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System level power management must consider the uncertainty and variability that come from the environ-
ment, the application and the hardware. A robust power management technique must be able to learn the
optimal decision from past events and improve itself as the environment changes. This article presents a novel
on-line power management technique based on model-free constrained reinforcement learning (Q-learning).
The proposed learning algorithm requires no prior information of the workload and dynamically adapts to
the environment to achieve autonomous power management. We focus on the power management of the
peripheral device and the microprocessor, two of the basic components of a computer. Due to their different
operating behaviors and performance considerations, these two types of devices require different designs of
Q-learning agent. The article discusses system modeling and cost function construction for both types of
Q-learning agent. Enhancement techniques are also proposed to speed up the convergence and better main-
tain the required performance (or power) constraint in a dynamic system with large variations. Compared
with the existing machine learning based power management techniques, the Q-learning based power man-
agement is more flexible in adapting to different workload and hardware and provides a wider range of
power-performance tradeoff.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time sys-
tems and embedded systems

General Terms: Design, Experimentation, Management, Performance

Additional Key Words and Phrases: Power management, thermal management, machine learning, computer

ACM Reference Format:
Shen, H., Tan, Y., Lu, J., Wu, Q., and Qiu, Q. 2013. Achieving autonomous power management using rein-
forcement learning. ACM Trans. Des. Autom. Electron. Syst. 18, 2, Article 24 (March 2013), 32 pages.
DOI: http://dx.doi.org/10.1145/2442087.2442095

1. INTRODUCTION

Power consumption has become a major concern in the design of computing systems
today. High power consumption increases cooling cost, degrades the system reliability
and also reduces the battery life in portable devices. Modern computing/communication
devices support multiple power modes which enable power and performance trade-off.
Dynamic power management (DPM) has proven to be an effective technique for power
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reduction at the system level. It selectively shuts-off or slows-down system components
that are idle or underutilized. The power manager needs to make wise decisions
on when to put the devices into which power mode. Dynamic voltage and frequency
scaling (DVFS) is another technique that has been widely used in modern processors
for energy reduction or temperature control by dynamically changing the working
frequency and voltage of the processor. Both DVFS and DPM provide a set of control
knobs for runtime power management. From this perspective, they are fundamentally
the same. While the DVFS is usually found as the power control knob for CMOS digital
ICs, such as microcontrollers or microprocessors, during the active time; the DPM is
usually for the peripheral devices, such as the hard disk drives and network interface,
or for microprocessors running interactive applications accompanied with long idle
intervals. In this work, we refer to both DPM and DVFS as power management as there
is no fundamental difference between these two. The effective use of those power man-
agement techniques at run time usually requires application and architecture specific
information.

Robust power management must consider the uncertainty and variability that come
from the environment, the application and the hardware. For example, the workload
of a complex system is usually unpredictable as it strongly depends on the nature of
the application, the input data and the user context. The workload variation changes
the device usage pattern and has the most significant impact on the system speed and
power consumption. The contention of shared resources such as buses or I/Os in an
MPSoC also increases the variability of hardware response time for communication
and computation. Furthermore, the process, voltage, and temperature (PVT) variation
results in a large fluctuation in hardware performance and power consumption.
Therefore, statically optimized resource and power management policies are not likely
to achieve the best performance when the input characteristics change. The ability
to observe, learn and adapt to different hardware systems and different working
environments is essential for a power management controller.

In this article, we present a novel approach for system level power management
based on online reinforcement learning (RL). The proposed power manager learns a
new power control policy dynamically at runtime from the information it receives.
This is achieved by trying an action in a certain system state, and adjusting the
action when this state is re-visited next time, based on the reward/cost received.
This is a model-free approach as the power manager learns the policy directly. The
technique does not require any prior information of the system or workload. However,
if such knowledge is available, it can help to speed up the convergence of the learning
algorithm and better track the performance (or power consumption) constraints.

A reinforcement learning model consists of three basic elements: a state space that
describes the environment status, an action space that defines the available control
knobs and a cost function that evaluates the reward/cost of different actions in different
states. How these three elements should be defined is determined by the available
environment information, the nature of the system under control, as well as the user
objectives and constraints. Therefore, it varies from problem to problem.

In this work, we investigate RL model construction for the power management of two
most common types of devices in a computer, the peripheral device and the micropro-
cessor. The peripheral device is an interactive system that processes the I/O requests
generated by software applications. Its performance is measured by its response time
(which is proportional to the average length of request waiting queue.) It assumes
that each I/O request is an atomic task. For such peripheral device, its workload is
captured by the distribution of idle intervals and the request generation rate. For the
microprocessor, we focus on its power management during the time of batch processing.
The performance is measured by the execution time, and the workload characteristic is
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captured by its CPU intensiveness. From the power management algorithm design per-
spective, a microprocessor in batch mode and a peripheral device differ in many ways.

First of all, they have different power management control knobs. The power
consumption of a peripheral device can be controlled by configuring the device into
discrete power modes. For example, a wireless adaptor usually has 4 power modes:
receiving, transmitting, idle and standby modes. However, the power consumption of a
microprocessor performing batch processing is usually controlled by dynamic voltage
and frequency scaling. For example, the AMD Opteron processor is implemented
with 5 levels of voltage and frequencies. This leads to different action spaces in the
Q-learning algorithm design.

Secondly, their performances are measured by different criteria and affected by
different factors. While the performance of a peripheral device is measured by its
response time, which is determined by the request incoming rate and processing speed;
the performance of a microprocessor working on batch processing is measured by its
execution time, which is affected by the CPU clock frequency and architectural events
such as pipeline stalls. Therefore, the two devices should be modeled by different sets
of parameters. This leads to different state classification methods in Q-learning model
construction.

Furthermore, their optimization objectives are different. The ultimate goal of power
management is to minimize the energy dissipation under the given performance con-
straint. For peripheral devices, an infinite horizon is usually assumed. Therefore, min-
imizing energy dissipation is the same as minimizing the average power consumption
over a long time. However, for a microprocessor working on batch processing, we usually
focus on minimizing the energy dissipation over the execution time. While the average
power consumption of a peripheral device is a monotonic decreasing function of its
response time; such monotonic relation does not always exist between the total energy
dissipation and execution time of a modern microprocessors. On one hand, although
lowering the voltage and frequency of a CPU effectively reduces the dynamic energy, it
also increases the leakage energy because the system has to be kept active for a longer
time [Jejurikar et al. 2004]; therefore, the total energy may not necessarily decrease.
On the other hand, as the limited memory bandwidth has already become the per-
formance bottleneck for some high performance computers, lowering CPU voltage and
frequency to a certain extent may not have significant impact on performance, since the
memory subsystem still works under a constant frequency [Langen and Juurlink 2006;
Jejurikar et al. 2004; Choi et al. 2004]. As we can see, in addition to different objective
functions, the relations between objectives and constraints are also different for the
two power management problems. Hence, different cost function must be constructed.

Finally, other constraints sometimes are usually considered in microprocessor power
management. For example, temperature has significant impact on the chip performance
and reliability, and hence should be considered as another constraint. This requires a
cost function design that is flexible enough to incorporate multiple constraints.

These discussions show that different Q-learning models (i.e., different environment
state classification methods and different cost function formulations) are needed for
peripheral device power management and microprocessor power management. These
two power management problems are both interesting and are complementary to each
other. It is important to discuss their Q-learning models separately. In this article, we
focus on how these Q-learning models are constructed and how effective they will be. In
addition to model construction, techniques are developed to enhance the performance
of the RL based controller in a power managed system. Novel techniques are proposed
that speed up the convergence of learning and better maintain the required perfor-
mance (or power) constraint in a dynamic system. The following summarizes the main
contribution of this work.
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(1) We present a power manager that does not require any prior knowledge of the
workload. It learns the policy online with real-time information and adjusts the
policy accordingly. After a certain set-up time, the optimal policy can positively be
found.

(2) We propose a set of enhancement techniques that utilize the partial knowledge of
the system to accelerate the convergence speed and enable the runtime tracking of
the performance (power consumption) constraint.

(3) We apply the RL based controller to perform power management of peripheral de-
vices and microprocessors. Different model construction approaches are discussed
for these two types of devices. The performance of the proposed power management
controller is evaluated by either simulation or real measurement.

Compared to the previous works [Tan et al. 2009; Liu et al. 2010], this work offers
has the following major contributions.

(1) In addition to the peripheral devices, we also apply the RL based power man-
agement to microprocessors. Model construction and cost function formulation are
discussed.

(2) The RL model construction for peripheral devices is improved to handle real ap-
plication scenarios with more diversified workload and practical constraints. For
example, we improved the state partition techniques to cover workloads with large
variations.

(3) While the traditional stochastic power management is able to satisfy the given
constraints on long term average performance (or power consumption), they usu-
ally have large performance (or power consumption) variations during short period
of time. In this work, a two level controller is proposed to find the weight factor
that balances the power-performance trade-off of the learning based power man-
agement policy so that it operates at a relatively constant performance (or power
consumption) that is close to the given constraint.

