
1

Stochastic Modeling of a Power-Managed System: Construction and Optimization

Qinru Qiu, Qing Wu and Massoud Pedram
Department of Electrical Engineering-Systems

University of Southern California
Los Angeles, CA 90089

Abstract -- The goal of a dynamic power management policy is to reduce the power consumption of an electronic
system by putting system components into different states, each representing certain performance and power
consumption level. The policy determines the type and timing of these transitions based on the system history,
workload and performance constraints. In this paper, we propose a new abstract model of a power-managed
electronic system. We formulate the problem of system-level power management as a controlled optimization
problem based on the theories of continuous-time Markov decision processes and stochastic networks. This
problem is solved exactly using linear programming or heuristically using “policy iteration”. Our method is
compared with existing heuristic methods for different workload statistics. Experimental results show that power
management method based on Markov decision process outperforms heuristic methods by as much as 44% in
terms of power dissipation savings for a given level of system performance.

I. INTRODUCTION
With the rapid progress in the semiconductor technology, the chip density and operation frequency have
increased, making the power consumption in battery-operated portable devices a major concern. High power
consumption reduces the battery service life. The goal of low-power design for battery-powered devices is thus to
extend the battery service life while meeting performance requirements. Reducing power dissipation is a design
goal even for non-portable devices since excessive power dissipation results in increased packaging and cooling
costs as well as potential reliability problems. The focus of this paper is however on portable electronic systems.

Portable electronic devices tend to be much more complex than a single VLSI chip. They contain many
components, ranging from digital and analog to electro-mechanical and electro-chemical. Much of the power
dissipation in a portable electronic device comes from non-digital components. Dynamic power management –
which refers to selective shut-off or slow-down of system components that are idle or underutilized – has proven
to be a particularly effective technique for reducing power dissipation in such systems. Incorporating a dynamic
power management scheme in the design of an already-complex system is a difficult process that may require
many design iterations and careful debugging and validation.

To simplify the design and validation of complex power-managed systems, a number of standardization attempts
have been initiated. Best known among them is the Advanced Configuration and Power Interface (ACPI) [6] that
specifies an abstract and flexible interface between the power-managed hardware components (VLSI chips, hard
disk drivers, display drivers, modems, etc.) and the power manager (the system component that controls the turn-
on and turn-off of the system components). The functional areas covered by the ACPI specification are:

• System power management – ACPI defines mechanisms for putting the computer as a whole in and out of
system sleeping states. It also provides a general mechanism for any device to wake the computer.

• Device power management – ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devices into different power states. This
enables the OS to put devices into low-power states based on application usage.

• Processor power management – While the OS is idle but not sleeping, it will use commands described by
ACPI to put processors in low-power states.

ACPI does not however specify the power management policy. It is the objective of the proposed research to
provide a framework and supporting tools for constructing optimal power management policies based on
modeling the power-managed system as a continuous-time Markov decision process.

2

The problem of finding a power management scheme (or policy) that minimizes power dissipation under
performance constraints is of great interest to system designers. A simple power management system includes
four components: Service Provider (SP), Service Requestor (SR), Service Queue (SQ) and Power Manager (PM).
Figure 1 shows the information/command flow in a power-managed system. The SR generates service requests
for the SP. The SQ buffers the service requests. The SP provides service to the requests in a top-down manner.
The PM monitors the states of the SR, SQ and SP and issue state-transition commands to the SP. A simple and
well-known heuristic policy is the “time-out” policy, which is widely used in today’s portable computers. In the
“time-out” policy, the SP is shut down after it has been idle for a certain amount of time. The predictive system
shutdown approach in [7][8] tries to achieve better power-delay trade-off by predicting the “on” and “off” time of
the component. This prediction approach uses a regression equation based on the component’s previous “on” and
“off” times to estimate the next “turn-on” time, such that the SP can be turned on just before the request comes.
Therefore, the system performance can be improved. This method is only applicable to the special cases where the
requests are highly correlated.

Figure 1 A power-managed system.

In general, heuristic policies cannot achieve the best power-delay trade-off for the system, cannot deal with
complex components that have more than two (on and off) operating modes such as defined in ACPI, and cannot
deal with a complex system with multiple interactive components.

A power management approach based on Markov decision process has been proposed in [8]. The system is
modeled as a discrete-time Markov decision process by combining the stochastic models of each component:
Once the model and its parameters are determined, an optimal power management policy for achieving the best
power-delay trade-off in the system is generated. This approach offers significant improvements over previous
power management techniques in terms of its theoretical framework for modeling and optimizing the system.
There are however some shortcomings. Firstly, because the system is modeled in the discrete-time domain, some
assumptions about the system components may not hold for real applications, such as the assumption that each
event comes at the beginning of a time slice, the assumption that the transition of SQ is independent of the
transition of SP, etc. Secondly, the state transition probability of the system model cannot be obtained accurately.
For example, the discrete-time model cannot distinguish the busy state and the idle state because the transition
between these two states are instantaneous. However the transition probability of SP when it is in these two states
are different. Moreover, the power management program needs to send control signals to the components in every
time-slice, which results in heavy signal traffic and heavy load on the system resources (therefore more power).

