
Real-time Anomaly Detection for Streaming Data
using Burst Code on a Neurosynaptic Processor

Qiuwen Chen, Qinru Qiu
Department of Electrical Engineering and Computer Science, Syracuse University, NY 13244, USA

Email: {qchen14, qiqiu}@syr.edu

Abstract—Real-time anomaly detection for streaming data is
a desirable feature for mobile devices or unmanned systems.
The key challenge is how to deliver required performance
under the stringent power constraint. To address the paradox
between performance and power consumption, brain-inspired
hardware, such as the IBM Neurosynaptic System, has been
developed to enable low power implementation of large-scale
neural models. Meanwhile, inspired by the operation and the
massive parallel structure of human brain, carefully structured
inference model has been demonstrated to give superior detection
quality than many traditional models while facilitates neuro-
morphic implementation. Implementing inference based anomaly
detection on the neurosynaptic processor is not straightforward
due to hardware limitations. This work presents a design flow and
component library that flexibly maps learned detection network
to the TrueNorth architecture. Instead of traditional rate code,
burst code is adopted in the design, which represents numerical
value using the phase of a burst of spike trains. This does not
only reduce the hardware complexity, but also increases the
results accuracy. A Corelet library, NeoInfer-TN, is developed
for basic operations in burst code and two-phase pipelines are
constructed based on the library components. The design can
be configured for different tradeoffs between detection accuracy
and throughput/energy. We evaluate the system using intrusion
detection data streams. The results show higher detection rate
than some conventional approaches and real-time performance,
with only 50mW power consumption. Overall, it achieves 108

operations per watt-second.

I. INTRODUCTION

With the blooming of machine learning and neural net-
works, intelligent systems have been developed for various
applications such as image recognition [16], multi-media re-
trieval [5] and intrusion detection [17]. Many of them process
streaming data in real-time and imposes high demand in
accuracy and computation throughput. Real-time anomaly de-
tection is one of these applications that continuously monitors
and processes incoming data streams for patterns that do not
conform to normality. It is an extremely desirable feature
for improving the autonomy of today’s unmanned systems or
mobile devices. However, to deliver the required performance
under limited power constraint is a major design challenge.

The brain has unprecedented performance and energy effi-
ciency in cognitive tasks [10]. It is believed that perception is
a procedure of probabilistic inference, and the efficiency of the
biological neural system comes from its massive parallel ar-
chitecture, spiking based communication and closely coupled
computing and storage. Inspired by the biological structure, the
IBM Neurosynaptic System with the TrueNorth architecture
[12] provides a low-power platform for large-scale proto-
typing of Spiking Neural Network (SNN) based intelligent

This work is partially supported by the National Science Foundation under
Grants CCF-1337300.

systems. Meanwhile, brain-inspired anomaly detection has
been proposed [7] and shown to give superior detection quality
than many traditional approaches. It performs inference based
detection and features massive parallel structure that facilitates
neuromorphic implementation. Despite the detection quality
and fast processing, the system consumes high power, and
migrating the model to an SNN will provide huge optimization
for power efficiency. However, implementing the inference
network on the TrueNorth processor is not straightforward.

A TrueNorth chip contains 4096 neurosynaptic cores, each
of which has 256 axon inputs and 256 neurons. The synaptic
connectivity is realized by a 256x256 crossbar. The connected
core networks are encapsulated into Corelet [1] for abstraction
and modular designs. While the processor provides potential
to address the performance and power constraints for real-
time embedded applications, challenges exist when mapping
a signal processing flow onto this platform due to its hardware
constraints. Firstly, each neuron (column) can only support 4
different input weights, while the weight of a connection is
decided by the axon type (row). This limits all neurons who
share an axon input to use the same weight rank at that row.
However, most models’ learned parameters are real numbers.
Secondly, neurons communicate with each other using spikes,
how to encode numerical value into spike trains is application
specific. Thirdly, the crossbar’s size of a core constrains the
fan-in and fan-out of a neuron to 256. This hinders the direct
mapping of big networks. Finally, some common arithmetic
operations, such as division and maximum, are not as readily
supported in TrueNorth as in traditional architectures.