(4) More experimental data are provided. In addition to traces collected from personal
PCs, the proposed power management technique is evaluated using the HP hard
disk traces that resemble the workload of large data centers. It is also implemented
on a Dell Precision T3400 workstation to control the runtime voltage and frequency
scaling for simultaneous energy, performance and temperature management.

The rest of the article is organized as follows: Section 2 talks about the related
work including the expert-based DPM algorithm, which will be used as a comparison
with our algorithm. Section 3 introduces the general RL model for power management.
Sections 4 and 5 discuss model construction and enhancement techniques for the power
management of peripheral devices and microprocessors, respectively. Section 6 presents
the experimental results. Finally Chapter 7 gives the conclusions.

2. RELATED WORKS

Based on when it is applied, system level low power techniques can be categorized
into design time approaches and run time approaches. The former modifies and opti-
mizes the system and component architecture during design time for a lower power
consumption or to facilitate runtime power reduction [Chou and Marculescu 2010; Fei
et al. 2007; Agarwal et al. 2010; Smullen et al. 2010]; while the latter performs online
to dynamically control the power with the respect of performance constraints. Dynamic
power management (DPM) and dynamic voltage frequency scaling (DVFS) belong to
the second category.

The simplest and most widely used DPM algorithm is the timeout policy which puts
the device into low power mode after it has been idle for certain amount of time.
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Though it is easy to implement and relatively effective in many computer systems,
the timeout policy is far from optimized because it wastes energy during the timeout
period. Furthermore, the traditional timeout policy uses a fixed timeout value which
cannot adapt to the change of workload or user context.

In order to best adjust itself to the dynamic system, many DPM works on a system
model that is learned from the history information. For example, the predictive DPM
[Hwang and Wu 2000] predicts the next idle time based on previous idle time and makes
power mode switching decision based on the predicted value. The previous works in
stochastic power management [Qiu et al. 2007; Rosing et al. 2001; Tan and Qiu 2008]
model the system as a Markov decision process. The model construction requires offline
learning. [Theocharous et al. 2006] proposed a user-based adaptive power management
technique that considered user annoyance as a performance constraint. Ahmad et al.
[2008] convert the scheduling task on multiprocessor into a cooperative game theory
problem to minimize the energy consumption and the makespan simultaneously, while
maintaining deadline constraints.

Many research works have been proposed to find the optimal DVFS scheduling for
energy reduction. Choi et al. [2004] use runtime information on the statistics of the
external memory access to perform CPU voltage and frequency scaling. Its goal is
to minimize the energy consumption while translucently controlling the performance
penalty. Tan et al. [2006] first present a workload prediction model for MPEG decoder
and the predicted workload is further used to guide the voltage and frequency scaling.
Choudhary and Marculescu [2009] considers processors as producers and consumers
and tunes their frequencies in order to minimize the stalls of the request queue while
reducing the processors’ energy.

Multidimensional constraints sometimes are considered in power management. Per-
formance and temperature are two typical constraints in designing a power manage-
ment policy for microprocessors. [Coskun et al. 2008; Liu et al. 2009] propose to use
mathematical programming to solve voltage and frequency scheduling problem for en-
ergy optimization with temperature constraints. Both works assume that the workload
is known in advance. Wang et al. [2009] and Zanini et al. [2009] apply model predictive
control (MPC) to find the best sequence of voltage and frequency settings for mini-
mum energy under given temperature constraint over a finite horizon. A temperature
model is required for the MPC controller to work effectively. Ayoub et al. [2012] control
active memory modules and schedules workload between CPU sockets to achieve bal-
anced thermal distribution for energy management with temperature and performance
constraints.

All of there works either assume given workload model or require offline model
construction and policy optimization, therefore they cannot adapt to the workload
changes in real time. Online learning algorithms are natural choices for real-time
adaptive power management. Cai et al. [2006] present a method that periodically
adjusts the size of physical memory and the timeout value to turn off the hard disk
to reduce the average energy consumption. The joint power management predicts the
next hardware accesses frequency and idle interval based on previous information.
Gniady et al. [2006] use program counters to learn the access patterns of applications
and predicts when an I/O device can be shut down to save energy. Weddle et al. [2007]
use a skewed striping pattern to adaptively change the number of powered disks ac-
cording to the system load. They also enhanced the reliability of the storage system by
limiting disk power cycles and using different RAID encoding schemes. Martinez and
Ipek [2009] and Ipek et al. [2008] propose a machine learning approach for multicore
resource management using on-chip hardware agents that are capable of learning,
planning, and continuously adapting to changing demands. Those works also use the
machine learning technique to perform DRAM bandwidth scheduling for a maximum
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throughput. In [Dhiman and Rosing 2009], the authors propose a learning algorithm
that dynamically selects different experts to make power management decisions at
runtime, where each expert is a predesigned power management policy. This approach
leverages the fact that different experts outperform each other under different
workloads and hardware characteristics. The similar approach is applied in [Coskun
and Rosing 2008] to perform power management with performance and temperature
constraints. There is also a large body of works that learn workload/temperature model
online for thermal management [Ayoub and Rosing 2009; Coskun et al. 2009; Yeo et al.
2008, 2011], or uses random policy with temperature aware adaptation [Coskun et al.
2007]. However, these works do not consider energy (or power) minimization.

Reinforcement learning has been applied to resource allocation and further extended
to microprocessor power management in Tesauro et al. [2006] and Tesauro et al. [2007],
respectively. Both works focus on the Web application servers. The environment state
is describe by the rate of the incoming request and the policy is optimize offline using
the Sarsa(0) algorithm. In order for the offline trained policy to work effectively, the
implied assumption is that the workload is highly repeatable. Our approach differs
from these two works in that, we adopt different state classification; focus on general
purpose computing applications and our policy is optimized online.

3. GENERAL ARCHITECTURE OF Q-LEARNING BASED POWER MANAGEMENT

In this section, we will first introduce the principle of Q-learning and then we will
discuss how to extend the traditional Q-learning algorithm to solve the dynamic power
management problem.

3.1. Q-Learning Algorithm

Reinforcement learning is a machine intelligence approach that has been applied in
many different areas. It mimics one of the most common learning styles in natural life.
The machine learns to achieve a goal by trial-and-error interaction within a dynamic
environment.

The general learning model consists of

—an agent,
—a finite state space S,
—a set of available actions A for the agent,
—a penalty function P : S × A → P.

The goal of the agent is to minimize its average long-term penalty. It is achieved by
learning a policy π , that is, a mapping between the states and the actions.

Q-learning is one of the most popular algorithms in reinforcement learning. At each
step of interaction with the environment, the agent observes the environment and
issues an action based on the system state. By performing the action, the system moves
from one state to another. The new state gives the agent a penalty which indicates the
value of the state transition. The agent keeps a value function Qπ (s, a) for each state-
action pair, which represents the expected long-term penalty if the system starts from
state s, taking action a, and thereafter following policy π . Based on this value function,
the agent decides which action should be taken in current state to achieve the minimum
long-term penalties.

The core of the Q-learning algorithm is a value iteration update of the value function.
The Q-value for each state-action pair is initially chosen by the designer and then it
will be updated each time an action is issued and a penalty is received based on the
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Fig. 1. Illustration of system under power management.

following expression.

Q(st, at) ← Q(st, at)︸ ︷︷ ︸
old value

+ εt(st, at)︸ ︷︷ ︸
learning rate

×

⎡
⎢⎢⎣

Expected Discounted Penalty︷ ︸︸ ︷
pt+1︸︷︷︸

Penalty

+ γ︸︷︷︸
Discount Factor

min
a

Q(st+1, a)
︸ ︷︷ ︸
Min Future V alue

−
Old V alue︷ ︸︸ ︷
Q(st, at)

⎤
⎥⎥⎦ . (1)

In this expression, st, at and pt are the state, action and penalty at time t respectively,
and εt(s, a) ∈ (0, 1) is the learning rate. The discount factor γ is a value between 0 and
1 which gives more weight to the penalties in the near future than the far future. The
next time when state s is visited again, the action with the minimum Q-value will be
chosen, that is, π (s) = mina∈AQ(s, a). The value of Q(st, at) is updated at the beginning
of cycle t + 1, that is, the Q-value for the state-action pair of the previous cycle is
updated at the beginning of current cycle.

As a model-free learning algorithm, it is not necessary for the Q-learning agent to
have any prior information about the system, such as the transition probability from
one state to another. Thus, it is highly adaptive and flexible.

