircuits through spike-timing-
dependent plasticity,” PLoS Comput. Biol., vol. 9, no. 4, p. e1003037,
2013.

[35] A. Y. Ng and M. I. Jordan, “On discriminative vs. generative classifiers:
A comparison of logistic regression and naive Bayes,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 14. 2002, p. 841.

[36] The Science of Anomaly Detection, Numenta, Redwood City, CA, USA,
2014.

[37] NVIDIA Tesla c2075 Companion Processor, NVIDIA, Santa Clara, CA,
USA, 2011.

[38] E. J. Palomo, J. M. Ortiz-de-Lazcano-Lobato, E. Domínguez, and
R. M. Luque, “An anomaly detection system using a GHSOM-1,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2010, pp. 1–7.

[39] D. Pokrajac, A. Lazarevic, and L. J. Latecki, “Incremental local out-
lier detection for data streams,” in Proc. Symp. Comput. Intell. Data
Mining (CIDM), 2007, pp. 504–515.

[40] Q. Qiu, Q. Wu, M. Bishop, R. E. Pino, and R. W. Linderman,
“A parallel neuromorphic text recognition system and its implementation
on a heterogeneous high-performance computing cluster,” IEEE Trans.
Comput., vol. 62, no. 5, pp. 886–899, May 2013.

[41] G. J. Rinkus, “A cortical sparse distributed coding model linking mini-
and macrocolumn-scale functionality,” Frontiers Neuroanatomy, vol. 4,
Jun. 2010, Art. no. 17.

[42] M. L. Shahreza, D. Moazzami, B. Moshiri, and M. Delavar, “Anomaly
detection using a self-organizing map and particle swarm optimization,”
Sci. Iranica, vol. 18, no. 6, pp. 1460–1468, 2011.

[43] F. Simmross-Wattenberg, J. I. Asensio-Perez, P. Casaseca-de-la-Higuera,
M. Martin-Fernandez, I. A. Dimitriadis, and C. Alberola-Lopez, “Anom-
aly detection in network traffic based on statistical inference and alpha-
stable modeling,” IEEE Trans. Depend. Sec. Comput., vol. 8, no. 4,
pp. 494–509, 2011.

[44] J. Tian, M. H. Azarian, and M. Pecht, “Anomaly detection using self-
organizing maps-based k-nearest neighbor algorithm,” in Proc. Eur.
Conf. Prognostics Health Manage. Soc., 2014, p. 9.

[45] J. Yin, D. H. Hu, and Q. Yang, “Spatio-temporal event detection using
dynamic conditional random fields,” in Proc. Int. Joint Conf. Artif.
Intell. (IJCAI), vol. 9. 2009, pp. 1321–1327.

[46] Q. Yu, R. Yan, H. Tang, K. C. Tan, and H. Li, “A spiking neural
network system for robust sequence recognition,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 3, pp. 621–635, Mar. 2016.

[47] A. Zimek, M. Gaudet, R. J. Campello, and J. Sander, “Subsampling
for efficient and effective unsupervised outlier detection ensembles,”
in Proc. Int. Conf. Knowl. Discovery Data Mining (SIGKDD), 2013,
pp. 428–436.

[48] UCI Machine Learning Repository, accessed on Aug. 2014. [Online].
Available: http://kdd.ics.uci.edu/databases/kdd cup99/kddcup99.html

[49] NVIDIA Cuda Parallel Computing Platform and Program-
ming Model, accessed on Oct. 2014. [Online]. Available:
http://www.nvidia.com/object/cuda_home_new.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: AnRAD: A NEUROMORPHIC ANOMALY DETECTION FRAMEWORK FOR MASSIVE CONCURRENT DATA STREAMS 15

Qiuwen Chen received the B.S. and M.S. degrees
in electrical engineering from the Beijing University
of Posts and Telecommunications, Beijing, China,
in 2009 and 2012 respectively, and the Ph.D. degree
from the Department of Electrical Engineering and
Computer Science, Syracuse University, Syracuse,
NY, USA, in 2016.

He is currently a Software Engineer with
Microsoft, Redmond, WA, USA. His current
research interests include machine learning, neural
networks, neuromorphic computing, and high per-

formance computing.

Ryan Luley received the B.S. degree from the
Mathematics Department, St. Lawrence University,
Canton, NY, USA, in 2001, and the M.S. degree
from the Electrical Engineering and Computer Sci-
ence Department, Syracuse University, Syracuse,
NY, USA, in 2008, where he is currently pursuing
the Ph.D. degree with the Electrical Engineering and
Computer Science Department.