In this work, we focus on implementing a trained inference
network on TrueNorth for real-time anomaly detection [7].
Instead of rate code, which has been widely used in many
other TrueNorth applications [8], burst code is used because
it gives higher computation accuracy and allows very sim-
ple implementation of certain arithmetic operations, such as
maximum. A Corelet library is developed, which consists of
neural circuits for operations in the anomaly detection model.
Our system first extract the topology and parameters of the
network from the learned knowledge base. Then, it flattens
and maps the network to the Corelet library components
for TrueNorth configuration. With a controllable clock driver
input, the network is activated by streaming data in an event-
driven way. Anomaly scores are calculated in real-time by
probabilistic inferences of spatial-temporal features. To our
best knowledge, this is the first work that applies neurosynaptic
processor to the real-time anomaly detection.

The contributions of this paper are the followings:

• We build a generic parser that transforms and maps



inference-based anomaly detection network [6], [7] to a
spiking neural network.

• A novel spike burst coding scheme is proposed for effi-
cient representation, high accuracy and more convenient
implementations. A Corelet library, NeoInfer-TN, is de-
veloped, which contains the neural circuit implementation
of the network components for this coding.

• The adoption of bust code enables a two-phase pipelined
processing for higher throughput. The throughput only
depends on the spike encoding window configured to
achieve a required data precision.

• A tunable accuracy factor is provided to enable tradeoff
between detection accuracy and throughput.

• The network is evaluated with real-time intrusion detec-
tion data stream, and the accuracy, throughput and power
performance are reported.

II. DETECTION ALGORITHM

Inference-based anomaly detection considers the anomaly as
an unexpected observation in a given environmental context.
It calculates the likelihood of each observation and at the
same time infer the most likely one from the context. If the
likelihood of the real observation is much lower than that of
the expected, then an alarm is raised. The detailed detection
algorithm and analysis were elaborated in Chen et. al [6], [7],
so this section only sketches the computation procedure.

Cogent confabulation [9] is adopted the computing model
for probabilistic inference. Cogent confabulation describes an
application using a set of features (e.g. color and shape).
The observed attributes of a given feature (e.g. red color,
round shape) are represented as neurons, and their pairwise
conditional probabilities are represented as synapses. To better
organize the knowledge, neurons that represent the same
features are grouped into lexicons, and the synapses between
the neurons of two lexicons are realized as a probability
matrix. The i, jth entry of such matrix gives the conditional
probability p(si|tj) between neuron si in the source lexicon
and tj in the target lexicon.

Whenever an attribute is observed, the corresponding neuron
is activated, and its excitation is passed to the other neurons
through the synapses. The excitation of a neuron t in lexicon
l is calculated by summing up all incoming activations:

y(t) =
∑
k∈Fl

{
∑
s∈Sk

[I(s) ln
p(s|t)
p0

]}, t ∈ Sl (1)

Here, Fl denotes the set of lexicons that have connections to
l, and Sk is the set of neurons in lexicon k. I(s) takes 0 or 1
given the activation of neuron s. p0 is a constant selected to
ensure positive weights. The excitation is essentially the log
likelihood of t given the rest of the observations.

A set of lexicons are selected and referred to as key lexicons.
They are the testing units of abnormality, representing features
of the possible observations. The other lexicons that are
not tested are named support lexicons and they represent
the environmental context. Synapses are established from the
support lexicons to the key lexicons. The excitations of all
neurons in a key lexicon are calculated using function (1). The
neuron with the highest excitation is considered the reference

Fig. 1. System Workflow

neuron, denoted tmax. The anomaly score of a key lexicon l is
computed using Equation (2).

αl(t) =
y(tmax)− y(t)

y(tmax)
, t, tmax ∈ Sl (2)

Here, the anomaly score is the normalized difference between
the observed activation at t and the prediction tmax. It indicates
how low the sample’s cogency is given the context. The scores
of all lexicons are merged into the network anomaly score:

A(tl=1...L) =

∑L
l=1 αl(tl)

L
(3)

L is the number of key lexicons. tl is the observation neuron
of lexicon l. The output score is ranged in [0, 1].

The efficiency of confabulation-based anomaly detection
comes from a carefully structured inference network. We use
the self-structuring method [7] to build the feature hierarchy in
the lexicon design space, which generates a succinct network.