3.2. Q-Learning Model for Power Management

Figure 1 shows the general architecture of a Q-learning based power management
system. It consists of two parts, the environment and the controller. The environment
can further be divided into hardware and software environments. The hardware en-
vironment could be any peripherals device such as hard disk and network card or
the microprocessor. The software environment includes OS, application software, user
inputs, etc. The controller continuously observes the environment and manages the
control knobs (also denoted as the actuators in the figure). The environment informa-
tion can be obtained through different channels. Some of the I/O requests and software
activities can be observed through the operating system, the architecture event can be
observed by reading the performance counters, and some of the device physical infor-
mation (such as temperature) can be obtained by reading the embedded sensors. Based
on the environment information, the current system state will be classified and the
penalty of current state action pair will be calculated. This penalty information will
be used to update the Q-values. The best action (i.e., a setting of the control knobs)
that has the lowest Q-value will be selected to control the states of the actuators. A
discrete-time slotted model is used throughout this work, which means all the decision
making and system state updating occur on a cycle basis. A time slot n is defined as
the time interval [nT , (n + 1)T ], and the power manager makes decision for this time
slot at the beginning of this interval at time nT .
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To construct the Q-learning model for a given control problem, three questions need
to be answered: (1) How to classify the environment status into different state space
of the Q-learning model? (2) How to formulate cost function from the observed infor-
mation? (3) Given the set of actuators, what controls are available? In the rest of the
article, we will answer these questions to design a Q-learning model for the power
management of peripheral devices and microprocessors. Although the objectives of the
two problems are similar, because the performance and operation status of periph-
eral devices and microprocessor are usually characterized by different parameters and
requires different control knobs, different Q-learning models must be constructed for
these two power management problems. Detailed discussion in model construction will
be provided in

3.3. Enhanced Q-Learning

Q-learning is originally designed to find the policy for a Markov Decision Process
(MDP). It is proved that the Q-learning is able to find the optimal policy when the
learning rate α is reduced to 0 at an appropriate rate, given the condition that the
environment is MDP. However, it is important to point out that a computing system for
power management is typically non-Mark. First of all, the workload of most comput-
ing system exhibits long range similarity [Varatkar and Marculescu 2004] and hence
the request pattern generated by the environment in our power management system
is most likely to be non-Markovian. Furthermore, even if the underlying system is
Markovian, what the power manager observes may not be Markovian due to the noise
and disturbance, such as state aggregation, during the observation. As we mentioned
earlier, the Q-learning may not be able to find the optimal policy in a non-Markovian
environment. Nevertheless we still choose Q-learning to solve this problem because of
its simplicity and also because of its robustness to endure noise.

Reinforcement learning in a non-Markovian environment is an open problem.
Many research works have investigated the feasibility of applying the traditional RL
algorithms to solve the decision problem in a non-Markovian environment or a par-
tially observable Markovian environment [Pendrith 1994; Sikorski and Balch 2001].
Pendrith [1994] applies five RL algorithms in a noisy and non-Markovian environment
and compared their performance and convergence speed. Their results show that the
Q-learning exhibits the highest robustness at low noise level and medium robustness
at high noise level. However, the convergence speed of Q-learning reduces the most
drastically when the noise level increases. In Sikorski and Balch [2001] similar results
are reported. Q-learning is capable to achieve the same performance as the other two
reference learning algorithms at the cost of slower convergence speed. Based on the
study we conclude that the major limitation of Q-learning, when being applied in a
non-Markovian environment, is its convergence speed.

Traditional Q-learning assumes no prior information of the environment. However,
in a power management system, the model of system can be precharacterized. We know
exactly how many power modes the system has and how it switches its power mode
given a power management command. In other words, we have partial information
of the power management system. Based on this information, we are able to design
an improved Q-learning algorithm with faster convergence speed. More details are
provided in Section 4.2.

4. LEARNING-BASED POWER MANAGEMENT FOR PERIPHERAL DEVICES

In this section, we will introduce the details of designing a Q-learning based power
management algorithm to achieve the performance and power trade-off for a peripheral
device. The peripheral devices, also known as input/output devices, can be considered
as a service provider (SP). The request to the device is buffered in a service request
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Fig. 2. State transition diagram of SP, SR, and SQ models.

queue (SQ) maintained by the OS. The software application that accesses the device is
considered as service requestor (SR).

A peripheral device usually has several different working modes and low power
modes. The state of SP can be partitioned based on its power modes. The time to
transit from one state to another is hardware specific and is assumed to be known.
The state of SR can be classified by its request generation rate, which is time varying.
The transition rate from one SR state to another is usually unknown. Furthermore,
such transitions are usually non-Markovian. SQ is a queuing model and its states are
classified based on the number of waiting requests. Obviously, the state transition rate
of the SQ is determined by the request generation rate and request processing rate,
which can be derived from the status of SP and SR. Finally, the environment of the
power management controller is modeled as the composition of the SP, SQ, and SR.

Figure 2 gives an example of SP, SR, and SQ models. The SP has two power modes,
active mode and sleep mode. They can switch to each other based on the power man-
agement command. The SR has three request generation mode, high speed, low speed
and idle mode. They can also transit to each other. The SQ can hold up to N requests
and each time the number of requests can only increment or decrement by one.

4.1. State Partition and Penalty Calculation

The observed power mode of SP can naturally be used to represent its state. SP has
two types of states, stable state and transient state. During the stable state (e.g.,
active states and sleep states), the SP stays at a specific power mode. It processes the
request at a certain speed (which could be as low as zero in sleep state). The learning
agent observes the environment and issues power management command periodically.
During the transient state, the SP switches from one power mode to another. It does
not process any request. The learning agent halts during the transient state because
the SP does not respond to any power management command.

The state of SR is classified based on the rate of the incoming request. Due to the
high variation of the workload, this value is a random variable distributed over a
wide range and it can almost be considered as continuous. In order to reduce the state
space, it is necessary to discretize the values into fewer states. In order to adapt to
different workload intensities, we propose to partition the rate of incoming request
based on its exponential moving average (EMA) [Hwang and Wu 2000]. The EMA of
current cycle i is calculated as EMAi = α · EMAi−1 + (1 − α) · sri, where EMAi−1 is
the exponential moving average request rate calculated in previous cycle and sri is the
observed incoming request rate of current cycle. Let N denote the total number of states
of SR. The SR is in state 0 and N-1 when the incoming request rate is in the range
[0, 2−N/2+1 EMA] and [2N/2−1 EMA,∞] respectively. The SR is in state i, 0 < i < N − 1
when the incoming request rate is in the range [2−N/2+i EMA, 2−N/2+i+1 EMA]. The
state of SQ is classified based on the length of the queue. State aggregation is also
adopted to reduce state space.
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In order to find the best trade-off between power and performance, we define a
Lagrangian cost for each state and action pair (s, a) that combines the costs of power
consumption (power(s, a)) and performance penalty (q(s,a)):

C (s, a; λ) = Power (s, a) + λq (s, a) . (2)

When SP is in a stable state, Power(s, a) and q(s, a) represent the system power
consumption and the number of waiting request of current state. When SP is in a
transient state, because the Q-learning agent will be suspended as mentioned before,
we are not able to update the cost until the end of the transient state. Therefore, the
accumulated cost during the entire switching period should be calculated. Furthermore,
many systems have nonsymmetric penalty for switching into and switching out from a
low power mode. Sometime turning off the device may be effortless, but we still need
to anticipate the difficulty to turn it back on in the future. Based on these motivations,
for a transient state s where SP switches from power mode A to power mode B, the
power cost is calculated as the average of the energy dissipation to switch from A to
B and from B to A, that is, Power (s, a) = (PA2B ∗ TA2B + PB2A ∗ TB2A)/2, where PA2B,
PB2A are power consumptions during A to B and B to A switch respectively, and TA2B,
TB2A are delays of those switches. The performance cost is calculated as the average
accumulated request delays during the time the SP switches from A to B and from
B to A, that is, q (s, a) = (qA2B ∗ TA2B + qB2A ∗ TB2A) /2, where qA2B, qB2A is the average
request incoming rate during the power mode switching along the history. To give
an example, consider a hard disk drive. To transit this hard disk from sleep state to
active state usually associates with long latency and high power consumption because
we have to spin up the disk mechanically. During the transition, all the new incoming
requests will be accumulated in SQ. This transition will not be necessary if the disk did
not go to sleep state at all in previous decision. With this knowledge, we distribute the
penalty evenly between the sleep to active and active to sleep transitions so that SP will
not transit to sleep state (normally taking little effort) aggressively. Our experiment
shows that such cost function calculation for the transient state leads to better result.

Given the next state s’ and its Q values, the learning agent updates the Q-values of
the state action pair (s, a) periodically using the following equation.

Q(s, a; λ) = (
1 − ε(s,a)

)
Q(s, a; λ) + ε(s,a)(C (s, a; λ) + min a′ Q(s′, a′; λ) (3)

The Q-value of state action pair (s, a) reflects the expected average power and request
delay caused by the action a taken in state s. The new action a′ with minimum Q-value
mina′ Q(s′, a′; λ) will be issued at state s′.

4.2. Accelerating the Speed of Convergence of Q-learning

The convergence of the Q-learning relies on the recurrent visits of all possible state-
action pairs. Based on equation (3) we can see, each time a state s is visited and an action
a is taken, a corresponding Q value Q(s, a) is updated. It is calculated as the weighted
sum of itself and the best Q value of the next state s’, that is, Q(s, a) = (1 − ε) Q(s, a) +
ε(C (s, a)+mina′ Q(s′, a′)). The frequency that state s’ occurs after state-action pair (s, a)
reveals the information of the system transition probability. In traditional Q-learning,
only the Q value corresponding to the actual visited state-action pair will be updated.
This is because the controller has no information of the system dynamics, and it totally
relies on the actual execution trace to find out the next state information for a given
state-action pair.