In this work, we overcome these shortcomings by introducing a new system model based on continuous-time
Markov decision processes. More precisely:

1. The new model is based on the continuous-time Markov decision processes, which is more suitable for
modeling real systems.

2. The resulting power management policy is asynchronous which is more appropriate for implementation as
part of the operating system.

3. The new model explicitly distinguishes the busy state and the idle state of SP so that the system
characterization becomes more accurate.

4. The new model considers the correlation between the state of the SQ and the state of the SP, which is the real-
life scenarios.

Power Manager

SP SQ SR

3

5. The model for the service queue consists of a normal queue and a high priority queue. This is important since
some service requests are "urgent" and need immediate response from the server.

6. The service requester model is capable of capturing complex workload characteristics.

7. The overall system model is constructed exactly and efficiently from those of the component models. We use
an analytical base approach to calculate the generator matrix for the joint process of SP-SQ and a tensor sum
based calculation to calculate the generator matrix of the joint process of SP-SQ and SR.

8. Both (exact) linear programming and (heuristic) policy iteration algorithms are used to solve the policy
optimization problem.

A preliminary work of this topic can be found in [10] and [11]. This paper is organized as follows, Section II
gives theoretical background of continuous-time controllable Markov process, Sections III and IV describes the
models for the components and the system. Section V describes the solution technique for the optimal policy.
Sections VI and VII present the experimental results and conclusions.

II. BACKGROUND
This section provides theoretical background on continuous-time Markov decision processes. Readers who are
familiar with this topic can skip this part.

We first give the notation that will be used throughout the paper:

Pi⇒j(t): transition probability from state i (directly or indirectly) to state j during time 0 to t

pi(t): probability of that the system is in state i at time t

X(t): value of the stochastic process X at time t

S, T: state space and parameter space of a stochastic process

G: the generator matrix of a continuous-time Markov process

Ai: set of available actions when a system is in state i

ai(t): the action that the system takes when it is in state i at time t, ai(t)∈ Ai

)(tp ia
i : the probability that action ai(t) is taken when the system is in state i at time t

)(ti
i
Ap : the vector of)(tp ia

i , for all ai∈ Ai

ππππ: the power management policy

σi,j: transition rate from state i to state j

)(
,

ta
ji
iσ : transition rate from state i to state j at time t when action ai(t) is taken

)(
,

t
ji

i
i
Apσ : transition rate from state i to state j at time t when actions are taken with probability)(ti

i
Ap

ri,i: reward rate (per unit time) of the system when it is in state i

ri,j: transition reward of the system during the time when it makes a transition from state i to state j

ri: earning rate of the system during the time it is in state i

)(ta
i

ir : reward rate of the system when it is in state i and action ai(t) is taken at time t

)(t
i

i
ir
Ap

: reward rate of the system when it is in state i and actions are taken with probability)(ti
i
Ap at time t

4

vi(t): the total expected reward of the system from time 0 to time t with initial state i

)(tvi
π : the total expected reward of the system from time 0 to time t with initial state i and policy ππππ

π
avgiv , : the limiting average reward of the system with the initial state i and policy ππππ,)(

1
lim, tv

t
v i

t
avgi

ππ
∞→

=

ji ss ,χ : the inverse of the average switching time of SP from state si to state sj

ji rr ,τ : the inverse of the average switching time of SR from state ri to rj

λ l (λh): SR request generating rate of low (high) priority request

µl (µh): SP service rate of low (high) priority request

A. Stochastic process

Definition 2.1 A stochastic process is a family of random variables {X(t), t≥0}, one for each t. t denotes the time
parameter. For a specific t, X(t) is a random variable with distribution F(x, t) = P[X(t) ≤ x]. The values assumed by
the process are called the states, and the set of possible values is called the state space.

Definition 2.2 A stochastic process X(t) is called a Markov process if for any set of time instances t0<t1< …<tn<t
its conditional distribution has the property:

])(|)([])(,,)(,)(|)([0011 nnnnnn xtXxtXPxtXxtXxtXxtXP =≤====≤ −− …

where t0, t1,…, tn, t ∈ T and x0, x1,…, xn ∈ S. When T is a continuous space and S is a discrete space, the Markov
process is called the continuous-time Markov process.

Given a continuous-time Markov process with n states, its generator matrix G is defined as an n×n matrix as
shown in Eqn. (2.1). An entry σi,j in G is called the transition rate from state i to state j. All entries are defined in
Eqn. (2.2) and Eqn. (2.3). Eqn. (2.4) gives the relationship between σi,i and σi,j.