III. SYSTEM DESIGN

The aforementioned detection flow has four layers, (a) the
support lexicon layer that collects input from the environment,
(b) key lexicon layer that calculates neuron excitations using
Equation (1), (c) anomaly score generator, which performs
Equation (2) for each key lexicon, (d) and anomaly score
accumulator, which merges all key lexicon anomaly scores
using Equation (3). To convert the network into Corelets on
TrueNorth, the overall workflow is shown in Fig. 1.

The network mapper reads in a trained confabulation knowl-
edge base (KB) and maps the connections between support
and key lexicons to a set of crossbar matrices considering
the hardware constraints. It also maps the neuron observations
to the input of the processor and synthesizes the input spikes
from the given data stream. In the second step, the synthesizer
maps each crossbar matrix into Corelets using our NeoInfer-
TN library in the Corelet Programming Environment (CPE). It
also maps the score generation and score accumulation layers
into library components. At last, the network and its inputs are
tested on the NSCS simulator [15] and the TrueNorth chip.

A. Network Mapping
The connection between neurons in the support and key

lexicons forms a bipartite graph and can naturally be imple-
mented as crossbar arrays, where each row corresponds to a
neuron in the support lexicon and each column to a neuron in
the key lexicon. However, a core can only implement crossbar
up to 256x256, while the number of neurons in the support
and key lexicons can reaches 3000. Matrix partition must be
considered to implement one connection using multiple cores.

How to accurately represent synaptic weight in the crossbar
is another challenge. Due to the hardware limitation, each
column can only support 4 different weights, and all weights in



Fig. 2. Network Mapping

the same row must have the same rank in their corresponding
columns. We resolve this problem by decompose each row into
three rows with different weights, and the binary combination
of the three rows provides flexibility in weight representation.

Fig. 2 shows each step performed by the network mapper.
From the original network, large connection matrices are
generated for key lexicons as shown in Fig. 2b. Each row
represents a support neuron and each column represents a key
neuron. As shown in Fig. 2d, for each support neuron input,
3 axon lines with corresponding strengths of 1, 2 and 4 are
used. Using different combination of them, we can represent
synaptic weight in the range of [0, 7]. We choose to use 3 lines
because TrueNorth only supports 4 ranks in each column, and
one of the ranks is used to implement an input clock, whose
functionality will be explained in Section III-B. Then this large
matrix is partitioned into multiple 256x256 crossbars that fits
in single cores as shown in Fig. 2c. Additional Corelets are
also inserted to merge the results.

To reduce the core usage by the network, we follow a “train-
then-constrain” [8] approach. During the self-structuring stage
[7], we limit the support connections of each key lexicon to be
less than 15, and then train the knowledge base accordingly.
This significantly reduces the number of required synapses
with only marginal impact (< 1%) on the detection quality.
More detailed results will be given in Section V-B.

B. Spike Burst Coding
An important feature of the spiking neural network is that

it encodes non-binary information into binary spike trains. A
number of code scheme has been investigated [8], including
binary code, rate code, population code and time-to-spike
code. Among these schemes, rate code, which represents signal
amplitude by the spiking frequency, is the most popular one
and have been studied in many works [3], [13], [14].

The selection of coding scheme must lead to low-cost imple-
mentation of operations in the model and accurate representa-
tion of variables. In addition to integration and accumulation,
which are common operations in many neural network models,
our detection model has two special operations, maximum,
which finds the maximum excitation level among all neurons
in the same key lexicon; and division, which calculates the
anomaly score as in Equation (2). None of the previously
mentioned coding schemes give efficient implementations of
these operations. The widely used rate code also suffers from
sampling error, which reduces its accuracy. In this work, we
propose a burst code that represents the numerical value of
variables using the number of spikes that burst in a window.

Our burst code works in two phases alternatively as shown
in Fig. 3: a burst neuron integrates spikes from the axons
during the input phase and emit spikes in the output phase.
While the neuron has a constant positive leak, the presence of

Fig. 3. Burst Code Neuron Dynamics

the input bursts accelerates the neuron’s membrane potential
raise, and result in a higher initial potential at the beginning
of the output phase. The higher this initial level is, the faster
the neuron reaches the firing threshold. It then stays on the
threshold, fires until a negative input, i.e. the clock reset, is
received. A binary code input can be considered a burst of
only one spike, but the full input phase can be saved. The
burst code is similar to a time-to-spike code in the sense that
they both encode information into temporal representations.
However, incidence such as bit flipping could cause larger
error with time code, while the burst code is more tolerant to
that since it relies on spike count rather than a single spike.
Besides, summing of time codes usually requires additional
neurons to translate the timing into amplitude representation.
Essentially, the burst code works like the temporal version of
a population code [8], but it occupies only one neuron.