In contrast to conventional Q-learning systems, we do have some partial information
of our target power management system. The state of a power management system
is a composition of the states of SP, SR and SQ. Among these three, only SR has
unknown behavior. The state space SP is the set of available power modes and its
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power consumption, processing speed and power mode transition overhead are known.
We also know that SP and SR are independent to each other, and when SP and SR are
given, the behavior of SQ is determined.

Based on the available information on SP and SQ, we propose to update more
than one Q values each cycle to speed up convergence. For each visited state-action
pair ((sp, sr, sq), a) we will update the Q values for a set of state-action pairs
{((sp′, sr, sq′), a′)|∀sp′ ∈ SP,∀sq′ ∈ SQ,∀a′ ∈ A}. These state actions pairs are referred
as virtual states and actions, because we assume that the system has (virtually) visited
these state action pairs and will update their Q values. Note that all virtual state has
the same SR state which is the actual SR state that the system has recently visited.
In order to update the Q values of a virtual state-action pair ((sp′, sr, sq′), a′), we need
to know, starting from this state action pair, what the next system state will be even
though it is not currently being visited. More specifically, given the information that
the system was in state (spt, srt, sqt) and it switched to (spt+1, srt+1, sqt+1) after action
a is taken, we would like to guess what the next state (sp′

t+1, sr′
t+1, sq′

t+1) will be if the
system is currently in a different state (sp′

t, srt, sq′
t) and another action a’ is taken.

Given the current state sp′
t and action a′, it is not difficult for us to find the next

state sp′
t+1 as the SP model is precharacterized. We also know that the SR works

independently to the SP. Regardless of the state of SP, the requests are generated in
the same way. Therefore, sr′

t+1 is the same as srt+1. The value of sq′
t+1 (i.e., the number of

waiting requests) depends on both the number of incoming requests and the number of
requests that have been processed. The former is determined by the state of SR and can
be measured from the actual system, while the later is determined by the processing
speed of SP at current power mode sp′

t. Because SP has been precharacterized, this
information can also be estimated fairly accurately. After the next state is determined,
the Q values of the state-action pair ((sp′

t, srt, sq′
t), a′) that has been virtually visited

can easily be calculated. In the rest of the article, we refer to this technique as Virtual
State Switching (VSS).

Using VSS, the number of Q-values that would be updated in each cycle is |SP| ×
|SQ| × |A|, where |SP|, |SQ| and |A| are the cardinality of the SP, SQ and A. The
complexity of the constrained Q-learning is O(|SP| × |SQ| × |A|). The size of SP state
space and action space is fixed for a given hardware. With a carefully controlled SQ
state partition, this computation complexity is affordable.

We further improve the convergence speed of the proposed Q-learning algorithm by
adopting a variable learning rate. Compared to the traditional Q-learning, the learning
rate ε(s,a) is not fixed in our algorithm. Instead, it is dependent on the frequency of the
visit to the state-action pair (s, a) and is calculated as:

ε(s,a) = μ

V isit(s, a)
, (4)

where Visit(s, a) is the number of times that the state-action pair (s, a) has been visited,
and μ is a given constant.

Figure 3 gives the pseudocode for the power management controller using enhanced
Q-learning algorithm with VSS. The algorithm is executed at the beginning of each
time slot. Its input is current environment state st, the previous environment state
st−1, the action at−1 in last cycle, and the weight coefficient λ. Each time, it updates the
Q values of the real state action pair (St−1, at−1) as well as all the virtual state action
pairs

(
S′

t−1, a′
t−1

)
.

It is important to point out that the more information we know about the system,
the more accurate projection we can make about the virtual state switching. If we do
not have enough information or cannot find solid reasoning to project the virtual state
switching, we may apply VSS only to a small set of state-action pairs.
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Fig. 3. Pseudocode for Q-learning power manager using the VSS technique.

4.3. Power (Performance) Tracking Using 2-level Controller

For general peripheral devices, power and performance are two metrics inversely pro-
portional to each other in many computing systems. In general, a performance con-
strained system achieves the lowest power dissipation when delivering just enough
performance as required (or vice versa for a power constrained system). The Lagrange
cost function defined in equation (2) enables us to find trade-off between power and
performance by varying the parameter λ. However, what is the right value of λ that
exactly meets the power (or performance) constraint is difficult to find out.

It is known that when the value of λ increases, the Q-learning algorithm will favor
policies that have better performance and vice versa. By comparing the actual power
consumption (or performance) to the power (or performance) constraint, we can adjust
the value of λ using a feedback control. However, without knowing the exact relation
among power, performance and λ, the feedback control method will easily generate large
overshoot or undershoot in measured output (i.e., power consumption or performance)
and hence lead to an unstable system [Abdelzaher et al. 2008]. To limit the overshoot
and undershoot, we propose to further confine the value of λ in a predefined range.
The upper bound and the lower bound of the range are estimated from the long term
average workload characteristics and the given power (performance) constraints using
a neural network.

Given analysis leads to a 2-level control unit that tunes the value of λ to keep the
system aligning to the given constraint. The proposed 2-level constraint tracking unit
has a neural network based coarse grained controller in the first level to set the upper
and lower bound of λ based on the long term average workload. It also has a feedback
controller in the second level to fine tune the value of λ based on the instantaneous
workload variations.

Here we consider the problem of maximizing performance for a given power con-
straint as an example to illustrate the 2-level controller. Its dual problem, that is,
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Fig. 4. Level 1 neural network.

minimizing power consumption for a given performance constraint can be solved in a
similar way.

The concept of two level controllers has been successfully applied in many
power/thermal management works. For example, [Wang et al. 2009] uses online model
estimator to predict the workload and generate the desirable trajectory of reference
power consumption at lower level and feedback control to keep the actual power con-
sumption close to the trajectory. [Ayoub et al. 2011] performs core level proactive
thermal management at lower level and socket level task scheduling at upper level.
Here we need to point out that the controller in this section does not directly manage
the control knobs. Instead, it controls the value of the Lagrange multiplier (λ) which is
used to realize power-performance trade-off in the Q-learning algorithm.

4.3.1. Boundary Prediction Using Neural Network Models (Level 1 Controller). The goal of
the first level controller is to estimate the value of λ that exactly meets the perfor-
mance/power constraint considering only the long term average workload. The esti-
mated value is denoted as λ̂. Using λ̂ as a reference, we set the upper and lower bound
of the second level controller which fine tunes the value of λ based on the instantaneous
workload variation.

We found from the experiments that it is difficult to construct a model that estimates
λ̂ directly from power (performance) constraint. This is probably because our Q-learning
algorithm has discrete behavior and it is very likely that slight change in λ does not
make difference in control policy. In other words, the relation from the average power
consumption (or performance) to λ is a one to many mapping instead of a properly
defined function, and hence it is difficult to obtain. Fortunately, power (or performance)
of a peripheral device is a monotonic increasing (or decreasing) function of λ. This
means that we can use binary search to find the appropriate value of λ̂, if there is a
model that predicts the average achieved power (performance) based on the given λ. A
neural network is used for such modeling purpose.

The neural network model adopted in this work has an input layer, an output layer
and a hidden layer, as shown in Figure 4 The hidden layer consists of 5 neurons.
For a given service provider, the neural network model predicts the average power
consumption based on the selected trade-off factor λ and workload information.

In our experiments we observed that, when controlled by the learning based power
management unit, the average power consumption of the device has a log-linear rela-
tion with the trade-off factor λ. Figure 5 gives the relation of the simulated power con-
sumption and the value of lgλ of a hard drive whose read/write activities follows the HP
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Fig. 5. Relation between power and lg λ for a given workload.

Table I. Input selection vs. prediction error

Input selection i = 1 i = 6 i = 12 i = 1,2,3. . .15 i = 1, 6, 12
Prediction error 27% 17% 30% 14% 8%

Cello99 trace [Ruemmler and Wilkes 1993]1 Open Source software at tesla.hpl.hp.com].
As we can see that their relation is approximately linear. To reduce the nonlinearity of
the neural network model, we choose lgλ instead of λ as one of its inputs.

What input variables should be selected for the neural network to represent the
average workload characteristics is a nontrivial problem. For those peripheral devices
where service speed is much faster than the request incoming speed, (for example, in
general a hard disk drive can process all accumulated read/write request in very short
time after the disk has been spun up), the input variables could be the probability
distribution of the request inter-arrival time which reflects current workload pattern.

The probability distribution of the request inter-arrival time is represented by a
set of variables. The ith variable gives the probability that the inter-arrival time tint is
greater than or equal to iT , where T is a user defined time period. Similar to many other
estimation models, an accurate power estimator needs to have both good specificity
and high sensitivity. Selecting too few input variables may lead to low sensitivity of
the model as it misses much useful information. However, including too many input
variables may cause low specificity because useful features will be covered by noises.
We propose to use the greedy feature selection method [Caruana and Freitag 1994] to
select only those variables that give the most information to the prediction of average
power consumption.

