
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

A Multi-Agent Framework for Thermal Aware Task
Migration in Many-Core Systems

Yang Ge, Student Member, IEEE, Qinru Qiu, Member, IEEE, and Qing Wu, Member, IEEE

Abstract—In deep submicrometer era, thermal hot spots, and
large temperature gradients significantly impact system reliability,
performance, cost, and leakage power. As the system complexity
increases, it is more and more difficult to perform thermal man-
agement in a centralizedmanner because of state explosion and the
overhead of monitoring the entire chip. In this paper, we propose
a framework for distributed thermal management in many-core
systems where balanced thermal profile can be achieved by proac-
tive task migration among neighboring cores. The framework has
a low cost agent residing in each core that observes the local work-
load and temperature and communicates with its nearest neighbor
for task migration and exchange. By choosing only those migration
requests that will result in balanced workload without generating
thermal emergency, the proposed framework maintains workload
balance across the system and avoids unnecessary migration. Ex-
perimental results show that, our distributed management policy
achieves almost the same performance as a global management
policywhen the tasks are initially randomly distributed. Compared
with existing proactive task migration technique, our approach
generates less hotspot, less migration overhead with negligible per-
formance overhead.

Index Terms—Distributed control, dynamic thermal manage-
ment, multi-agent, prediction, task migration.

I. INTRODUCTION

W ITH the unprecedented number of transistors integrated
on a single chip, the current multi-core technology may

soon progress to hundreds or thousands of cores era [3]. Exam-
ples of such system are the 80-tile network-on-chip that has been
fabricated and tested by Intel [28] and Tilera’s 64 core TILE64
processor [1]. While the multicore or many-core technology de-
livers extraordinary performance, they have to face the signifi-
cant power and thermal challenges.
The increasing chip complexity and power density elevate

peak temperatures of chip and unbalance the thermal gradients.
Raised peak temperatures reduce lifetime of the chip, deterio-
rate its performance, affect the reliability [27] and increase the
cooling cost. Dynamic thermal management (DTM) approaches
such as core throttling or stalling which are widely used in
today’s computer systems usually have negative impact on the
performance. The adverse positive feedback between leakage

Manuscript received July 29, 2010; revised January 24, 2011 and May 16,
2011; accepted June 13, 2011. This work was supported by the National Science
Foundation under Grant CNS-0845947.
Y. Ge and Q. Qiu are with the Department of Electrical Engineering and

Computer Science, Syracuse University, Syracuse, NY 13244 USA (e-mail:
eroicaleo@gmail.com; qinru.qiu@gmail.com).
Q. Wu is with the Information Directorate of United States Air Force Re-

search Laboratory, Rome, NY 13440 USA (e-mail: qwu2000@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TVLSI.2011.2162348

power and raised temperature creates the potential of thermal
runaway [27]. When mapped on a many-core system, diverse
workload of applications may lead to power and temperature
imbalance among different cores. Such temporal and spatial
variations in temperature create local temperature maxima on
the chip called the hotspot [11], [27]. An excessive spatial
temperature variation, which is also referred to as the thermal
gradients, increases clock skews and decreases performance
and reliability.
Many dynamic thermal management techniques such as

clock gating, dynamic voltage, and frequency scaling, thread
migration have been proposed for multi-core systems. All these
techniques aim to ensure the system running under a fixed safe
temperature constraint [8], [9], [16], [19], [21], [22], [26], [29].
Most of these existing techniques are centralized approaches.

They require a controller that monitors the temperature and
workload distribution of each core on the entire chip and make
global decisions of resource allocation. Such centralized ap-
proaches do not have good scalability. First of all, as the number
of processing elements grows, the complexity of solving the
resource management problem grows exponentially. Second,
a centralized resource management unit that monitors the
status and issues DTM commands to each core generates a
huge communication overhead in many-core architecture, as
communication between the central controller and cores will
increase exponentially with the number of cores [12]. Such
overhead will eventually affect the speed of data communica-
tion among user programs and also consume more power on the
interconnect network. Finally, as the size and the complexity
of the many-core system increase the communication latency
between the central controller and the cores increases, this leads
to a delayed response and sub-optimal control.
In this paper, we propose a framework of distributed thermal

management where balanced thermal profile can be achieved
by proactive thermal throttling as well as thermal-aware task
migrations among neighboring cores. The framework has a low
cost agent residing in each processing element (PE). The agent
observes the workload and temperature of the PE while ex-
changing tasks with its nearest neighbors through negotiation
and communication. The goal of the proposed task migration is
to match the PE’s heat removal capability to its workload (i.e.,
the average power consumption) and at the same time create
a good mix of high power (i.e., “hot”) tasks and low power
(i.e., “cool”) tasks running on it. As each agent monitors only
the local PE and communicates with its nearest neighbors, the
proposed framework achieves much better scalability than the
centralized approach. We refer to the proposed technique as dis-
tributed thermal balancing migration (DTB-M) as it aims at bal-
ancing the workload and temperature of the processors simulta-
neously.

1063-8210/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

A steady-state temperature-based migration (SSTM) scheme
as well as a temperature prediction-based migration (TPM)
scheme are proposed in this paper. The first migration scheme
considers the long term thermal behavior of tasks, and dis-
tributes tasks to PEs based on their different heat removal
capabilities. The second migration scheme predicts the thermal
impact of different workload combinations and adjusts the task
allocation in a neighborhood so that all the PEs get a good
mixture of hot tasks and cool tasks. The two migration schemes
are complementary to each other with the first considers long
term average thermal effect and the second considers short term
temporal thermal variations. Both SSTM and TPM methods are
proactive migration schemes. Together they provide progres-
sive improvement that reduces thermal gradients and prevents
thermal throttling events.
As part of the thermal management agent, a neural network-

based temperature predictor is also proposed in this paper. It pre-
dicts the future peak temperature based on the workload statis-
tics of the local PE and some preliminary information from the
neighboring PEs. Comparing to the temperature predictors pro-
posed in previous works [9], [31], our neural network predictor
has several advantages. First of all, it only has to be trained
once and after that the recall process has very low computation
complexity. Second, because it takes the workload information
as one of the input parameters, it can give accurate prediction
right after task migration. This is the major difference between
our prediction model and the previous prediction models [9]
and [31] which need an online adaptation phase when workload
changes. Finally, our model can be used to predict the tempera-
ture impact of a migration before the migration physically takes
place, as long as the power consumption of the task to be mi-
grated in or out is known. Therefore, the predictor is used not
only to determine when to trigger a proactive task migration but
also to evaluate whether a migration is beneficial.
The following summarizes the key contributions of the

DTB-M thermal management framework.
1) No centralized controller is required in this framework.
The distributed thermal management agent communicates
and exchanges tasks only with its nearest neighbors. There-
fore, the communication cost and migration overhead for
each core does not increase as the number of PEs on the
chip increases.

2) Comparing to the existing temperature prediction models
[9], [31], the neural network-based peak temperature
predictor works more robustly especially during the time
when the workload changes, which usually happens after
task migration.

3) Comparing to the existing proactive thermal-aware task
migration, the proposed migration policy results in lower
peak temperature and reduces the number of thermal throt-
tling events. Experimental results show that, in average,
the DTB-M reduces the occurrence of hotspots by 29.8%
at 0.98% performance overhead compared to the proactive
thermal balancing (PTB) algorithm proposed in [9]. Fur-
thermore, the DTB-M also has much lower migration over-
head due to its distributed nature.

Comparing to our original work in [34], this work provides
the following two major extensions.

The first major extension of this paper is a thorough study
of the performance of neural network model. The investigation
covers three areas.
1) We varied the size (number of neurons) of the neural net-
work model and compared their prediction accuracies. The
results show that fairly good prediction accuracy could be
achieved with very small size neural network.

2) We also examined the impact of input feature set selection
on the prediction accuracy. The above analysis leads to an
improved neural network model with better accuracy and
computation complexity tradeoff than the one presented in
our previous work [34].