The burst code has two advantages over the more widely
used rate code. Firstly, the code is more compact. For example,
to represent 100 distinct values, the burst code only needs
K = 100 ticks code window. In the case of a stochastic rate
code, the spikes fire as a Bernoulli process and we use p̂ =
#spikes/K to represent the information. The approximately
normal 95% confidence interval p̂± 1.96

√
p(1− p)/K needs

around K = 10000 to represent 0.01 granunarity. Please refer
to Section V-C for the comparison of precisions of the two
codes. Secondly, the burst code can max-pool values much
more efficiently: a simple OR-gate will find the maximum as
shown in Fig. 3, while the rate code needs a more complicated
winner-takes-all (WTA) [13] circuit and scaling. We find the
burst code a better option for the detection network.

C. Divider and Key Lexicon Burst Scorer
With the new encoding scheme, the hardware implementa-

tion of some arithmetic operations should be redesigned, and
one example is division, which is used for the computation of
Equation (2). We design a segmentation-based scorer for the
lexicon anomaly score as in Fig. 4. The basic idea is to scale
the excitation difference using multiple fixed-gain neurons.

While differentiating the normalized excitations y(t) and
y(tmax), the later is also directed to an array of trigger neurons
with different spike count thresholds. The triggers can fire
to disable their corresponding gain tabs, which are linear
neurons with fixed weight to threshold ratios. The gains are
precomputed to approach 1/y(tmax) using Equation (4).

1/y(tmax) ≈
M∑
i=1

gainiI[threshi ≥ y(tmax)] (4)



(a) Scorer Structure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
y(t_max)

1
2
3
4
5
6
7
8
9

10

G
a
in

1/y
tab gain

(b) 10-tabs Divider Response

Fig. 4. Key Lexicon Anomaly Scorer

Fig. 5. Corelet Architecture

Here, M is the number of the gain tabs, and I(.) is an indicator
function that takes value {0, 1}. Those tabs having thresholds
larger than y(tmax) are kept on. Increasing y(tmax) disables
more tabs, results in a smaller amplifier to the signal. M
decides the precision of the division. In this work, a 10-tabs
scorer is used to emulate divisor with 0.1 precision as shown
in Fig. 4b. The red lines indicate the scaling response of the
neurons. Finally, the differential signal y(tmax) − y(t) passes
the gain tabs and generate the anomaly score.

D. Corelet Library and Architecture
A set of Corelet configurations are designed to realize the

aforementioned integration, maximization, and division opera-
tions in burst code and they form the NeoInfer-TN library. The
components are instantiated to construct the detection flow as
in Fig. 5. From the bottom layer up, the binary activations of
the support neurons are sent to the “Key Lexicon” Corelet,
who contains multiple Knowledge Crossbars and Excitation
Adders to flexibly map arbitrary key lexicons. The excitations
of all key neurons are computed and passed to the “Max”
Corelet to find y(tmax) using OR-gates. Also, the “PassGate”
Corelet uses the actual observation t to clamp y(t). The
“Scorer” receives both signals and compute Equation (2) as
described in Section III-C. Finally, an “Accumulator” collects
the scores and represent the network-wide score of Equation 3
using spike count. The network also creates “Clocks” Corelet
to control the code windows and the neuron timing.

IV. INFERENCE PIPELINE

Using the architecture constructed in Section III, we care-
fully design the pipeline to hide the delay and improve the
throughput. This section introduces the timing of the neurons.

A. Timing for Real-time Processing
To hide the latency introduced by the burst code operations,

we mesh the input window and output window as in Fig. 6.
Integrations of lexicon excitations takes one window since they

Fig. 6. Detection Pipeline Timing

are parallel additions. Lexicon scores requires two windows
for divisions. In this way, the processing delay is 5 windows,
and the detector handles one sample every 2 code windows
(input phase and output phase). The throughput of the system
does not depend on the scale of the network, but only the
length of the code window.