In our experiment, a neural network is constructed to predict the power consumption
of a hard disk drive under learning based power management. We select T as 1/4Tbe,
where Tbe is the break-even time which is the minimum amount of time that a device
must stay in low power mode for the energy saving to equal the overhead of power
mode switching.

Table I gives the prediction error for different input selections for the HP Cello99
workload. For more details of the hard disk drive model and the Cello99 workload,
please refer to Section 5. As we can see, including too many features does not help to
increase the accuracy of the model because this introduces more noise in the input and
will actually decrease the specificity of the model. On the other hand, a model based on

1Open Source software at tesla.hpl.hp.com. http://tesla.hpl.hp.com/opensource/.
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Fig. 6. Block diagram of the power control flow of the Q-learning power manager.

extremely few inputs is not accurate either because it does not have enough sensitivity
to detect a workload change.

Considering the fact that Tbe is 4T for our experiment device, the selection of proba-
bilities for idle intervals longer than T, 6T and 12T is reasonable as they represent the
short idle, medium idle, and long idle intervals, thus form relatively complete spectrum
of idle interval information of the workload.

The training of the neural network relies on recorded operation information of the
system. For better accuracy, different models may be constructed for different types of
workload if they can be classified.

With the neural network, we predict the trade-off factor that exactly satisfies the
given power (performance) constraint and denote the value as λ̂. We confine the range
of the trade-off factor to be(λ̂/C, Cλ̂), where C is a constant that is greater than 1.
Consequently, the value of lgλ is confined to the range (lgλ̂ − C, lgλ̂ + C).

4.3.2. Fine Adjustment Using Feedback Control (Level 2 Controller). In order to fine-tune the
value of λ, we use a linear model to approximate the relation betweenlgλ and the power
consumption P for a given workload, that is, P = A ∗ lg (λ) + B, where A and B are
unknown coefficients. Such linear relationship has been observed in our experiment,
as shown in Figure 5. The values of A and B are assumed to be constant when workload
does not change abruptly and λ is confined to a limited range. Let Pcurr and λcurr be
the current power consumption and current value of λ, also let Pgoal and λgoal be the
power constraint and the corresponding value of λ that exactly achieves this power
constraint. If λcurr and λgoal are not too far from each other, we will have Equation (5)
and (6):

Pcurr = A∗ lg λcurr + B (5)

Pgoal = A∗ lg λgoal + B. (6)

Combining Equation (5) and (6), the goal value of λ can be calculated as the following:

λgoal = λcurr ∗ 10
Pgoal−Pcurr

A . (7)

The value of A can be obtained by observing the average power consumption of the
system under different λ’s. Let P1 and P2 be the average power consumption of the
system using λ1 and λ2, A can be calculated using Equation (8).

A = (P1 − P2)/(lgλ1 − lgλ2). (8)

4.3.3. Overall Flow. Figure 6. gives the block diagram of the overall flow
of the Q-learning power manager with constraint tracking. The function
Q-learning power manager() is the basic Q-learning function shown in Figure 3 Both
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Fig. 7. Qualitative illustration of the relation between CPU temperature, performance, energy and clock
frequency.

level 1 and level 2 controllers are triggered periodically. The level 2 controller is trig-
gered at a higher frequency than the level 1 controller. In our experiment, the periods
are set to 1000 and 200 cycles for level 1 and level 2 controllers respectively. When
level 2 controller is triggered, A and λgoal will be calculated using Equation (8) and (7).
If lgλgoal is out of the range (lgλ̂− C, lgλ̂+ C), it would be rounded to lgλ̂− C or lgλ̂+ C.
When level 1 controller is invoked, a new λ̂ will be predicted and the allowed range of
λ will be adjusted accordingly. The learning rate factor (i.e., V isit(s, a) in Equation (4))
will be reset every time when level 1 or level 2 controller is triggered because a new
trade-off factor is found.

5. LEARNING-BASED CPU POWER MANAGEMENT

As explained in Section 1, a microprocessor working in batch mode has very differ-
ent characteristic compared to the peripheral devices and hence requires different
Q-learning model. In this section, we discuss how to apply the Q-learning algorithm
to the power management of such microprocessor. Our goal is to minimize the CPU
energy dissipation for the batch processing under the given execution time constraint.
In order to demonstrate the Q-learning’s capability of handling multidimensional con-
straints, we add the average die temperature as the second constraint. Please note
that user may select any other measurement as the second constraint, because the
construction of the Q-learning algorithm does not rely on any temperature mode or
thermal analysis. The relationship of the CPU frequency and its energy, performance
(i.e., inverse of the execution time), and temperature is qualitatively shown in Figure 7
The energy first decrease as the frequency reduces. If we further reduce the frequency,
the energy will increase as the leakage power becomes dominant and power reduction
is slower than the runtime increase. The CPU frequency that gives the minimum en-
ergy dissipation is denoted as f ∗

E. The performance and temperature increases as the
CPU frequency rises. However, since the clock speed for the memory subsystem does
not change, the performance gain due to fast CPU will gradually slow down. Therefore,
the performance is a concave function of CPU frequency.

We use f and v to denote the scaling ratios of the CPU voltage and frequency. They
are calculated as f = F/Fmax and v = V/Vmax, where Vmax (Fmax) and V (F) represent
the maximum voltage (frequency) and the scaled voltage (frequency) of the processor

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 24, Pub. date: March 2013.



Achieving Autonomous Power Management Using Reinforcement Learning 24:17

respectively. We assume that f and v have one to one correspondence, that is, for each
CPU frequency there is a matching supply voltage level. We use μ to represent the
percentage of time the application is processed on CPU and cache. It is referred as
CPU intensiveness. It is calculated as the following [Dhiman and Rosing 2009]:

μ = 1 − cycles l1i stalled + cycles l1d stalled
total number of cycles

, (9)

where cycles l1i stalled and cycles l1d stalled are the number of cycles during which
the CPU is stalled for instruction and data fetches. They can be recorded periodically
in many commercial processors. Though there are other architectural events related
to μ, such as the cycle of stalls due to TLB miss, branch prediction miss and etc., they
are less dominant than the cache miss event and usually cannot be monitored at the
same time with the cache miss events. Hence, they will be ignored in this formula.

The CPU intensiveness varies from application to applications or even inside the
same application. Its value affects how the energy and execution time change with
voltage and frequency scaling. When the value of μ reduces, the CPU spends more
time waiting for the memory reads/writes. Less performance gain can be achieved by
increasing the CPU frequency. On the other hand, because most of the time is spent
on memory subsystem, reducing the clock frequency will cause less increase of the
execution time. Therefore, the energy optimal frequency f ∗

E(μ) is lower. In this work,
we assume that the CPU has been characterized so that for specific μ, the minimum
energy frequency f ∗

E(μ) is known.
At the end of each time slot, three cost variables are updated, which include energy

cost (CE), performance cost (CP) and temperature cost (CT ). While the die temper-
ature can be read from on-chip temperature, the other two cannot be obtained di-
rectly. This is because both of them depend on the execution time, which is unknown
during the runtime as we assume no prior knowledge of the workload. To overcome
this limitation, in this work we define the energy cost at cycle t as the normalized
deviation from the energy minimum frequency of current workload (i.e., f ∗

E(μt)) to
the energy cost, that is, CE,t = ∣∣ ft − fE

∗(μt)
∣∣/( fmax − fmin), where ft and μt are fre-

quency and CPU intensiveness during cycle t, fmax and fmin are the maximum and
minimum frequency of the CPU. The similar energy cost definition is also used in
Dhiman and Rosing [2009]. We also define the performance as the normalized devia-
tion from the maximum clock frequency, that is CP,t = ( fmax − ft)/( fmax − fmin) ∗ μt.
Finally, the temperature cost of cycle t is defined as the temperature increase from cy-
cle t-1, that is, CT = (Tt − Tt−1)/T rangeintervals where T rangeintervals is the maximum
temperature change in two adjacent time intervals. It is about 2◦C in our experiment
system.

We partition the environment state so that the cost functions remain relatively
constant during the same state. Based on this criterion, the state is classified based on
four parameters: (f, T, IPS, μ). They represent the clock frequency, the temperature,
the instructions per second (IPS) and the workload CPU intensiveness respectively.
Let N be the total number of clock frequencies supported by the processor, we use fi
to denote the ith clock frequency, with f0 representing the minimum frequency. We
discretize the possible range of temperature into M levels, with T0 representing the
ambient temperature and TM−1 representing the maximum temperature threshold.

In Section 4, we solve the performance constrained power optimization problem
by dynamically adjusting the weight coefficient of the Lagrange cost function to find
minimum power policy that exactly meets the performance constraint. The rationale of
this approach is that power is a decreasing function of response time for the peripheral
device. Such relation no longer exists between energy and performance for a batch
mode CPU as shown in Figure 7 Multidimensional constraints make things even more
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Table II. Characteristics of Service Provider

Pactive(W ) Psleep(W ) Ptran(W ) Ttran(s) Tbe(s) Speed (MB/s)
1.1 0.1 1.42 3 4 16.6

complicated. For example, as shown in Figure 7, assume the minimum frequency
that satisfies the performance constraint is fP and the maximum frequency that
satisfies the temperature constraint is fT . Our goal is to constrain the performance
and temperature, while at the same time minimizing the energy. As we can see, it
is not possible to find a frequency that satisfies both performance and temperature
constraints exactly. Hence we have to modify the cost function of the Q-learning
algorithm to decouple these two constraints.