3) We compared our neural network model with an improved
auto-regression moving average (ARMA) prediction
model proposed in [9]. The improvement is added in order
to have a fair comparison as the original ARMA model
does not consider as many input information as we do in
the neural network model, and this impairs the accuracy.
We test the accuracies of these two models not only on
systems with stable workload but also on systems with
dynamic workload where tasks start, complete and migrate
from time to time.

The second major extension of the paper is the enriched
experimental results section. We investigated the impact of
different prediction models on the efficiency of the proposed
migration policy. We also evaluated the performance of the
SSTM and TPM policies separately in order to assess their
individual contributions to the thermal management. The re-
sults show that the SSTM policy gives more hotspot reduction
and leads to better system performance; therefore it should be
assigned with higher priority during the runtime. However,
using TPM following SSTM can give us extra reduction in
hotspots and improvements in system performance. We further
demonstrate the effectiveness of using distributed control by
applying the same migration policy in a global manner. The
results show that although in average the global policy has
about 13% less hotspot than the distributed policy, its migration
overhead is 58% higher. Finally, we compared our migration
policy with the PTB policy proposed in [9].
The rest of this paper is organized as follows. Section II

reviews the previous work. Section III gives the semantics of
the underlying many-core system and the application model.
We give an overview of our thermal management policy in
Section IV, while the detailed prediction model and migration
schemes are presented in Sections V and VI, respectively.
Experimental results are reported in Section VII. Finally, we
conclude this paper in Section VIII.

II. RELATED WORK

Modern day microprocessers handle thermal emergencies
through various DTM mechanisms. Techniques at microar-
chitecture level have been well explored in [11] and [27]. At
system level, voltage/frequency scaling, task scheduling, task
allocation, and thread migration can be combined to leverage
the temperature reduction on MPSoCs. In [22], frequency
assignment has been formulated as a convex optimization
problem and optimum solutions can be solved offline. Online
voltage/frequency scaling techniques often utilize a feedback

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GE et al.: MULTI-AGENT FRAMEWORK FOR THERMAL AWARE TASK MIGRATION IN MANY-CORE SYSTEMS 3

controller to adjust voltage/frequency settings. The authors of
[32] use a linear quadratic regulator to adjust the frequency
assignment online for thermal balancing. In [29], chip power
consumption and operating temperature are controlled to a
desired point by a multiple-input and multiple-output (MIMO)
controller based on the model predictive control theory. Coskun
et al. [8] proposed a light weight probability based scheduling
method which could achieve better temporal and spatial thermal
profile.
In a many-core system, the heat dissipation capability differs

from processor to processor. In [33], an algorithm is proposed
to map and schedule tasks based on the thermal conductivity of
different processors. In [26], Sharifi et al. proposed a task allo-
cation and frequency assignment algorithm which use exhaus-
tive search to find a location and a voltage/frequency setting for
incoming tasks to achieve energy saving and balanced temper-
ature. Michaud et al. [19] proposed a clock gating and thread
migration based method which maximizes system performance
and minimize the number of migrations while maintaining the
temperature under a desired constraint and guaranteeing fair-
ness between threads. The throughput of an MPSoC system
under a maximum temperature constraint has been studied in
[24], and they derived an approximate analytic expression of
system throughput depend on several parameters of interest.
Thermal management of on-chip interconnect network is

addressed in [25]. Shang et al. first proposed an architecture
thermal model for on-chip networks. Based on this model,
they further proposed ThermalHerd, a framework which uses
distributed thermal throttling and thermal aware routing to
tackle thermal emergencies.
Proactive thermal management based on runtime task migra-

tion has been proposed in references [9] and [31]. Both of them
predict the future temperature as a projection of the history tem-
perature trace. Although these predictive models are very accu-
rate in most circumstances, they have some limitations. First of
all, bothmodels have to be updated and adjusted at runtime. This
could introduce adaption overhead. Second, bothmodels predict
the future temperature solely from the temperature history. For
a system with frequent task migrations, history trace does not
reflect future temperature because the workload changes dra-
matically. The predictor cannot give accurate prediction until it
has adapted to the new workload which may take a long time.
Unlike the prediction model proposed in [9] and [31], our

neural network-based prediction model can overcome the lim-
itations mentioned previously. Our model does not rely on the
history temperature. Instead it reveals the relation between tem-
perature and workload. It is trained offline; and does not need
an online adaption phase. As the model is trained separately for
each core on the chip, it inherently takes into account the core
location and heat dissipation ability.

III. SYSTEM INFRASTRUCTURE

A tile-based network-on-chip (NoC) architecture [10] is tar-
geted here. Each tile is a processor with dedicated memory and
an embedded router. It will also be referred to as core or PE in
this paper. All the processors and routers are connected by an
on-chip network where information is communicated via packet
transmission. We refer to the cores that can reach to each other

via one-hop communication as the nearest neighbors. The pro-
posed DTB-M algorithm moves tasks among nearest neighbors
in order to reduce overhead and minimize the impact on the
communication bandwidth.
In an NoC, the latency and energy for transferring a data

packet from one PE to another is proportional to the number
of hops along the path [14], [18]. If we consider the conges-
tions, this relation could be super linear due to the buffering
overhead at each router. Limiting the communication to nearest
neighbors cuts the communication cost (including both latency
and energy) by reducing the communication distances and elim-
inating congestions.
We assume an existence of temperature sensor on each core.

A temperature sensor can be a simple diode with reasonably fast
and accurate response [11].
We assume that a dedicated OS layer is running on each

core that provides functions for scheduling, resource manage-
ment as well as communication with other cores. This is a trend
pointed out by some literatures in OS research for many-core
and NoC systems [20], [23]. Examples of such system are Intel’s
single-chip cloud computing (SCC) platform [13] and research
accelerator for multiple processors (RAMP) [30].
The proposed DTB-M algorithm is implemented as part of

the OS-based resource management program which performs
thermal-aware task migration. We assume that each core is
a preemptive time-sharing/multitasking system. We focus on
batch processing mode, where pending processes/tasks are
enqueued and scheduled by the agent. Each task occupies an
equal slice of operating time. Between two execution slices
is the scheduling interval in which the agent performs the
proposed DTB-M algorithm and the OS switches from one task
to another. The scheduling intervals of different cores do not
have to be synchronized. Because the context switch overhead
is very small compare to the execution interval (e.g., in Linux),
and our algorithm has very low overhead, we assume that the
duration of the scheduling interval is negligible comparing to
that of the execution interval.
In this work, we do not consider cores that support for si-

multaneous multithreading (SMT) because it is anticipated [3]
and [15] that future many-core platform is composed of large
number of weaker and smaller cores with less transistors and
power consumption, therefore, they are more likely to be single-
threaded cores. However, with somemodification in the temper-
ature prediction models, the same DTB-M algorithm could be
applied to systems with SMT cores.

IV. DISTRIBUTED THERMAL BALANCING POLICY

In this section, we present the details of the DTB-M policy.
Table I summarizes the notations that will be used in this paper.
As we mentioned before, each is a preemptive system

and has a set of tasks . Each task occupies an equal slice
of execution time . Between two execution intervals is the
scheduling interval. Our DTB-M policy is performed in sched-
uling interval. The PE also switches from one task to the next
task at the scheduling interval. It is assumed that each task in

will be running for a relatively long period of time and its
power consumption has been profiled or can be estimated. For
example, it is reported in [5] that more than 95% accuracy can
be achieved in power estimation using information provided by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE I
LIST OF SYMBOLS AND THEIR DEFINITIONS

Fig. 1. Master-slave execution protocol.

performance counters that are available in manymodern proces-
sors. In the rest of this paper, we refer to the power consumptions
of all tasks in as the “workload” of and we refer to the
different combinations of tasks in the as different “work-
load patterns” of . Both information can easily be observed
by OS.
The DTB-M policy basically can be divided into 3 phases:

temperature checking and prediction, information exchange and
task migration. Fig. 1 shows the flowchart of the DTB-M exe-
cution in the th core. A DTB-M agent could be in either master
mode or slave mode. A DTB-Mmaster initiates a task migration
request while the DTB-M slave responds to a task migration re-
quest. A DTB-M agent is in slave mode by default. It will enter
the master mode if and only if any of the following three sce-
narios are true.
1) The local temperature reaches a threshold in the last
execution interval. In this case, hotspots are generated, and
the DTB-M agent will first throttle the processor to let it
cool down before continue to execute.