−
−

−

=

"#
$

##

$
$

2,21,20,2

2,1

2,0

1,10,1

1,00,0

σσσ
σ
σ

σσ
σσ

G (2.1)

)0(
)(1

lim
0

, ii
ii

t
ii p

t

tp
⇒

⇒
→

′−=−=σ i=1, 2, …, n (2.2)

)0(
)(

lim
0

, ji
ji

t
ji p

t

tp
⇒

⇒

→
′==σ i, j = 1, 2, …, n; i ≠ j (2.3)

∑ =
≠ij

iiji ,, σσ i, j = 1, 2, …, n; i ≠ j (2.4)

where)(tp ji⇒′ is the derivative of pi⇒,j(t). Obviously, pi⇒,j(t) ≥ 0 and ∑ =
∈

⇒
Sj

ji tp 1)(.

The generator matrix in the continuous-time Markov process is the analogue of the transition probability matrix in
the discrete-time Markov process. We can calculate the limiting distribution (steady) state probabilities of the
continuous-time Markov process from its generator matrix. Theorem 2.1 shows the relation between this matrix
and the limiting distribution probabilities [7]. Before stating the theorem, we give some definitions.

5

Definition 2.3 Let Tij be the first time instance at which that the Markov process visits state j starting from state i.
A state i is called recurrent if P(Tii < ∞) = 1. A state i is called transient if P(Tii < ∞) < 1. A recurrent state is said
to be positive recurrent if E(Tii) < ∞, where E(Tii) is the expectation of Tii.

Definition 2.4 A recurrent state i is said to be periodic with period d if d > 1 is the greatest common divisor of all
tn, which is the nth time instance at which the Markov process returns state i if it starts from state i in time 0. If
there is no such d, the state is called aperiodic.

Definition 2.5 State j is said to be accessible from state i if j can be reached from i within finite time, which is
denoted as i→j. If i→j and j→i, they are said to be communicate, which is denoted as i↔j. The set of all states of
a Markov process that communicate with each other forms a communicating class. If the set of all states of a
stochastic process X form a single communicating class, then X is irreducible.

Definition 2.6 A Markov chain is called ergodic if it is irreducible, positive recurrent and aperiodic.

Theorem 2.1 ([12])

1. If the Markov process is irreducible, then the limiting distribution limt→∞pi(t) = pi, i∈ S, exists and is
independent of the initial conditions of the process, The limits {pn | n ∈ S) are such that they either vanish
identically (i.e., pi = 0 for all i ∈ S) or are all positive and form a probability distribution (i.e., pi > 0 for all i ∈
S, Σi∈ Spi = 1).

2. The limiting distribution {pi, i ∈ S } of an irreducible positive recurrent Markov process is given by the
unique solution of the equation: pG = 0 and Σj∈ S pj = 1, where p = (p0, p1, p2, …).

B. Continuous-time Markov decision processes

We now give a brief introduction to continuous-time Markov decision processes. For the discussions in the rest of
this paper, we will omit the term “continuous-time” for more brevity description. Unless otherwise stated, all
processes are assumed to be continuous-time.

Firstlly, we describe a Markov process with reward. Assume the system earns a reward at rate ri,i (per unit time)
during the time that it occupies state i. When it makes a transition from state i to state j (i≠j), it receives a reward
of ri,j. Note that ri,i and ri,j have different dimensions. It is not necessary that the system earns according to both
reward rates and transition rewards, but these definitions give us generality. We define the “earning rate” of state i
as:

∑+=
≠ij

jijiiii rrr ,,, σ (2.5)

Let vi(t) be the expected total reward that the system will earn during a time period of t if it starts in state i. The
total expected reward during a time period of t+dt, that is vi(t+dt), can be written as:

∑ +++∑−=+
≠≠ ij

jjijiiii
ij

jii tvrdttvdtrdtdttv)]([)]()[1()(,,,, σσ (2.6)

Equation (2.6) may be interpreted as follows. During the time interval dt the system may remain in state i or make
a transition to some other state j. If it remains in state i for a time dt, it will earn a rate ri,idt plus the expected
reward that it will earn in the remaining t units of time, vi(t). The probability that it remains in state i for a time dt
is (∑−

≠ij
ji dt,1 σ). On the other hand, the system may make a transition to some state j≠i during the time interval

dt with probability σi,jdt. In this case the system would receive the reward ri,j plus the expected reward to be made
if it starts in state j with time t remaining, vj(t). The product of probability and reward must then be summed over
all states j≠i to obtain the total contribution to the expected values.