We denote the performance and temperature constraints as conP and conT . We also
use �P , and �T to represent the difference between the constraint and the actual av-
erage penalty during a history window for performance and temperature respectively.
The value of � will be positive if the system outperforms the user constraint during the
history window, otherwise it will be negative. Because we are interested in constraining
only the average performance and average temperature, we consider the system to be
performance and temperature bounded when CP ≤ conP + �P and CT ≤ conT + �T ,
otherwise, the system is unbounded. In this way, if the system has been outperforming
the user constraint during the past, it will be considered performance (or temperature)
bounded even if the cost of the current cycle is a little higher than the constraint.

The modified cost function considers 3 scenarios:

C =
⎧⎨
⎩

CE i f CP ≤ conP + �T & CT ≤ conT + �T

CE + α · CP i f CP > conP + �P and CT ≤ conT + �T

CE + α · CT i f CP ≤ conP + �P and CT > conT + �T .

In this equation, α is a large positive number. Based on the modified cost function,
when the system is bounded in both performance and temperature, the Q-learning
algorithm will search for policies that minimize the energy cost. As soon as the system
becomes unbounded in either performance or temperature, the cost function will be
modified and the Q-learning algorithm will put more emphasis on improving the per-
formance or temperature that has violated the constraint. It can be proved that as long
as the performance and temperature constraints are feasible, they will not be violated
at the same time.

We need to point out that the proposed approach manages the voltage and frequency
of a single CPU. For a multicore system, this approach is viable if cores work indepen-
dently to each other. It can be extended to manage multiple cores with interactions
simultaneously by augmenting the state space of the Q-learning model to consider the
joint state of different cores.

6. EXPERIMENTAL RESULTS AND ANALYSIS

6.1. Experimental Results for Peripheral Device Power Management

6.1.1. Experimental Setup. In this section, we will present the simulation results of
learning based power management for peripheral devices. The target SP in the exper-
iment is a hard disk drive (HDD). Table II summaries the power and performance of
the hard disk drive. These parameters are obtained from real hard disk datasheet.2
The Tbe value is round up to the nearest integer for the simplicity of calculation. In
the table, the Ptran and Ttran are power and performance overhead of sleep to active

2TOSHIBA Hard Disk Drive Specification 1.8 inch Hard Disk DriveMK6006GAH/MK4006GAH/
MK3006GAL.
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Table III. Characteristics of Different Reference Policies

Policy Characteristics
Fixed Timeout(1 ∼ 5) Timeout = 1∗ Tbe ∼ 5∗ Tbe

Adaptive Timeout Initial timeout = 3 ∗ Tbe

Adjustment = +/ − 1∗Tbe

Exponential Predictive In+1 = βin + (1 − β) In, β = 0.5
Expert-based Learning Uses the above seven policies as experts.
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Fig. 8. Response of Q-learning power manager to synthetic trace 1.

transition. The active to sleep transition is not mentioned in the datasheet and hence
will be ignored in the model.

In order to evaluate the performance of our learning based power management policy,
we developed a fast performance evaluation framework of the HDD using OMNeT++.3
OMNeT++ is a discrete event simulation environment written in C++.

The performance of the Q-learning based power management is compared with the
expert based learning algorithm proposed in [Dhiman and Rosing 2009]. Table III lists
five fixed timeout policies, an adaptive timeout policy, and an exponential predictive
policy. These 7 heuristic policies form the set of experts for the expert-based learning
algorithm. Hence, the expert-based learning algorithm overcomes the limitation of
any of these single heuristics by dynamically selecting one of them to adapt with the
changing workload. A control knob factor α is provided for power performance trade-off
[Dhiman and Rosing 2009].

6.1.2. Results for Synthetic Workload. In this experiment, we use two synthetic workload
to intuitively illustrate how the Q-learning based power manager is able to adapt to
the workload change.

In Figure 8, the blue dots represent the state of SR. It is categorized into 2 states,
with 0 represents zero incoming rate and 1 represents nonzero incoming rate. We
assume that when there are incoming request, they come in at a constant rate. The red
solid line represents the state of SP, with 0 representing sleep mode and 1 representing
active mode. The SP is controlled by a Q-learning based power manager. The synthetic
workload trace we created shows a changing pattern during the time. At the beginning
of the experiment, the SR’s idle time is always 2 seconds, which is smaller than the
system Tbe, hence the system should not go to sleep during the idle interval. While
later in the experiment, the SR’s idle time is increased to 8 seconds which is longer
than Tbe. From the behavior of the SP we can see that the power manager undergoes
4 phases.

3OMNeT+. http://www.omnetpp.org/.
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Fig. 9. Response of Q-learning power manager to synthetic trace 2.

(1) Phase 1. The power manager learns the pattern of the workload.
(2) Phase 2. The pattern has been learnt and the power manager decides to keep the

SP active during the short idle period.
(3) Phase 3. After the workload changed, the power manager start learning again.
(4) Phase 4. The new pattern has been learnt and SP will go to sleep during long idle

period.

Note in our system, the SP service rate is always much higher than the request in-
coming rate. The SP only takes a short time to process the accumulated requests after
activated.

In the second example shown in Figure 9, the SR has 2 different incoming rates,
and hence overall 3 states. States 0, 1 and 2 represent idle, low incoming rate and
high incoming rate respectively. The workload has a clear pattern which always starts
with a long idle period followed by a long period of low incoming rate and then a short
period of high incoming rate. After that the pattern repeats itself. As we can see in
Figure 9, during the learning phase (i.e., phase 1) the power manager tried different
control policies by turning the SP on and off at different time. Eventually, it found that
the best policy for this workload is to turn on the device in the middle of the low rate
incoming period and turn it off immediately after the high incoming rate period is over.
Note that none of the seven heuristic policies in Table III classifies SR into different
states; hence they are not able to detect the workload pattern in this example.

6.1.3. Q-learning Power Management for Real Workload. In this experiment, we evaluate
the performance of the Q-learning based power manager using two different types of
workloads.

(1) Workloads extracted from HP cello99 traces [Ruemmler and Wilkes 1993; Open
Source software at tesla.hpl.hp.com]. Cello99 trace records file system read write
activities of HP data center. All the requests with the same PID within one mi-
crosecond are merged into one large request. One interesting observation we have
found is that hourly request incoming rate has strong correlation to the time of
a day. Figure 10 shows the hourly request incoming rate for 3 days. As we can
see, the peak and bottom occurs at approximately the same time. This observation
agrees with Ruemmler and Wilkes [1993] and it indicates that similar applications
are running at the same period of time on different days. Such property can be
used to gather training data to construct the neural network based power (perfor-
mance) prediction model presented in Section 4.3. We extracted 3 workloads (i.e.,
HP-1,HP-2 and HP-3) at different time of the day.
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Fig. 10. Three consecutive days’ requests from HP hard disk traces.

Table IV. Characteristics of Workload Traces

Trace name Duration(sec) No. of total requests after merging No. of idle time≥ Tbe(4 sec)
HP-1 14322 14994 1127
HP-2 14375 44468 332
HP-3 14387 151404 742
Desktop-1 21634 18036 1166
Desktop-2 1026 27782 43

(2) Workloads collected from the desktop computer [Tan et al. 2009]. Using Windows
Performance Monitor, we collected hard disk read/write request sequences from two
different desktop workstations whose hard disk usage level differs significantly. We
stopped collection when the generated file size reaches 5MB, which is equivalent
to 70,000 read/write requests in the sequence. The first trace was collected in the
afternoon when a set of applications were running simultaneously with high disk
I/O activities, resulting in a short collection time (i.e., about 1000 seconds). The
other trace was collected at night when only two applications were running and it
takes more than 20000 seconds to complete the collection.

Table IV summaries the characteristics of the HP and desktop workload traces that
we use.

Both Q-learning algorithm and expert-based algorithm can achieve different power-
performance trade-off by controlling the trade-off factors λ and α respectively. By vary-
ing these trade-off factors, we generate multiple power management policies with dif-
ferent power/latency trade-offs. Figure 11 shows these power latency trade-off points for
these two learning based power management algorithms tested using 5 real workload
traces. The results for power management using the traditional Q-learning algorithm
without VSS enhancement are also shown in those figures. To better show the trend of
power/latency trade-off, we use solid line to sequence the power/latency points follow-
ing the decreasing order of the value of corresponding trade-off factors. Note in this set
of experiment, learning rate ε(o,a) in Equation (4) is reset to 1 periodically to adapt to
the change of the workload patterns.

From Figure 11, four observations can be made.