2) The predicted future peak temperature exceeds the
threshold and the current peak temperature is larger
than , where is a temperature margin. Note that
we do not take actions unless the difference between the
current peak temperature and the threshold is less than the
margin.

3) The temperature difference between the local core and the
neighbor core exceeds the thermal balancing threshold

.
Any of the above three scenarios could cause adverse effects.

The first two scenarios indicate (potential) hotspots generation
while the last scenario indicates high thermal gradients. There-
fore, a task migration request will be initiated.

Fig. 2. Master-slave communication.

A DTB-M master sends task migration requests to its nearest
neighbors. Because the scheduling intervals in all processors are
not synchronized, the requests are not likely to be checked and
responded by the slave agents right away. On the other hand,
because all cores adopt the same execution and scheduling in-
terval, it is guaranteed that all slave agents will respond within
one after the requests are issued.
The asynchronous communication between master and slave

agents is explained by the example shown in Fig. 2. It shows a
complete execution cycle of DTB-M policy starting from con-
dition check phase to task migration. When an agent first en-
ters its scheduling interval and becomes a master, it broadcasts
a migration request in its neighborhood and then continues task
execution.
The slave will not respond until it reaches the next sched-

uling interval, when it checks its message queue for incoming
requests. If there is no request, the PE resumes normal execu-
tion in next time slice. In case of multiple master requests, the
slave selects a master which has the highest average power con-
sumption. Response to this master PE includes its ID, details of
slave’s workload, its recent operating temperature etc. The slave
is then locked to this master until it is released by the master.
After receiving the response, the master decides which tasks

to migrate during its next scheduling interval and sends the mi-
gration command to slave. The tasks are migrated from master
to slave at this time. After sending a response, the slave ignores
any possible incoming requests from other master agents until it
receives the migration command from the original master. Tasks
can be migrated from slave to master at this time, which marks
the end of DTB-M policy cycle.
To make migration decisions, a master DTB agent considers

both load balancing as well as thermal balancing. First, a load
balancing process is triggered which migrates tasks one way to
balance the workload between the master and the slave if the
workload difference between them exceeds the threshold ,
which is measured by , . The de-
tailed workload balancing policy is presented in Section VI-D.
If there is no workload imbalance, then the thermal balancing
process is triggered.
The main idea of the DTB-M policy is to exchange tasks be-

tween neighboring PEs, so that each PE can get a set of tasks
that produces fewer hotspots. The DTB-M policy is composed
of two techniques. Both of the techniques have quadratic com-
plexities to the number of tasks in the local task queue. The first
technique is a SSTM. It distributes tasks to cores based on their
different heat dissipation abilities. The second technique is a
TPM, which relies on predicted peak temperatures of different
task combinations to make migration decisions. It ensures that
each core can get a good mixture of high power and low power
tasks without having thermal emergency. The two techniques

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GE et al.: MULTI-AGENT FRAMEWORK FOR THERMAL AWARE TASK MIGRATION IN MANY-CORE SYSTEMS 5

are complementary to each other with the SSTM focuses on long
term average thermal effect and the TPM focuses on short term
temporal variations. The main computation of the SSTM is per-
formed by the masters while the main computation of the TPM
is performed by the slaves.
The DTB-M agent is not a separate task but resides in the

kernel code. For example, it can be integrated with the Linux
task scheduler, which will be called each time when a task fin-
ishes its current time slice and gives up the CPU.

V. TEMPERATURE PREDICTION MODEL

Instead of projecting the future temperature based on a se-
quence of history temperatures, we model the peak temperature
of a processor as a function of a set of features collected from
local processor and its neighboring processors within a history
window, and approximate this function using a neural network.
Our feature set includes not only the temperature information
but also the workload information. Because the relation between
temperature and workload is relatively stable when the layout
and packaging style of the chip is given, the neural network
needs to be trained only once.
The rest of the section is organized as follows. Section V-A

presents our neural network prediction model. Section V-B
extends the ARMA prediction model proposed in [9] and
Section V-C compares the performance of the two prediction
models.

A. Neural Network-Based Temperature Prediction Model

The peak temperature predictor will be used in the temper-
ature checking/prediction phase to determine if a master mode
DTB-M will be triggered and also in the information exchange
phase to find out if a TPM migration is beneficial or not. There-
fore, it should not only give accurate peak temperature estima-
tion when the PE continues the current workload pattern, but
also project the temperature change before dramatic workload
changes.
Temperature prediction in a timesharing/multitasking system

is challenging. For example, Linux system makes context
switch every tens of milliseconds. Different tasks have dif-
ferent power consumptions and therefore display different
thermal characteristics. When running the combination of
these tasks, the temperature of a PE would oscillate rapidly,
making accurate temperature prediction difficult. Fortunately,
we observed that the local peak temperature for a given set
of tasks changes much slower compared to the instantaneous
temperature. For example, Fig. 3 shows a 12 s long temper-
ature trace of a processor time-multiplexed by a set of tasks
randomly picked from SPEC 2000 benchmarks. We sampled
the trace at a time step of 50 ms. We can see that, for a given
workload pattern (i.e., a given combination of tasks in the
ready queue), the instantaneous temperature variation of the
PE can be as large as 8 C and it changes rapidly while the
peak temperature changes much slower and the variation is
less than 2 C. Similar observation has been reported in [6].
Our second observation is that the peak temperature strongly
depends on the task combinations running on the PE. As shown
in Fig. 3, there are five different workload patterns running on
the PE. The temperature curve exhibits different characteristics
during each workload pattern and the local peak temperature is

Fig. 3. Example of instantaneous and peak temperature change.

Fig. 4. Neural network structure.

changing considerably from one pattern to another. Because a
high peak temperature causes the thermal emergency, here we
are interested in predicting the PE’s peak temperature in the
near future given the set of tasks (i.e., the workload pattern) on
this processor.
We adopt the neural network model for the peak tempera-

ture prediction. Neural network has been widely used in pattern
recognition and data classification because of their remarkable
ability to extract patterns and detect trends through complex
or imprecise data [2]. It is composed of a number of intercon-
nected processing elements (i.e., neurons) working together to
solve a specific problem. A neural network model can be trained
through a standard learning process. After the training process,
the model can be used to provide projections on the new data of
interest.
The general architecture of a neural network model is shown

in Fig. 4. The model may have several layers, and each layer
implements the function , where is a transfer
function, is a weight matrix, is a bias vector, and and
are input and output vectors. The sizes of and are -by-
and -by-1, where is the dimension of the input vector and
is the number of neurons in this layer. Consequently, the output
vector has the dimension -by-1. For a multi-layer neural
network, the relation between the input of the model and the
output of the model can be characterized by (1), where is the
transfer function, is the weight matrix, and is the bias
vector for the th layer, respectively, and is the input vector
to the neural network

(1)

The training of the neural network predictor is an offline pro-
cedure and needs to be done only once. Therefore, here we only
consider the complexity of the recall procedure, which is used
online to predict the peak temperature. The recall procedure has

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 5. Neural network predictor architecture.

very low complexity, which involves only multiplica-
tions and additions.
In this paper, a two-layer neural network as shown in Fig. 5

is applied for peak temperature prediction. It has a hidden layer,
and an output layer. There is only one neuron in the output layer
because the output has to be a scalar variable. The number of
neurons in the hidden layer should be selected to provide a good
balance between the prediction accuracy and computing com-
plexity. Later in this section we will show that, one neuron in
the hidden layer is enough to provide good prediction accuracy.
We use tansig and purelin functions as the transfer functions for
the hidden layer and the output layer , respectively.
They are defined as the following two equations:

(2)

(3)