He was a Software Engineer for Lockheed Martin
Management and Data Systems, Valley Forge, PA,
USA. He is currently a Mathematician with the

United States Air Force Research Laboratory, Information Directorate, Rome,
NY, USA. His current research interests include general purpose graphics
processing unit computing, high performance embedded computing, and
parallel discrete event simulation.

Qing Wu (M’96) received the B.S. and M.S. degrees
from the Department of Information Science
and Electronic Engineering, Zhejiang University,
Hangzhou, China, in 1993 and 1995, respectively,
and the Ph.D. degree from the Department of Electri-
cal Engineering, University of Southern California,
Los Angeles, CA, USA, in 2002.

He was an Assistant Professor with the Depart-
ment of Electrical and Computer Engineering, State
University of New York at Binghamton, Bingham-
ton, NY, USA. He is currently a Principal Electronics

Engineer with the United States Air Force Research Laboratory, Information
Directorate, Rome, NY, USA. He has authored or co-authored over ninety
research papers in international journals and conferences. His current research
interests include neuromorphic computing architectures, high-performance
computing architectures, deep neural networks, and memristor-based neuro-
morphic circuits and systems.

Morgan Bishop (M’09) received the B.A. degree
from the Department of Computer Science, State
University of New York at Geneseo, Geneseo, NY,
USA, in 2004.

He was the Lead Developer for Jeansee Corpo-
ration, Merriam, KS, USA, where he investigated
DNA binding algorithms to achieve optimal DNA
codes for use in parallel computing architectures.
He is currently a Computer Scientist with the United
States Air Force Research Laboratory, Information
Directorate, Rome, NY, USA. He has authored or co-

authored over fifteen research papers in journals and conferences throughout
the world. His current research interests include scalable algorithm develop-
ment for heterogeneous high performance computers, basic research in next-
generation massively parallel systems, and the development of brain-inspired
intelligence models for real-world application.

Richard W. Linderman (F’01) received the B.S.,
M.S., and Ph.D. degrees from the Department of
Electrical Engineering, Cornell University, Ithaca,
NY, USA, in 1980, 1981, and 1984, respectively.

He was commissioned as a Second Lieutenant
in 1980. Upon completing four years of graduate
studies, he entered active-duty, teaching computer
architecture courses and leading related research
with the Air Force Institute of Technology. He was
assigned to Rome Air Development Center, Rome,
NY, USA, in 1988, where he led surveillance signal

processing architecture activities. In 1991, he transitioned from active-duty
to civil service as a Senior Electronics Engineer with Rome Laboratory,
Rome, becoming a Principal Engineer in 1997. During these years, he
pioneered three-dimensional packaging of embedded architectures and led the
Department of Defense community exploring signal and image processing
applications of high performance computers. He is currently the Deputy
Director of Information Systems and Cyber Security with the Office of the
Under Secretary of Defense (Acquisition, Technology and Logistics). He was
a member of the Scientific and Professional Cadre of Senior Executives, and
also the Chief Scientist with the Air Force Research Laboratory, Information
Directorate, Rome. The Information Directorate leads the discovery, devel-
opment, and integration of affordable warfighting information technologies
for air, space, and cyberspace forces. He serves as the Directorate’s Principal
Scientific and Technical Adviser and primary authority for the technical con-
tent of the science and technology portfolio. He provides principal technical
oversight of a broad spectrum of information technologies, including fusion
and exploitation; command and control; advanced architectures; information
management; communications and networking; defensive information war-
fare; and intelligent information systems technologies. He has authored or
co-authored over 70 journal, conference and technical papers. He holds six
U.S. patents.

Qinru Qiu (M’00) received the B.S. degree from the
Department of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou, China,
in 1994, and the M.S. and Ph.D. degrees from
the Department of Electrical Engineering, University
of Southern California, Los Angeles, CA, USA,
in 1998 and 2001, respectively.

She has been an Assistant Professor and then an
Associate Professor with the Department of Elec-
trical and Computer Engineering, State University
of New York at Binghamton, Binghamton, NY,

USA. She is currently a Professor and the Program Director of Computer
Engineering with the Department of Electrical Engineering and Computer
Science, Syracuse University, Syracuse, NY, USA. Her current research inter-
ests include neuromorphic computing and high performance energy efficient
computing systems.

Dr. Qiu is the TPC Member of Design, Automation and Test in Europe,
Design Automation Conference, International Symposium on Low Power
Electronics and Design, International Symposium on Quality Electronic
Design, International Conference on Very Large Scale Integration, and Inter-
national Conference On Computer Aided Design. She served as the Associate
Editor of the ACM Transactions on Design Automation of Electronic Systems.