An input clock fires at the end of the code windows to reset
the neurons. We can use this signal to dynamically adjust the
throughput of the pipeline. When the window size is smaller
than the range of the values, the code set an lower-bound to the
excitations, which is not desirable. We would like to further
the code window without affecting the spike representation
range. Section IV-B uses the accuracy factor to address this.

B. Accuracy Factor

When the value range is fixed, reduced window length is
associated with a lower precision of the computations. This
may not be feasible for classification tasks as the reduced
accuracy affects the ranking of the predictions significantly.
However, anomaly detection is less sensitive to a reduced
precision because the relative excitations, rather than rankings,
are used to score the unlikely events. Therefore, we introduce
an accuracy factor to the neurons to make tradeoff between
the throughput and the accuracy.

The accuracy factor (AF) is actually a multiplier to the
neuron’s positive leak, which shorten the duration that the
membrane potential needs to reach the threshold. AF is
applied throughout the network to make the burst code to
represent a wider range, so that a smaller code window (higher
throughput) can be used. The larger AF is, the less precise is
the computation.

V. EVALUATION

A. Experiment Setups

For evaluation, we structure and train the confabulation
network using the DARPA intrusion detection dataset [11].
For each IP address pairs, traffic statistics are recorded per
300ms-frame. A random sample of 20000 frames are used for
training. The test data contains about 80000 frames of 7000
normal samples, and 60000 frames of 38 attacks. The reference
network and baseline results of the confabulation network are
generated by the AnRAD framework [7].

The hardware development platform is IBM NS1e, which
has a TrueNorth processor and its peripheral devices installed.
The processor runs on 1ms/tick, therefore to represent data in
the range [0, 99] we need a burst window of 100ms. There
are 4096 cores, and 1 million hardware neurons on the chip,



TABLE I
NETWORK COMPLEXITY IMPACTS OF CONSTRAINT

Networks Synapses Cores for Key Lex Total Cores
Original 3373K 5232 6116

Constraint 1322K 2169 2918
Reduction 60.8% 58.5% 52.3%

(a) Burst Code (b) Rate Code
Fig. 7. Excitation Correlation between Spike Code and Reference Program

which consumes 50 to 100mW during typical operation. The
whole board consumes 2 to 3.5W depending on the utilization.

B. Network Construction
Using the self-structuring algorithm [7], we build the con-

fabulation network, which is referred to as the “original”
network. We also constrain the support lexicons to be less
than 15 (the original network ranges from 3 to 30), and refer to
the new network as the “constrained” network. Both networks
have 123 key lexicons. These lexicons represent features or
feature combinations, such as server, packets, etc., extracted
from network traffic. With constraint, each key neuron has
much less incoming synapses, and thus consume less hardware
resources. From Table I, it is seen that the total number of
synaptic weights is reduced by 60% by imposing the constraint
on support connections. This brings the neurosynaptic core
usage to less than 4096, so a single TrueNorth processor can
handle the full confabulation network. Other than saving the
power for additional chips and peripherals, because the spare
cores can be gated, our constraint potentially reduces 50% of
static power (calculation method in Section V-E).

C. Detection Accuracy
We first compare burst code and rate code for their accuracy.

The window for burst code is 100 ticks, while the rate code
window is 1000 ticks. A lexicon is selected from the DARPA
network and has all its neuron excitations collected over 500
frames of data. Spiking outputs of both code schemes are
compared with the baseline computation by the reference
program. Fig. 7 is the scatter plots for both codes. The X-
axis gives the baseline excitation computed by the reference
program, and Y-axis denotes the spike counts at the neuron
excitation pins from either code windows. Compared to rate
code, our burst code shows better linear correlation with the
reference computation, with a correlation coefficient of 0.998,
while the rate code has 0.924. The burst code achieves higher
precision with only 1/10 of the window size of the rate
code. Assuming similar firing frequency (power), a burst code
pipeline consumes much less energy for each detection since
it can afford smaller window and thus shorter processing time.