A set of features relevant to the peak temperature prediction
are selected as the inputs to the neural network. They can be
divided into two categories, i.e., features collected from local
processor and features collected from neighbor processors. The
local feature consists of two variables. They give the average
power consumption and maximum power consumption of
tasks running on the local processor. For the th core, they
can be calculated as , and ,
respectively. The feature set for neighbor information consists
of three variables for each neighboring processor. They specify
the recent highest temperatures in a history window, the average
power consumption and the maximum power consumption of
each neighboring processor. Overall there will be
input variables to the neural network where is the number of
neighboring processors of the current PE.
A neural network-based peak temperature predictor is

trained for each processor. The training process uses the fast
and memory efficient Levenberg-Marquardt algorithm [16]
provided by MATLAB neural network toolbox. The training
set is generated by running 600 groups of randomly picked
synthetic workload on our many-core simulator and recording
the peak temperature of each PE for different workloads.
Each group of workload consists of 144 artificially generated
software programs randomly distributed across the many-core
system. Each software program in the training workload has
constant power consumption. Note that these artificially gener-
ated software programs are used only for the training purpose.
All our experiments in the rest of the paper are based on bench-
marks randomly picked from SPEC 2000, Mediabench, and
MiBench. There is no overlapping between our testing set and
training set. More details on the testing programs are provided
in Section VII-A. Because the neural network model is trained

TABLE II
PREDICTION ACCURACY VERSUS THE SIZE OF NEURAL NETWORK

for each core on the chip separately, these models are able to
capture the core to core process variations.
It is important to point out that the neural network model is

based on an assumption that the peak temperature of a core is
a deterministic function of all the features aforementioned plus
some white noise. A training set that covers all possible feature
settings will yield the best model. Therefore, the longer training
set gives better training quality. However, it also increases the
training time. The size of our training set (i.e., 600 vectors) is
selected for a balanced training time and quality.
In general, the accuracy of the prediction can be improved

by adding more neurons in the hidden layer. However, this will
also increase the complexity of training and recall. Experiments
have been conducted to evaluate the sensitivity of the predic-
tion accuracy to the size of the neural network. Table II gives
the relation between the size of the neural network and its accu-
racy for the peak temperature prediction. The first row specifies
the number of neurons in the hidden layer while the second row
gives the Mean Square Error (MSE) of the estimation. When
there is 1 neuron in the hidden layer, the MSE is 0.068. Further
increasing the value of will not improve the accuracy signifi-
cantly but introduce higher computation complexity. Therefore,
we set equal to 1 for all PEs.
Because the complexity of the neural network is proportional

to the size of its input vector, next, we investigate the effect of
feature selections on the prediction accuracy in order to find out
the set of features that gives the best tradeoff between predic-
tion accuracy and computing complexity. We divide the input
into the following four groups: 1) local average power; 2) local
maximum power; 3) neighbor temperature information; and 4)
neighbor power information. We carried out extensive random
simulations of a 6-by-6 many-core processor to find out how
the feature selections can affect the peak temperature predic-
tion. Details of the simulator are provided in Section VII.
Fig. 6 gives the MSE and the input size of neural network

models based on different combinations of feature groups. It is
not surprising that including all four feature groups can result in
the most accurate model and the smallest MSE, which is 0.041.
If only self power and neighbor temperature (i.e., feature groups
1, 2, and 3) are considered, the MSE is 0.433. Finally, if the
model only takes neighbor information (i.e., feature groups 3
or 4) as the input, the derived model is most inaccurate and the
MSE can be as high as 4.977. Therefore, in this work, we build
our neural network based on the entire four feature groups.
Unlike other prediction models [9] and [31], we do not invoke

the prediction at every time step. Instead, the predictor will be
invoked when the core temperature exceeds the predicted value
or when the workload pattern in the PE changes. Note that the
workload pattern is determined by the set of tasks in the cur-
rent ready queue. It will be changed if a task is generated, com-
pleted or migrated. These events can be monitored by the OS.
For a task with several phases that have different power and
thermal characteristics, we consider each phase a single task.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GE et al.: MULTI-AGENT FRAMEWORK FOR THERMAL AWARE TASK MIGRATION IN MANY-CORE SYSTEMS 7

Fig. 6. Prediction error for neural networks based on different feature groups.

Fig. 7. Temperature prediction of neural network model.

New predictions will be made whenever a phase change is de-
tected. Techniques for program phase change detection can be
found in [7].
As an example, Fig. 7 shows the temperature trace of a PE

and the predicted peak temperature given by the neural net-
work. The temperature trace is generated by running several
CPU benchmarks on our many-core simulator. During 12 s sim-
ulation time, tasks migrate, start, or complete randomly. The
workload information at different time is denoted at the bottom
of the figure. While the blue line gives the trace of the real tem-
perature, the green line gives the predicted peak temperature.
As we can see, the predictor is invoked every time the work-
load pattern changes and it is able to track the peak temperature
accurately.

B. Generalized ARMA Prediction Model

In [9], Coskun et al. proposed to utilize the auto-regression
moving average model to predict a PE’s future temperature
based on the previous temperature trace. The model is given by
(4), where is the temperature at time , is the prediction
error, and are the coefficients. It consists of an auto-re-
gressive (AR) part up to order , which is on the left side of
the equation, and a moving average (MA) part up to order ,
which is on the right side of the equation. To utilize the ARMA
model, we need to first identify the order of the model, and then
compute the coefficients using least square fitting, and finally
check the residuals to ensure the validity of the parameters

(4)

This model works very well when the temperature changes
smoothly or there is a repeated pattern in the temperature
change. However, it has two major limitations. First, in a
multitasking system where threads start, finish, and migrate

Fig. 8. Temperature prediction of ARMAX model.

dynamically, the adaptation time for the ARMA model is
overwhelming. For example, in our experiment, we observed
that the adaptation can be more than 50% of the execution time.
Second, as we mentioned earlier, we are not only interested in
predicting the future temperature when the current workload
pattern continues, but also like to predict the temperature for a
new workload pattern that has not physically been executed in
order to assess the potential benefits of a task migration. This is
not achievable using the ARMA model. While the first limita-
tion is a fundamental issue related to all auto regression-based
predictors, the second limitation can be improved by including
some workload information in the original ARMA model.
In order to obtain a fair comparison between our neural net-

work model and the existing prediction model, we extend the
ARMA model to include the workload information as the ex-
ogenous inputs. The new model will be referred to as ARMAX
[17] (i.e., auto-regressive moving average with exogenous in-
puts). It is described by (5), where is the average power con-
sumption of the task running at time and is the coefficient.
Because we have already included the history temperature in
the model, the input part could be reduced to only one item, i.e.,

. Therefore, the next temperature of the PE depends on
history temperature samples and the power consumption of the
task it is currently running

(5)

Fig. 8 shows the temperature trace of a PE in a 6 6 many-
core system obtained from Hotspot simulation and the temper-
ature prediction made by the ARMAX model. The PE is time
multiplexed by four tasks. Their execution order is fixed; there-
fore, the temperature trace shows a rough periodic pattern. Sim-
ilar to [9] we set and to 8 and 0, respectively. The trace is
12 s long; we sampled 2 data points for each time slice and col-
lected 240 temperature sample data. The results show that the
final prediction error (FPE) [9] is 0.0265.

C. Comparing the Neural Network Predictor With ARMA
Predictor

We compare our neural network based temperature predictor
with ARMAX-based predictor. Fig. 9 shows a sequence of sim-
ulated temperature trace and the predicted temperature from the
neural network andARMAXmodels. The PE is initially running
4 tasks, after 3.25 s the PE exchanges its high power task with a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 9. Adaption ability of ARMAX model and neural network model.

TABLE III
AVERAGE POWER AND STEADY-STATE TEMPERATURE OF CPU BENCHMARKS

Fig. 10. Comparison of peak temperature prediction error.

low power task running on its nearest neighbor. As we can see,
the neural network predictor adjusts its prediction to the correct
level immediately after the migration while the ARMAXmodel
takes more than 0.2 s to adapt to the right value. We refer this
adaptation time as black-out period as the prediction results are
not usable during this period of time.
We further compare the two models’ capabilities to estimate

the potential thermal impact before the migration. We simulate
a 36-core system with 144 tasks randomly selected from real
benchmarks listed in Table III. Approximately 200 migrations
are randomly generated. Fig. 10 shows the absolute prediction
error of the neural network model and the ARMAX model.
As shown in the figure, the average prediction error of the

neural network model is 0.67 C and the maximum prediction
error is 2.5 C. The average prediction error of the ARMAX is
1.2 C which is 79% higher than that of the neural network pre-
dictor while its maximum error is 5.8 C, which is 132% higher
than that of the neural network model. For 99.75% of time the
prediction error of the neural network is under 2 C, while for
20% of time the prediction error of the ARMAX is above 2 C.
The difference is mainly because the ARMAXmodel has to take
some time to adapt to the new workload after migration, and
cannot make accurate prediction immediately.
Please note that the testing programs used in our experiments

are different from the training programs. Our training set is arti-
ficially-generated programs with constant power consumptions.