(1) Expert-based algorithm generally outperforms Q-learning algorithm for low-
latency high performance scenario. This is because all the experts used in the
expert-based algorithm are designed for high performance and they will turn on
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Fig. 11. Power/Latency trade-off curves for workload. (a) HP-1; (b) HP-2; (c) HP-3; (d) Desktop-1; (e)
Desktop-2
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Fig. 12. Q-value for observation-action pair(000,0).

the device as soon as a request comes in. In contrast to the expert based algorithm,
the Q-learning algorithm allows the device to buffer the requests.

(2) The Q-learning outperforms the expert based policy when the performance is rel-
atively less important than the power consumption and it provides wider range of
power-performance trade-off. The trade-off curve for Q-learning based power man-
agement is also much smoother than the curve for expert based power management.
For Q-learning based management, power is a decreasing function of performance
in all cases except the last one (i.e., desktop workload 2). While for expert-based
power management, such monotonic relation is not obvious for several test cases
(i.e., HP-1, HP-2, Desktop-1 and Desktop-2).

(3) For workload Desktop-2, the red curve moves forward and backward. This means
the latency (and the power) of the device does not have a monotonic relation with the
trade-off factor. This is probably because the workload is very intensive and changes
so rapidly, the traditional Q-learning algorithm does not have enough time to find
the best policy before the workload changes. Our enhanced Q-learning algorithm
exhibit better monotonic relation between power/latency and the trade-off factor,
due to its fast convergence speed.

(4) Our proposed VSS technique in Section 4.2 significantly improves the power la-
tency trade-off curves due to the faster speed of Q-learning convergence. Figure 12
compares their convergence speed.

As we mentioned earlier, two enhancement techniques are used to speed up the
convergence. First, the learning rate ε is modified as an adaptive factor associated
with the observation-action pair. Second, we update multiple Q-values instead of only
one Q-value in each learning step using the VSS technique. Figure 12 shows the change
of the Q-value of state-action pair (000, 0) for 3 different Q-learning algorithms: the
traditional Q-learning (without variable learning rate and multiple Q-value update),
the Q-learning algorithm with multiple Q-value update (but no variable learning rate),
and our enhanced Q-learning algorithm. The state action pair (000, 0) represents the
scenario when there are no incoming requests, no waiting requests in queue, and HDD
is in sleep mode, and the power management command is to continue sleeping. As we
can see, comparing to the other two learning algorithms, the changes of Q-value for the
proposed modified Q-learning is smoother. Moreover, it converges much faster to the
stable state. The similar trend can be found with all other state action pairs.
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Fig. 13. Power/Latency trade-off curves for (a) HP workloads (b) desktop workloads when Tbe = 8 seconds.

In terms of complexity, as we mentioned before, the enhanced Q-learning is O(|SP|×
|SQ|× |A|), the expert-based algorithm is O(n) where n is the number of simple experts
used, and the traditional Q-learning is O(1).

6.1.4. Adaptivity of the Learning Based Power Management to Different Hardware. In the third
experiment, we consider power management of systems with special hardware that
has a large penalty to go to sleep mode. The purpose of this experiment is to test
the robustness of the Q-learning algorithm in working with different types of service
provider. Different devices will have different power and transition characteristics.
For example, the server’s hard disk or the CD-ROM will always have longer Tbe than
personal computer’s hard disk.

In this experiment, we increase the Tbe of the HDD from 4 seconds to 8 seconds by
increasing the Ptran and run the simulation again. Figure 13 shows the results for 3
HP workload traces and 2 desktop traces respectively. As we can see, the policies found
by the expert-based algorithm do not give proper trade-off between power and perfor-
mance. When the latency increases, the power consumption of the system increases
too. The policies found by the Q-learning based power management are still capable of
trading performance for power reduction. This is because the expert-based algorithm
is restricted by the selected experts, which are a set of time-out policies whose time
out values are multiples of Tbe. When the value of Tbe gets larger, the flexibility of
these time-out policies reduces. Compared to the idle intervals in the request pattern,
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Fig. 14. Relative average power deviation from user constraints.

these timeout values are either too small or too large. When the performance require-
ment reduces, the power manager will put the device into sleep mode more frequently.
However, without proper timeout threshold, there will be lots of mistakes and frequent
on-off switches. Hence, not only latency, the power will also increase. This problem can
be solved if more timeout polices with finer resolution of timeout threshold are added
as experts. However, this means higher complexity. This experiment also shows that
with different workload patterns and different hardware devices, the performance of
expert-based algorithm depends highly on the right selection of different experts.

In contrast to the expert based policy, the Q-learning power management algorithm
not only learns and adapts to different workloads, but also adapt to different hardware,
both of which are the requirements of a good power management algorithm [Pettis
and Lu 2009].

6.1.5. Tracking the Power (Latency) Constraint. In this section, we will demonstrate the
effectiveness of our proposed power (latency) constraint tracking algorithm. It is mea-
sured by the difference between the actual average power consumption (or latency)
and the user specified constraint. The closer the actual value and the constraint are,
the more effective the constraint tracking algorithm is.

In the first set of experiments, we consider the problem of performance optimization
with power constraint and show the effectiveness of level 1 and level 2 controllers.
First we compare our Q-learning algorithm with the same algorithm that has level
2 constraint tracking controller disabled (i.e., the value of λ is set exactly equal to λ̂
predicted by the neural network). Please note that we divide each workload trace into
2 segments, a training sequence and a testing sequence. The neural network is trained
using the training sequence, and then applied to the testing sequence to collect the
comparison results.

As we mentioned in Section 4.3, the function of level 2 controller is to keep the
average power consumption close to the power constraint using feedback control. In
this experiment, we focus on how much the average power consumption deviates from
the power constraint. We vary the power constraint from 0.7 to 1. The average power
over the entire simulation time is measured and the relative deviation of the average
power is calculated which is the relative difference between actual average power
and the power constraint. The comparison results are shown in Figure 14. As we can
see, adding level-2 controllers can reduce the constraint tracking error from 4.58% to
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Fig. 15. Percentage MSE of instant power versus user constraints.

2.15%, which stands for approximately 50% improvement. The capability of being able
to stay close to the power constraint is very useful for systems powered by battery
[Fei et al. 2008] or energy harvesting units [Kansal et al. 2007], where the budget of
available power is predefined.

While using level-2 controller helps to keep the average power consumption close
to the constraint, using level-1 controller helps to reduce the variation of the
instantaneous power consumption. In next experiment, we compare out Q-learning
algorithm with the same algorithm that has level 1 controller disabled (i.e., the value
of λ is controlled only by the feedback controller.) The percentage mean square errors
(MSE) between the instantaneous power consumption and the power constraint is cal-
culated. Here we use the average power consumption over 200 cycles to represent the
instantaneous power. The comparison results are given in Figure 15. As we can see,
including level-1controller reduces the variation of the power by 15.6% in average.

The previous experiment shows that including a level 2 controller could reduce the
average power deviation from 4.58% to 2.15%. Although this represents 50% relative
improvement, the absolute improvement is only 2%, which is quite small. This is
because our level 1 predictor is already accurate in predicting the average power for
the given λ. Therefore, using level 1 control we can find the trade-off factor close to
the right value. However, level 2 controller is especially important when we couldn’t
construct a good model to predict λ in level 1. In the next set of experiments, we consider
the problem of power minimization with performance constraint.

Because the rate of incoming request to a hard disk drive has very large variation,
it is difficult to train a neural network model that could accurately predict the average
latency. Therefore, the level 1 control can only provide a very loose bound and the search
for the appropriate trade-off factor largely depends on the level 2 controller. Instead of
confining λ around λ̂ which is predicted by the neural network, we constrainit within
the range (Cλcurr, λcurr/C) where λcurr. is value of λ that have recently been used. By
doing this, we prevent λ from changing too abruptly and stabilize the latency change
through the time.

Figure 16. shows the percentage deviation of the average latency compared to the
latency constraint. We vary the latency constraint from 1 to 4 for the three HP traces
as well as Desktop-1. Note that a different set of latency constraints is used for trace
Desktop-2. This is because it is extremely intensive and no power management policy
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Fig. 16. Relative average latency deviation for latency constrained power management.

except the “always on” policy can meet the same latency constraints as we use for the
other 4 traces. The experimental results show that in average the Q-learning based
power manager can maintain the system performance within about 10% of the given
constraint. Furthermore, it is much easier to track a loose performance constraint than
a tight performance constraint. Note that the data shown in Figure 16. are relative
deviation. When the latency constraint is tight, although the relative deviation is large,
its absolute value is still small.

6.2. Q-Learning Based Microprocessor Power Management

In the second set of experiments, we evaluated our Q-learning algorithm for micro-
processor power management. We implemented the Q-learning based DVFS controller
on a Dell Precision T3400 workstation with Intel Core 2 Duo E8400 Processor.4 The
processor supports 4 frequency levels: 2GHz, 2.33GHZ, 2.67GHz, 3GHz. The Linux
kernel we use is version 2.6.29.