Next we test the whole network for its performance in
anomaly detection. Two configurations are tested: high accu-
racy with 100-tick burst window (TN-100) and high efficiency

TABLE II
DETECTION QUALITIES OF COMPARISON MODELS

Methods SOM RNN Reference TN-100 TN-10
AUROC 0.879 0.898 0.933 0.943 0.914

Fig. 8. Tradeoff between Quality and Speed

with 10-tick window (TN-10). The results are compared
with 3 software implementation methods: self-organizing map
(SOM), replicator neural network (RNN) [9] and the reference
detector with full confabulation network. The metric is AU-
ROC (Area Under Receiver Operation Curve), which measures
the tradeoff between false alarm and true detection, the higher
the better. Shown in Table II, TN-100 outperforms SOM and
RNN by around 5%. It is even slightly better than the reference
program. TN-10 provides 10X speedup over TN-100, and still
generates better results compared to SOM and RNN.

D. Throughput and Accuracy Tradeoff
Computation speed is critical for real-time anomaly detec-

tion. With 100-tick windows, the spiking neural network uses
200ms for each input (alternative input/output windows). It can
already achieves real-time detection as the network data stream
was collected with sample intervals of 300ms. We would like
to further investigate the potential performance increase for
larger scaled data by trading off the accuracy.

Fig. 8 shows how the performance and detection quality
vary with the change of the AF. The X-axis shows the accuracy
factor. The Y-axises show the processing time (blue), AUROC
score (red) and the best detection rates (green) when the false
positive is less than 10%. As we increase the accuracy factor,
the AUROC score only drops slightly from 0.943 (AF=1, 100-
tick window) to 0.918 (AF=10, 10-tick window). However,
the throughput of the system is improved significantly: with
AF=10, the processing speed is reduced to 20ms/frame from
the 200ms/frame base case. When the code window further
shrinks to shorter than 10 ticks, the network still achieves
good AUROC scores (> 0.88), but it generate so few spikes to
the anomaly score that only a limited selection of thresholds
can be used to tradeoff the detection and the false positives.
Therefore, when we impose the false positive to be less than
0.1, the detection rate drops quickly for AF>10.

E. Power and Performance
Finally, we compare the power consumptions of different

platforms. For the baselines, we have a 16-threaded program
on Intel W5580 quad-core CPU, whose active power is esti-
mated using PowerAPI [2]. Also, a CUDA program is tested



TABLE III
POWER AND PERFORMANCE OF DIFFERENT PLATFORMS

Devices Time Power Energy/Sample
Xeon W5580 25.7ms 68.0W 1747.6mJ

Tesla K20 0.270ms 102.4W 27.6mJ
Jetson TK1 13.48ms 2.5W 33.7mJ
TN-10 1.0V 20ms 104.1mW 2.1mJ
TN-10 0.8V 20ms 49.22mW 0.98mJ

Fig. 9. Power/Energy Consumptions for Different Window Lengths

for active powers on an NVIDIA Tesla K20c workstation
and the embeded GPGPU system Jetson TK1 using NVIDIA-
smi and external Power meter. All baselines are supported
by the AnRAD framework. The TrueNorth power is tested
by the method in Cassidy et. al. [4]. To find the actual
power consumption for the chip utilization, first the leakage
power Pleak is measured when the system is idle, and then
the total power Ptotal is measured with the network running.
The active power is computed as Pactive = Ptotal − Pleak. The
leakage power is scaled by the number of cores actually used
Pleak scaled = PleakNcores/4096. The final power is calculated
as P = Pactive + Pleak scaled. TrueNorth is capable of operating
on 1.0V or 0.8V with the same 1ms ticks.

Table III shows the results of the baselines and the
TrueNorth networks with 10-tick code windows. The spiking
network is not only running faster than the CPU program, but
is also 800/1700 times more energy efficient: it only consumes
2.1mJ at 1.0V and 0.98mJ at 0.8V to process each sample.
Although K20 is capable of achieving a higher throughput, it
runs on a much higher power and consumes up to 30X more
energy compared with the TrueNorth chip. The Jetson board
also consumes low power, but overall the energy consumption
is still much higher than that of the spiking networks. The
DARPA network has around 50000 key neurons, each of which
integrates 11 support activations per sample on average. Take
TN-10 0.8V for example, the power efficiency is estimated as
(#neurons×#supports)/(time per sample×power) ≈ 6 × 108

operations per watt-second. Note that the cores are not fully
occupied, and smaller code window offers higher efficiency.