And the testing set consists of real benchmarks. However, the
training set and testing set do share some similarity in those gen-
eral features used for temperature prediction. For example, the
ranges of power consumptions of the applications in the training
and testing sets are very close. As long as two workloads have
the same feature, their peak temperatures will be close to each
other. Because the selected feature set is not extremely large, the
600 training vectors give reasonable coverage of possible sce-
narios. However, a larger training set can lead to more accurate
model.

VI. DISTRIBUTED TASK MIGRATION POLICY

In this section, we present our distributed task migration
policy. Section VI-A discusses the SSTM policy. Section VI-B
discusses the TPM policy. Both of the SSTM and TPM have

time complexities, where is the number of tasks in
local ready queue of a processor. Section VI-C shows how
to combine the two migration algorithms together. Finally,
Section VI-D presents the workload balancing algorithm.

A. SSTM

Due to variant heat dissipation abilities, a task running on dif-
ferent processors have different steady state temperatures. The
SSTM policy balances high power tasks and low power tasks
among neighbor PEs to lower the average steady state temper-
ature of the whole chip. It considers the lateral heat transfer be-
tween neighbor PEs and their different heat dissipation capabil-
ities.
Before introducing the SSTM policy, we first give some def-

initions. We use to denote the number of all thermal nodes
in the system, including those in the heat sink layer and heat
spread layer, and to denote the number of processors in the
system. The relation between and is determined by the
equation [24]. We use and to denote
the steady-state temperature and average power consumption of
node . is 0 if node belongs to the heat sink layer or heat
spread layer. The vectors of and , where ,
are denoted as and . When the system reaches the steady
state, for each thermal node, its temperature is a linear function
of power consumptions . The relation can be rep-
resented by the following equation:

(6)

where is the inverse of thermal conductance matrix
. We simplify (6) by keeping only the thermal nodes related

to the PEs

...
...

. . .
...

...
... (7)

where is the number of processors, and
is a set of constants, because the power of those nodes

not related with processors do not change. The coefficients
and can be obtained by offline analysis.
Equation (7) shows that the steady state temperature of each
PE is a linear function of average power consumptions on other
PEs and increasing or reducing the power consumption of one

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GE et al.: MULTI-AGENT FRAMEWORK FOR THERMAL AWARE TASK MIGRATION IN MANY-CORE SYSTEMS 9

PE will have an impact on the steady state temperature of all
other PEs.
Assume that and exchange some tasks, and their

average power consumptions altered by and , respec-
tively. Using (7), the total steady-state temperature change of
all processors after task migration can be calculated as

(8)

where and are the sums of the th and th column of
the thermal conductance matrix, i.e., ,

. Because the thermal conductance matrix of a chip
does not change once the hardware is given, the values of
and are constants and can be pre-characterized. Overall, it
takes only two multiplications and one addition to calculate

. As we mentioned earlier, the goal of the SSTM
policy is to reduce the average steady state temperature of the
many-core system. Therefore it exchanges task pairs to keep

decreasing, i.e., .
The main computation of SSTM is done on the master PE.

Algorithm 1 gives the SSTM policy. A master DTB-M agent in
first forms all task pairs
with . Then for each task pair, (8) is evaluated.

The task pair which gives the minimum is selected and
tasks are swapped. The process continues until
for all task pairs. In this way, the master can maintain fairness
of workload and reduce its own operating temperature as well
as the system’s average steady state temperature.

Algorithm 1 SSTM

1. for each
2. for each , s.t.
3.
4. do {
5. if
6. } while

B. Temperature Prediction Based Migration

The SSTM reduces the average steady state temperature of
the whole chip. Although very effective, it has several limita-
tions. First, it is possible that the SSTM moves all high power
tasks in a neighborhood to one core whose value is the min-
imum. Furthermore, if the value of a core is less than the
value of all its neighbors, then using SSTM policy the core will
not be able to exchange its high power task with a low power
task in its neighborhood when it is overheated because this will
increase the average steady state temperature of the chip.

Algorithm 2 TPM (Slave Process)

1. Input: (list of tasks on local PE) and (list of tasks
on master PE)

2. Sort based on the ascending order of task power
consumption

3. Sort based on the descending order of task power
consumption

4. For each task

5. For each task
6. If
7.

;
8. If return to the master and exit;
9. Return NULL to the master and exit;

To escape from the above mentioned situation, we further
propose the TPM. The TPMpolicy guides high temperature core
to exchange tasks with its cooler neighbors as long as those task
exchanges will not cause any thermal emergency in both cores.
This is achieved by using the prediction model introduced in
Section V.
Algorithm 2 shows the main computation of the TPM policy

which is performed by the slave DTB-M agent. The algorithm
scans the list of local tasks (i.e.,) based on the ascending
order of task power consumption and the list of tasks on the
master PE (i.e.,) based on the descending order of task
power consumption. For each task pair and ,
if the power consumption of the local task is lower than that
of the remote task, the slave DTB-M agent employs the neural
network based predictor to determine whether the local peak
temperature will exceed the thermal threshold after and
are exchanged. The algorithm stops when first such task pair

is found. The task pair is returned to the master DTB-M agent
as an offer for potential task migration. Because of the way that
the and are sorted, this offer specifies the highest power
task that can be taken from the master PE and the lowest power
task that will be given to the master PE without generating any
thermal problem.
On the master side, algorithm 2.1 is executed. Upon receiving

all offers from its neighbors, the master agent selects the offer
that enables it to move out the task with the highest power con-
sumption. If there is a tie, then it further selects the offer that
enables it to move in the task with the lowest power.

Algorithm 2 TPM (Master Process)

1. Input:
2. Select the offer whose is the maximum
3. If there is a tie, select the offer whose is
the minimum

C. Combined Migration Policy

As discussed in the previous sections, the SSTM algorithm
reduces the overall chip temperature by considering the thermal
conductance of the chip. So that in a neighborhood, high power
tasks can quickly bemoved to the PEs that have better heat dissi-
pation abilities, while low power tasks can be moved to the PEs
that are more easily to heat up. On the other hand, the TPM algo-
rithm prevents a core with stronger heat dissipation in a neigh-
borhood from being overheated by proactively exchanging its
high power tasks with low power tasks in the neighborhood.
The proposed DTB-M policy is a combination of both SSTM

and TPM. After the master DTB-M agent triggers a migration
request, it waits for the response from the slaves. In this re-
quest, the master sends out the list of its local tasks. Once the
slave receives the request, it performs the TPM algorithm (slave
process). In the reply message, it sends TPM offer together with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

the list of local tasks to the master. The master then performs
SSTM to search for task pairs that, once exchanged, could bring
down the average chip temperature. If such task pair is found,
then the master will issue a task migration command. Otherwise
it performs the TPM algorithm (master process).
We employ a simple technique to schedule the execution

of tasks. All tasks in a PE’s ready queue are sorted based on
their average power consumption. The thermal aware scheduler
will execute hot and cool tasks alternatively starting from the
coolest and the hottest tasks, then the second coolest tasks and
the second hottest, until all tasks have been executed once. It
will then start a new round of execution again. This simple yet
effective scheduling technique reduces the core temperature by
interleaving hot and cool tasks.