We used coretemp driver in the Linux kernel to read the temperature sensor of the
processors. The default driver updates temperature readings once every second and
we modified it to be every 10ms to achieve our required granularity. We used cpufreq
driver in Linux based on Enhanced SpeedStep technology5 of Intel Core 2 processor
to adjust the processor’s frequency. We used Perform2 tool6 to monitor performance
events of the processors. We ran the experiments on one core and fixed the frequency of
the other core to be the minimum. The Q-learning controller was triggered every 20ms.
Empirically, this interval will not exert too much overhead to the processor while still
capable of tracking the change of workload. The overhead of frequency change is only
about 20us. We use the option “–print-interval=20” provided by pfmon to control its
sampling period to also be 20ms.

4Intel R© CoreTM2 Duo Processor E8000 and E7000 Series: http://download.intel.com/design/processor/
datashts/318732.pdf
5Enhanced Intel SpeedStep R© Technology - How To Document. http://www.intel.com/cd/channel/reseller/
asmo-na/eng/203838.htm
6Perfmon2: http://perfmon2.sourceforge.net/
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Table V. Constraining Performance and Temperature.

We use benchmarks from MiBench7 and MediaBench8 to form the workload of the
evaluation system. Our goal is to generate workloads with changing CPU intensive-
ness. The benchmarks we selected are: bitcount small, basicmath small, qsort large,
tiff2rgba, mpeg4dec, and jpeg200dec together with a simple custom application with
only CPU busy loops. Their CPU intensiveness varies from 11% to almost 100% with an
average of 82% according to our measurement. Each benchmark running a little more
than 0.2s under minimum frequency is a running unit. We serialized 100 running units
of different benchmarks in 4 different random orders to construct 4 different “work-
loads”. Every experiment result reported here is the average of the 4 “workloads”. We
need to point out that MiBench is a benchmark mainly designed for embedded systems,
while our experiment is done on a Core 2 Duo workstation. However, it is our goal is
to test how well the power management controller adapts to different workload. Our
objective in selecting the benchmark is to create a variety of workload with different
CPU intensiveness. We found that the two programs from MediaBench (i.e., mpeg4dec
and jpeg200dec) has relatively lower CPU intensiveness (in the range of 70% to 80%)
while the program in MiBench has much higher CPU intensiveness which is above
95%. So the combination of MiBench and MediaBench gives us such variety.

Since we have 4 frequency levels (i.e., f0 ∼ f3) on our platform, we partition the
workload CPU intensiveness μ into 4 states, so that fi is corresponding to the ideal
frequency f ∗

E when μ = μi, 0 ≤ i ≤ 3. Such partition enables us to measure the energy
penalty using the deviations from the ideal frequency. The temperature and IPS are
also empirically partitioned into 4 states.

As discussed in Section 5, the performance is measured by the deviation from the
maximum frequency; the energy is measured by the deviation from the energy opti-
mal frequency. The temperature is the average normalized temperature of the CPU
observed by the temperature sensor.

We run the Q-learning based power management for minimum energy under differ-
ent performance and temperature constraints. The results are shown in Table V. Each
column in the table represents a performance constraint and each row represents a
temperature constraint. Because our platform only supports 4 frequency levels and the
frequency increases linearly at an equal step from level 0 to level 3, the correspond-
ing normalized temperature and performance for those frequency levels should also
change roughly at an equal step. To better show our results, we set the constraints to
be 0.34, 0.67 and 1 as shown in the tables. Each entry gives the actual performance
and temperature of the system under the power management. For example, the cell

7Mibench: http://www.eecs.umich.edu/mibench/
8MediaBench: http://euler.slu.edu/∼fritts/mediabench/
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in row 1 and column 1 of Table V shows that the actual normalized temperature and
performance of the system is 0.46 and 0.33 respectively when the performance and
temperature constraint are both set to 0.34. The entries are shaded differently accord-
ing to the energy dissipation of the system. The lighter the cell is, the lower energy
dissipation we achieve. As we can see, the upper left cell has the darkest color because
it corresponds to the most stringent user constraints and hence leaves almost no room
for the optimization of the 3rd metrics. On the contrary, the bottom right cell has the
lightest color because it corresponds to the most relaxed constraints.

We can see that sometimes the Q-learning controller cannot find a policy that satis-
fies both user constraints. For example, the entry (0.34, 0.34) in Table V has constraint
violation. Sometime, the controller finds policies that exactly satisfies one of the con-
straints and outperforms the other (e.g., entry (0.34, 0.67) in Table V. For the rest of
times, the controller finds policies that outperform both user constraints. This clearly
shows that the relation among T, P and E are not monotonic. We cannot optimize one
metric by setting the other (one or two) metrics exactly to the given user constraints.
For example, consider cell (0.67, 0.67) in Table V. The user set a loose performance and
temperature constraint (conP = conT = 0.67) in order to optimize the energy. However
the result shows that the policy that minimizes the energy actually does not have to
work so slowly and will not generate so much heat. Clearly in this test case, we have
fP ≤ f ∗

E ≤ fT for the average μ of the workloads, where f ∗
E is the energy optimal

frequency, fP and fT are the frequencies that exactly satisfy the performance and tem-
perature constraints respectively. However, we need to point out that the data reported
here is the average of 4 different workloads over 80 seconds simulation. Although in
average the CPU intensiveness satisfies the condition fP ≤ f ∗

E ≤ fT , the instantaneous
value of μ for each individual workload may not always satisfy this condition. That is
why the entry (0.67, 0.67) has a darker shade than the cell (1.0, 1.0), which indicates
a higher energy. The later, due to the extremely loose performance and temperature
constraints, can always reach the energy optimal point f ∗

E.
The experimental results also show that, generally without the prior knowledge

of hardware and software, our Q-learning based controller can correctly learn the
trade-off space and give effective control policies. The only information we need to know
related to the hardware is the mapping of different workload CPU intensiveness to the
ideal working frequency f ∗

E for the energy optimization purpose. This requirement can
be removed if the processor’s power consumption can be measured during the runtime.

In order to compare the performance of the proposed learning algorithm with the
state-of-the-art approach, we modified the expert-based algorithm in Dhiman and Ros-
ing [2009] for energy management with the consideration of performance and tempera-
ture. In our modified expert based approach, we choose different voltage and frequency
configurations as experts. The cost function is weighted sum of energy cost, perfor-
mance cost and temperature cost defined in Section 5, that is, C = αCE + βCP + γ CT .
The modified expert based approach is actually a reduced version of the expert based
controller proposed in Coskun et al. [2008]. While their work considers energy and
thermal management for multicore system running interactive applications, our prob-
lem is a little different. If we remove some control knobs that are specific to multicore
system (e.g., task migration) and interactive applications (e.g., adaptive random and
DPM) from their work, and also remove thermal gradient and thermal cycle from their
cost function, then it will be reduced to our modified expert based controller.

As we mentioned previously, because the energy and performance no longer have
monotonic relation, and also because there are two constraints (i.e., performance and
temperature), it is very difficult to find a set of weight factors that minimizes the
energy while satisfying the given constraints. Therefore, we sweep the weight fac-
tors α, β,and γ to generate a set of power management policies that gives different
energy/performance/temperature trade-offs. Their corresponding energy, performance
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Fig. 17. Energy, temperature and performance results of Q-learning algorithm with constraints and expert-
based algorithm without constrains: (a) energy versus performance; (b) temperature versus performance

and temperature values are plotted in Figure 17, represented by the red dots. These
policies do not try to meet any performance/temperature constraints. They provide the
best effort to minimize the weighted sum of energy, performance and temperature costs.

Our modified expert based control is a reduced version of the controller proposed
in Coskun et al. [2008], which is a comprehensive work on multicore system energy
and thermal management using expert based framework. The scope of their problem
is a little different from ours. They consider multicore system running interactive
applications (i.e., Web server), while we consider single core management for CPU
running batch processing. In addition to energy, performance and temperature, they
also consider thermal gradient and thermal cycles in the optimization. If we remove
those control knobs that are specific to multicore system (e.g., task migration) and
interactive applications (e.g., adaptive random and DPM) from their work, and also
remove thermal gradient and thermal cycle from their cost function, then it will be
reduced to the same modified expert based controller implemented in our experiment.

In Table V we have already shown that our approach can meet the performance
and temperature constraints. Figure 17. also shows that, for the same performance
level, our approach results in the same or even less energy and similar temperature,
compared to the expert based approach, which does not guarantee the performance and
temperature constraints. Therefore, the Q-learning based approach performs better for
this problem.

7. CONCLUSIONS

In this article, we propose a general model solving the dynamic power management
problem using Q-learning. The Q-learning power manager does not require any prior
knowledge of the workload or the system model while it can learn the policy online with
real-time incoming tasks and adjusts the policy accordingly. Convergence speed accel-
eration techniques are proposed that make the Q-learning algorithm more efficient
in non-Markovian environment. A 2-level power or performance control model is pro-
posed to accurately keep the system at the given power (or performance) constraint, to
achieve maximum performance (or minimum power consumption). Simulation results
prove that our Q-learning power management algorithm is able to achieve better power
performance trade-off than the existing expert-based power management algorithm.
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The Q-learning algorithm is also extended for the CPU power management by con-
trolling its DVFS settings. The control algorithm is capable to achieve minimum energy
while meeting the user constraints in performance and temperature.
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