Finally, we test the power consumptions with different
accuracies. In Fig. 9, we vary the code window from 10 to 100
and report the power and energy of TrueNorth implementation
normalized with respect to the power and energy of TN-10 at
0.8V voltage. Obviously, high supply voltage results in about
2X higher consumptions. All accuracy settings are basically
power-neutral because the spike frequencies do not change
much given the same amount of time. However, since the
processing time for each frame reduces with smaller windows,
the energy usage is also less at high-efficient setting TN-10.

VI. CONCLUSION

This paper presents a streaming anomaly detection network
using TrueNorth neurosynaptic processor. A trained confab-
ulation network is mapped to Corelet with our NeoInfer-TN
library. The network uses an efficient burst code and features
a highly concurrent architecture. The implementation achieves
state-of-the-art detection precision, real-time processing and
high power efficiency.

REFERENCES

[1] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K.
Esser, A. Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza,
et al. Cognitive computing programming paradigm: a corelet language
for composing networks of neurosynaptic cores. In 2013 International
Joint Conference on Neural Networks, pages 1–10. IEEE, 2013.

[2] A. Bourdon, A. Noureddine, R. Rouvoy, and L. Seinturier. Powerapi:
A software library to monitor the energy consumed at the processlevel.
ERCIM News, 2013(92), 2013.

[3] L. Buesing, J. Bill, B. Nessler, and W. Maass. Neural dynamics as
sampling: a model for stochastic computation in recurrent networks of
spiking neurons. PLoS Comput Biol, 7(11):e1002211, 2011.

[4] A. S. Cassidy, R. Alvarez-Icaza, F. Akopyan, J. Sawada, J. V. Arthur,
P. A. Merolla, P. Datta, M. G. Tallada, B. Taba, A. Andreopoulos, et al.
Real-time scalable cortical computing at 46 giga-synaptic ops/watt with.
In Proceedings of the international conference for high performance
computing, networking, storage and analysis, pages 27–38. IEEE, 2014.

[5] Q. Chen and Q. Qiu. Enhancing bidirectional association between deep
image representations and loosely correlated texts. In 2016 International
Joint Conference on Neural Networks. IEEE, 2016.

[6] Q. Chen, Q. Qiu, H. Li, and Q. Wu. A neuromorphic architecture
for anomaly detection in autonomous large-area traffic monitoring. In
2013 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 202–205. IEEE, 2013.

[7] Q. Chen, Q. Wu, M. Bishop, R. Linderman, and Q. Qiu. Self-structured
confabulation network for fast anomaly detection and reasoning. In 2015
International Joint Conference on Neural Networks. IEEE, 2015.

[8] S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch,
A. Amir, J. Arthur, A. Cassidy, M. Flickner, P. Merolla, et al. Cog-
nitive computing systems: Algorithms and applications for networks of
neurosynaptic cores. In 2013 International Joint Conference on Neural
Networks, pages 1–10. IEEE, 2013.

[9] R. Hecht-Nielsen. Confabulation theory: the mechanism of thought.
Springer-Verlag New York, Inc., 2007.

[10] D. C. Knill and A. Pouget. The bayesian brain: the role of uncertainty in
neural coding and computation. TRENDS in Neurosciences, 27(12):712–
719, 2004.

[11] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall,
D. McClung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunning-
ham, et al. Evaluating intrusion detection systems: The 1998 darpa off-
line intrusion detection evaluation. In DARPA Information Survivability
Conference and Exposition, volume 2, pages 12–26. IEEE, 2000.

[12] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, et al. A
million spiking-neuron integrated circuit with a scalable communication
network and interface. Science, 345(6197):668–673, 2014.

[13] M. Oster and S.-C. Liu. Spiking inputs to a winner-take-all network.
Advances in Neural Information Processing Systems, 18:1051, 2006.

[14] M. A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. Meier.
Stochastic inference with deterministic spiking neurons. arXiv preprint
arXiv:1311.3211, 2013.

[15] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser, W. P.
Risk, H. D. Simon, and D. S. Modha. Compass: A scalable simulator
for an architecture for cognitive computing. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, page 54. IEEE Computer Society Press, 2012.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[17] Z. Zhao, K. G. Mehrotra, and C. K. Mohan. Ensemble algorithms
for unsupervised anomaly detection. In International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent
Systems, pages 514–525. Springer, 2015.