D. Workload Balancing Policy

Workload balancing is triggered when a master finds the
workload difference between itself and a slave exceeds the
threshold , that is , . The
goal of workload balancing is to maintain approximately equal
number of tasks on each core and therefore improve worst case
latency and response time.
The master will pick the slave which gives the maximum

workload difference. Then, tasks are migrated one by one from
the PE with more tasks to the PE with fewer tasks until their
difference is less than or equal to one. In every migration, (8) is
evaluated and the task which minimizes the will be
selected. It can be proved that if and ,
the migration from to will start from the task with
the highest power. On the other hand, if and

, the migration from to will start from the task
with the lowest power.

VII. EXPERIMENTAL RESULTS

We implemented a power trace driven behavioral simulator of
a many-core system using C++. Hotspot [27] is integrated to our
simulator to simulate the system thermal behavior. Although the
model is scalable for any number of cores, a 36-core systemwith
6 6 grids is chosen for our experiments due to the limitation
of simulation time. Each core has a size of 4 mm 4 mm with
silicon layer of 24 mm 24 mm. We set the thermal sampling
interval of Hotspot to 30 s, in order to speed up the simulation
without significantly reducing the accuracy.
We evaluated the proposed thermal management policy

using both static workload and dynamic workload. The system
performance is characterized by the number of completed jobs
within a given period of time. We assume that the temperature
threshold to trigger thermal throttling is 80 C and during
thermal throttling, the CPU stalls its current execution. In all
experiments, unless otherwise specified, the parameters of the
DTB-M policy are set as the following: , 100
ms, C, C.
The following criteria are considered to measure the quality

of a thermal management policy:
• Hotspot: The time spent above a temperature threshold
which is 80 C in our case.

• : The finish time of the last task in the system. This
criterion measures the performance in a system with static
workload.

Fig. 11. Different task set generation probability distribution.

• : The number of tasks completed within a given pe-
riod of time. This criterion measures the performance in a
system with dynamic workload.

• : Total number of migrations occurred during execu-
tion. This criterion measures the migration overhead.

We carried out experiments using power sequences collected
from real applications. We used 9 different CPU benchmarks
comprising of 3 SPEC 2000 benchmarks (bzip2, applu, and
mesa), 4 Mediabench applications (mpeg2enc, mpeg2dec,
jpegdec, jpegenc) and 2 telecom applications (crc32 and fft)
from MiBench benchmark suite. Because each invocation of
a benchmark program runs only on a single core, its power
consumption can be obtained using conventional single pro-
cessor power estimation tool. We collected their power traces
by using the Wattch power analysis tool [4]. The average
power consumptions and steady-state temperatures of each task
are summarized in Table III. The workloads of the following
experiments are random combinations of multiple copies of
these nine benchmarks. All experiment results reported below
are the average of 10 runs.

A. Workloads Generation

We used both static and dynamic workload in our experi-
ments to evaluate the performance of the DTB-M algorithm. For
static workload, each task set is a randomly mixture of 144 CPU
benchmarks which are initially distributed evenly across all the
36 PEs. Each PE has four tasks. The number of each benchmark
in the task set follows a specific discrete probability distribution
of its average power consumption. Fig. 11 shows the five dif-
ferent distributions tested in the experiment.
Uniform distribution evenly generates tasks with different av-

erage power consumptions. Triangular (cool) distribution gen-
erates more low power tasks than high power tasks, whereas
triangular (hot) distribution generates more high power tasks.
Normal distribution generates a set of tasks whose power con-
sumption is mostly clustered around the medium power; while
inverse normal distribution generates more high power tasks
and low power tasks than the medium power tasks.
Unlike the static workload, where all tasks are ready from the

beginning of the simulation and all of them have the same ex-
ecution time, with dynamic workload, tasks can be randomly
generated on each PE and their execution time follows random
distribution. The initial task set is a set of uniformly distributed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GE et al.: MULTI-AGENT FRAMEWORK FOR THERMAL AWARE TASK MIGRATION IN MANY-CORE SYSTEMS 11

TABLE IV
COMPARISON BETWEEN ARMAX AND NEURAL NETWORK MODEL

CPU benchmarks generated as described above. In every exe-
cution interval, a new task is generated on a PE with 0.02 prob-
abilities.

B. Comparison Between Neural Network and ARMAX
Predictor Under Static Workload

In the first set of experiments, we investigate the impact of
the temperature predictor on the performance of DTB-M policy
under static workload. Table IV shows the comparison between
the performances of the DTB-M with the neural network model
and the ARMAX model for different task distributions.
We can see that with the neural network predictor, the DTB-M

is able to reduce the hotspot by 33.5% on average comparing
to the ARMAX model. This is because the neural network pre-
dictor makes more accurate prediction for the thermal impact of
the workload pattern that will be generated after task migration,
and helps both the master and slave agents to make thermal safe
decisions.
The prediction accuracy also affects the number of migra-

tions. Because using the neural network predictor maintains a
more balanced thermal profile and reduces hotspots, the mi-
gration request is triggered less often than the system using
the ARMAX predictor. On average, the neural network pre-
dictor could reduce migration overhead by 19.16%. Note that
the ARMAX has less number of migrations in hot triangular
distributed workload compared to other four cases. This is be-
cause the ARMAX model adapts to the high power tasks and
high temperature, and tends to give conservative temperature
prediction.
Also note that although the neural network predictor pro-

duces much less hotspot, and invokes thermal throttling less fre-
quently, it does not improve the finish time of the system a lot.
This is due to two reasons. First, the thermal throttling time is
much shorter compared to the task execution time. Second, the
finish time is determined by the last task completed by the PE
which invokes the most thermal throttling. The worst case num-
bers of thermal throttling in a system using the neural network
predictor and the ARMAX predictor are about the same.
In this experiment, we did not show the comparisons of

thermal gradients and thermal cycles. Because both systems
have high CPU utilizations and both of them have low thermal
gradients and thermal cycles.

C. Comparison between Dynamic Workload

In the second set of experiments, we compare the impact
of different temperature predictors on the performance of the

TABLE V
PERFORMANCE WITH DYNAMIC WORKLOADS

Fig. 12. Comparison of hotspots.

Fig. 13. Comparison of performance.

DTB-M policy under dynamic workload. The execution time
of the task is uniformly distributed between 15 to 30 execution
intervals, which is equivalent to 1.5 to 3 s.We simulate both sys-
tems for equal length of period and compare their performance.
As shown in Table V, compared to the DTB-Mwith ARMAX

predictor, the DTB-M with neural network predictor improves
the system performance by 3.26%, reduces the hotspots by
29.92% with 23.08% less migration overhead. Note that under
the dynamic workload, we can see more system performance
improvement as the result of using a better temperature pre-
dictor than that with the static workload. This is because the
number of tasks is not fixed in dynamic workload. The less
thermal throttling occurs, the more time could be used for
tasks and hence more tasks are completed. While with static
workload, the performance is determined by the PE who spends
the longest time in thermal throttling.

D. Comparison Between SSTM and TPM Policies

In the third set of experiments, we evaluate the individual
performance of the SSTM and TPM policy.
Figs. 12–14 shows the hotspot, performance and migration

overhead of the combined migration scheme (i.e., DTB-M) as
well as those for the individual SSTM and TPM migrations. As
we could expect, the migration overhead for using the combined
scheme is larger than employing any one of these two schemes
individually. However, it is less than the sum of those indi-
vidual schemes. This is because the migration decisions made
by SSTM and TPM are not mutually exclusive.
Fig. 12 shows that the DTB-M reduces hotspots by 9.12%

over SSTM and 39.06% over TPM on average. We can see that
the SSTM is more effective in hotspot reduction compared to
the TPM. This is because the SSTM reduces hotspots by map-
ping tasks according to the PE’s heat dissipation ability while
TPM reduces hotspots by interleaving high power tasks with
low power tasks on the same PE. The PE’s own heat dissipa-
tion ability plays a more important role in preventing the high
temperature than interleaving low power tasks and high power
tasks on the same PE. Because the SSTM is more effective in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 14. Comparison of number of migrations.

TABLE VI
COMPARISON BETWEEN GLOBAL AND DISTRIBUTED POLICY

Fig. 15. Comparison of migration distance.

hotspot reduction than TPM, in DTB-M, we give SSTM higher
priority and perform it before the TPM.

E. Comparison Between Distributed Policy and Global Policy

As we mentioned at the beginning of the paper, distributed
thermal management has lower control and monitoring over-
head than centralized thermal management. However, it also
has limitations such as low convergence speed, sub-optimal so-
lutions, etc. In the fourth set of experiments, we compare the
DTB-M policy with a global version of the same migration
scheme to assess the significance of these limitations.
The global policy performs the same DTB-M migration with

the assumption that all PEs on the same chip are the nearest
neighbor to each other, therefore, task migration could happen
between any two PEs. The experiment assumes that there is a
central controller in the system and it controls the task exchange
and migration between any PEs. The experiment also assumes
that all information exchange between PEs and the controller
take the same amount of time. This gives a bias to the global
policy whose communication time actually should be longer due
to multi-hop communication path.
Table VI shows the comparison between DTB-M policy and

the global policy in terms of the number of hotspots, system per-
formance and the number of migrations under static workload.
In average, the global policy reduces the hotspots by 13.3%, fin-
ishes all tasks 2.43% faster and has 1.13% less number of mi-
grations compared to the distributed policy. It is not surprising
that the global policy outperforms the distributed policy in all
aspects, because it can move the task to a better position more
quickly.

TABLE VII
COMPARISON BETWEEN GLOBAL AND DISTRIBUTED POLICY

UNDER EXTREME CASES

Fig. 16. Comparison of hotspots between multi-hops distributed policy and
global policy.

In spite of the hotspot reduction and performance improve-
ments, one major drawback of the global policy is that, since
the tasks are exchanged globally, its migration distance is much
longer than that of the distributed policy. Fig. 15 shows the com-
parison of the total migration distance between the global policy
and the distributed policy. The migration distance of the global
policy is 2.14 times longer than that of the distributed policy on
average. Overall, the performance improvement of the global
policy is not as significant as the increase of the overhead.
In the previous experiment, the initial task mapping is

randomly generated. Therefore, the high power tasks and low
power tasks are evenly distributed across the system. In next
experiment, we test two extreme cases, both of which have
high concentration of high power tasks in a small area in the
initial mapping. The further a PE is away from this area, the
higher probability that it will be assigned to a low power task.
In the first test case, the “hot area” is located at the corner of
the chip, while in the second test case it is located at the center
of the chip.
Table VII presents the performance of the global policy and

the distributed policy for the two extreme cases. Comparing the
results in Table VI and Table VII, we can see that the perfor-
mance of the global policy is hardly affected by the initial task
mapping. On the other hand, the performance of the distributed
policy is significantly affected by the initial task allocation and
it performs much worse under these two extreme cases. It is be-
cause the distributed policy relies on a rippling process to pass
out high power tasks and it can be very slow.
In order to speed up the rippling process, we slightly modify

the distributed policy by allowing a PE to send migration
requests to its far neighbors occasionally. Figs. 16–18 show the
performance of the original distributed DTB-M policy where
communication only happens between 1-hop neighbors, the
modified DTB-M policy where communication could happen
between 1- and 2-hop neighbors and the modified DTB-M

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GE et al.: MULTI-AGENT FRAMEWORK FOR THERMAL AWARE TASK MIGRATION IN MANY-CORE SYSTEMS 13

Fig. 17. Comparison of migration distance between multi-hops distributed
policy and global policy.

Fig. 18. Comparison of finish time between multi-hops distributed policy and
global policy.

TABLE VIII
COMPARISON BETWEEN DTB-M, PTB, AND PTB-NN

policy where communication could happen between 1-, 2-, and
3-hop neighbors. In the modified DTB-M, the 2-hop and 3-hop
neighbors will be contacted with 30% and 10% probability,
respectively. As we can see, the percentage difference of
hotspots between the distributed and global policies reduces
from 75.61% to 28.98% when we extend the communication
range from 1-hop neighbors to 2- or 3-hop neighbors; and
the percentage difference of finish time between global and
distributed policies reduced from 14.02% to 2.06%. Because
the far neighbors are contacted with low probability, the total
migration distance of the modified DTB-M is still much lower
than that of the global policy. As shown in Fig. 17, even if the
2- or 3-hop neighbor are contacted, the migration overhead is
still 43% less than that of the global policy.
Finally, we want to point out that in a real system, such ex-

treme cases of initial task allocation rarely happen because it
can be avoided by simple random mapping of the tasks.

F. Comparison Between PTB and DTB-M

In this set of experiments, we compare the DTB-M policy
with the PTB policy proposed in [9]. PTB reduces hotspots by
proactively exchanging tasks between a core which is predicted
to be hot and a core which is predicted to be cool. Note that the
PTB is not a distributed policy and those two cores do not have
to be the nearest neighbors. To obtain a fair comparison, we du-
plicate the experiment settings in [9] and assign only one task to

each core. The original PTB policy employs AMAR model for
temperature prediction. To separate the disturbance from dif-
ferent temperature prediction models, we replace the AMAR
model in the PTB policy with our neural network model and
name it PTB-NN.
Table VIII shows the comparison among the DTB-M policy,

the original PTB policy and the PTB-NN policy. Compared to
the PTB and PTB-NN policies, the DTB-M policy successfully
reduces the hotspots by 29.8% and 11.85%, reduces migration
overhead by 80.68% and 62.68%, while only has 0.98% and
2.63% performance degradation on average, respectively. This
is because a PE using DTB-M policy always analyzes the work-
load before offering task exchange. If the task migration will not
be benefit or, even worse, will cause hotspots, it will not be per-
formed. However, such analysis does not take place in PTB and
PTB-NN. Because the DTB-M does not perform any unneces-
sary migrations, its migration overhead is also lower. Note that
the PTB and PTB-NN policy are global policies; the thermal
throttling time is more evenly distributed among all cores than
DTB-M. Thus the performance is slightly better than that of the
DTB-M policy for some test cases.

VIII. CONCLUSION

In this paper, we proposed a distributed thermal management
framework for many-core systems. In this framework, no cen-
tralized controller is needed. Each core has an agent which mon-
itors the core temperature, communicates and negotiates with
neighboring agents to migrate and distribute tasks evenly across
the system. The agents use DTB-M policy for task migration.
Our DTB-M policy consists of two parts. The SSTM migra-
tion policy distributes different tasks in a neighborhood based
on their heat dissipation ability. The TPM migration policy en-
sures a good mixture of hot tasks and cool tasks on processors
in a neighborhood. We also proposed a neural network-based
prediction model that can be used not only for future temper-
ature prediction but also for agents to evaluate the rewards of
proposed migration offers.
We compared our neural network predictor with an extended

version of ARMA predictor and showed that our predictor can
make prediction faster and more accurate in the system where
tasks start, complete and migrate dynamically. We showed that
our DTB-M policy reduces 29.8% hotspots and 80.68% migra-
tion overhead with only 0.98% performance overhead compare
to the PTB thermal management.

REFERENCES

[1] Tilera Corporation, San Jose, CA, “Tile processor architecture: Tech-
nology brief,” 2008. [Online]. Available: http://www.tilera.com/pdf/
ProductBrief_TileArchitecture_Web_v4.pdf

[2] I. Aleksander and H. Morton, An Introduction to Neural Computing.
London, U.K.: International Thomson Computer Press, 1995.

[3] S. Borkar, “Thousand core chips—A technology perspective,” in Proc.
Design Autom. Conf. (DAC), 2007, pp. 746–749.

[4] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for ar-
chitectural level power analysis and optimizations,” in Proc. Int. Symp.
Comput. Arch. (ISCA), 2000, pp. 83–94.

[5] X. Chen, C. Xu, R. Dick, and Z. Mao, “Performance and power mod-
eling in a multi-programmed multi-core environment,” in Proc. Design
Autom. Conf. (DAC), 2010, pp. 813–818.

[6] J. Choi, C. Cher, H. Franke, H. Hamann, A. Weger, and P. Bose,
“Thermal aware task scheduling at the system software level,” in Proc.
Int. Symp. Low Power Electron. Design, 2007, pp. 213–218.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[7] R. Cochran and S. Reda, “Consistent runtime thermal prediction and
control through workload phase detection,” in Proc. Design Autom.
Conf. (DAC), 2010, pp. 62–67.

[8] A. Coskun, T. Rosing, and K. Whisnant, “Temperature aware task
scheduling in MPSoCs,” in Proc. Design Autom. Test Euro. (DATE),
2007, pp. 1659–1664.

[9] A. Coskun, T. Rosing, and K. Gross, “Utilizing predictors for efficient
thermal management in multiprocessor SoCs,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 28, no. 10, pp. 1503–1516,
Oct. 2009.

[10] W. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in Proc. Design Autom. Conf., 2001, pp. 684–689.

[11] J. Donald and M. Martonosi, “Techniques for multicore thermal
management: Classification and new exploration,” in Proc. Int. Symp.
Comput. Arch. (ISCA), 2006, pp. 78–88.

[12] T. Ebi, M. Al Faruque, and J. Henkel, “TAPE: Thermal-aware agent-
based power economy for multi/many-core architectures,” in Proc. Int.
Conf. Comput.-Aided Design (ICCAD), 2009, pp. 302–309.

[13] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D.
Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob,
S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M.
Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss, T.
Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T.
Mattson, “A 48-Core IA-32 message-passing processor with DVFS in
45 nm CMOS,” in Proc. Int. Solid-State Circuits Conf. (ISSCC), 2010,
pp. 108–109.

[14] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based NoC
architectures under performance constraints,” in Proc. Asia South Pa-
cific Design Autom. Conf. (ASP-DAC), 2003, pp. 233–239.

[15] W. Huang, M. Stan, K. Sankaranarayanan, R. Ribando, and K.
Skadron, “Many-core design from a thermal perspective,” in Proc.
Design Autom. Conf. (DAC), 2008, pp. 746–749.

[16] R. Jayaseelan and T. Mitra, “Dynamic thermal management via ar-
chitectural adaption,” in Proc. Design Autom. Conf. (DAC), 2009, pp.
484–489.

[17] L. Ljung, System Identification: Theory for the User (2nd Edition).
Upper Saddle River, NJ: Prentice-Hal PTR, 1999.

[18] R. Marculescu, U. Ogras, L. Peh, N. Jerger, and Y. Hoskote, “Out-
standing research problems in NoC design: System, microarchitecture,
and circuit perspectives,” IEEE Trans. Comput.—Aided Design Integr.
Circuits Syst., vol. 28, no. 1, pp. 3–21, Jan. 2009.

[19] P. Michaud, A. Seznec, D. Fetis, Y. Sazeides, and T. Constantinou,
“A study of thread migration in temperature-constrained multicores,”
ACM Trans. Arch. Code Optim. (TACO), vol. 4, no. 2, pp. 9-1–9-28,
Jun. 2007.

[20] D.Wentzlaff, C. Gruenwald, N. Beckmann, K.Modzelewski, A. Belay,
L. Youseff, J. Miller, and A. Agarwal, “A Unified operating system for
clouds and manycore: FOS,” MIT-CSAIL-TR-2009-059, Nov. 2009.

[21] F. Mulas, M. Pittau, M. Buttu, S. Carta, A. Acquaviva, L. Benini, D.
Atienza, and G. De Micheli, “Thermal balancing policy for streaming
computing on multiprocessor architectures,” in Proc. Design Autom.
Test Euro. (DATE), 2008, pp. 734–739.

[22] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G. De
Micheli, “Temperature-aware processor frequency assignment for MP-
SoCs using convex optimization,” in Proc. CODES+ISSS, Sep. 2007,
pp. 111–116.

[23] V. Nollet, T. Marescaux, and D. Verkest, “Operating system controlled
network on chip,” in Proc. Design Autom. Conf. (DAC), 2004, pp.
256–259.

[24] R. Rao and S. Vrudhula, “Fast and accurate prediction of the steady
state throughput of multi-core processors under thermal constraints,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no.
10, pp. 1559–1572, Oct. 2009.

[25] L. Shang, L. Peh, A. Kumar, and N. Jha, “Thermal modeling, charac-
terization and management of on-chip networks,” in Proc. Int. Symp.
Microarch., 2004, pp. 67–78.

[26] S. Sharifi, A. Coskun, and T. Rosing, “Hybrid dynamic energy and
thermal management in heterogeneous embedded multiprocessor,” in
Proc. Asia South Pacific Design Autom. Conf. (ASPDAC), 2010, pp.
873–878.

[27] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Arch. Code Opt., vol. 1, no. 1, pp.
94–125, Mar. 2004.

[28] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Lyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y.
Hoskote, and N. Borkar, “An 80-tile 1.28 TFLOPS network-on-chip
in 65 nm CMOS,” in Proc. Int. Solid-State Circuits Conf. (ISSCC),
2007, pp. 98–589.

[29] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power con-
trol for chip multiprocessors with online model estimation,” in Proc.
Int. Symp. Comput. Arch. (ISCA), 2009, pp. 314–324.

[30] J. Wawrzynek, D. Patterson, M. Oskin, S. Lu, C. Kozyrakis, J. Hoe, D.
Chiou, and K. Asanovic, “RAMP: Research accelerator for multiple
processors,” IEEE Micro, vol. 27, no. 2, pp. 46–57, Aug. 2007.

[31] I. Yeo, C. Liu, and E. Kim, “Predictive dynamic thermal management
for multicore systems,” in Proc. Design Autom. Conf. (DAC), 2008, pp.
734–739.

[32] F. Zanini, D. Atienza, and G. De Micheli, “A control theory approach
for thermal balancing of MPSoC,” in Proc. Asia South Pacific Design
Autom. Conf. (ASPDAC), 2009, pp. 37–42.

[33] S. Liu, J. zhang, Q. Wu, and Q. Qiu, “Thermal-aware job allocation
and scheduling for three dimensional chip multiprocessor,” in Proc.
Int. Symp. Quality Electron. Design (ISQED), 2010, pp. 390–398.

[34] Y. Ge, P. Malani, and Q. Qiu, “Distributed task migration for thermal
management in many-core systems,” in Proc. Design Autom. Conf.
(DAC), 2010, pp. 579–584.

Yang Ge (S’10) received the B.S. degree in telecom-
munication engineering from Zhejiang University,
Hangzhou, China, in 2007, and the M.S. degree
from the Department of Electrical and Computer
Engineering, Binghamton University, Vestal, NY,
in 2009. He is currently pursuing the Ph.D. degree
from the Department of Electrical Engineering and
Computer Science, Syracuse University, Syracuse,
NY.
His research interests include power and thermal

analysis and optimization for multi and many-core
system.

Qinru Qiu (M’01) received the B.S. degree from the
Department of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou, China,
in 1994, and the M.S. and Ph.D. degrees from the
Department of Electrical Engineering, University of
Southern California, Los Angeles, in 1998 and 2001,
respectively.
She is currently an Associate Professor with the

Department of Electrical Engineering and Computer
Science, Syracuse University. Before joining Syra-
cuse University, she was an Assistant Professor and

then an Associate Professor with the Department of Electrical and Computer
Engineering, State University of New York, Binghamton. Her research areas
include energy efficient computing systems, energy harvesting real-time em-
bedded systems, and neuromorphic computing. She has published over 40 re-
search papers in referred journals and conferences. Her works are supported by
NSF, DoD and Air Force Research Laboratory.

Qing Wu (M’01) received the B.S. and M.S. de-
grees from the Department of Information Science
and Electronics Engineering, Zhejiang University,
Hangzhou, China, in 1993 and 1995, respectively,
and the Ph.D. degree in electrical engineering from
the Department of Electrical Engineering—Systems,
University of Southern California, Los Angeles, in
2001.
He is currently with the Information Directorate of

United States Air Force Research Laboratory, Rome,
NY. His research interests include neuromorphic

computing algorithms and architectures, hardware/software optimization for
massively parallel high-performance computing systems, low power design
and power management for cloud computing and green data centers, low power
design methodologies for energy harvesting mobile computing systems, power
estimation of VLSI circuits and systems, FPGA-based hardware-accelerated
computing.