With dt→0 and using the definition of earning rate ri, we have:

6

∑+=
=

n

j
jjiii tvrtv

dt

d

1
,)()(σ i = 1, 2, …, n (2.7)

where n is the total number of states of the process. Eqn. (2.7) gives a set of linear, constant coefficient
differential equations that relate the total reward in time t from a starting state i to the values of ri and σi,j.

Secondly, a controllable Markov process is a Markov process whose state transition rates can be controlled by
controlling commands (defined as actions). When the system is in state i, an action ai is chosen from a finite set Ai

which includes all possible actions in state i. We denote this state-action relation by <i,ai>. If the chosen action
changes as the time changes, we denote the action as a time-dependent variable ai(t). Hence the state-action pair is
written as <i,ai(t)>.

Definition 2.7 A policy ππππ is the set of state-action pairs for all the states of a controllable Markov process.

A policy can be either deterministic or randomized. If the policy is deterministic, then when the system is in state
i at time t, an action ai(t) is chosen with probability 1. We denote a deterministic policy as: ππππ={ <i,ai(t)> | ai(t)∈ Ai,
1≤i≤n}. If the policy is randomized, then when the system is in state i at time t, an action ai is chosen with

probability)(tp ia
i , such that 1)(=∑

∈ ii

i

Aa

a
i tp . We denote a randomized policy as: ππππ={ <i,)(ti

ipA > | 1≤i≤n}, where

)(ti
i
Ap is a vector of)(tp ia

i , for all ai∈ Ai. Notice that the deterministic policy is a special case of randomized

policy with one of the)(tp ia
i equals 1.

In a controllable Markov process, the state transition rates σi,j have different values when different actions are

taken. In a deterministic policy, we denote it as)(
,

ta
ji
iσ . In a randomized policy, we denote it as)(

,
tp

ji

i
i
A

σ , and

∑=
∈ ii

ii
i

i

a

a
i

a
i,j

tp
ji tpσ

A

A

)(
)(

,σ . As a result, the generator matrix of a controllable Markov process is a parameterized

matrix (action is the parameter). A Markov decision process is a controllable Markov process with rewards. In a

Markov decision process, since ji,σ is action-dependent, the reward rate ri becomes also action-dependent and

will thus be denoted as)(ta
i

ir for deterministic policy and)(t
i

i
ir
Ap for randomized policy, ai(t)∈ Ai. The expected

total reward vi(t) depends on the chosen action in each state, i.e., it becomes policy-dependent and will be denoted

as)(tvi
ππππ . An example of Markov decision process is given in Example 3.1.

Figure 2 Example of Controllable Markov Process.

Example 3.1 Consider a controllable Markov process which consists of only two states: i and j. When the system
is in state i, the set of available actions is denoted as Ai; we assume that Ai={a, b}. The transition rate from state i

to state j equals a
ji,σ when action a is taken and b

ji,σ when action b is taken. Similarly, we define Aj={x, y},

y
ij

x
ij ,, ,σσ . If we always take action a when the system is in state i and always take action x when the system is in

i j

b
ji

a
ji ,, ,σσ

y
ij

x
ij ,, ,σσ

Ai = {a, b} Aj = {x, y}

7

state j, we can write the resulting policy as: ππππ={<i, a>, <j, x>}. The system generator matrix using policy ππππcan be

written as

−

−
= x

ij
x

ij

a
ji

a
ji

,,

,,

σσ
σσ

G . Now consider a randomized policy ππππ′={<i, (0.5, 0.5)>, <j, (0.4, 0.6)>}. This

means that: when the system is in state i, action a is taken with probability 0.5 and action b is taken with
probability 0.5; when the system is in state j, action x is taken with probability 0.4 and action y is taken with

probability 0.6. Therefore b
ji

a
jiji

i
i

,,, 5.05.0 σσσ +=
Ap and y

ij
x

ijij

j
j

,,, 6.04.0 σσσ +=
A

p . The system generator matrix is

constructed based on these two values.

ٱ

For the remainder of this paper, we will only use the notation for a deterministic policy.

Let)(tp ji
ππππ
⇒ denote the probability of being in state j at time t when the initial state at time 0 is i and the state

transition rates are determined by policy ππππ. Similarly, let
)(ta

j
jr denote the earning rate in state j at time t and

action aj is taken. The total expected reward that the process can earn for a time period of t using policy ππππ, can be
written as ([14]):

∫ ∑=
=

⇒
t n

j

a
jjii drptv j

0
1

)(
)()(ττ τππππππππ (2.8)

Given two policies ππππ1 and ππππ2, if we can find a time ξ, such that)()(21 tvtv ii
ππππππππ ≥ , for all t>ξ, i = 1, 2, …, n, then we

say that policy ππππ1 is superior to ππππ2, denoted as ππππ1 ≥ ππππ2. A policy ππππ is optimal, if it is superior to all other policies
for the Markov decision process.

Let)(lim tvv i
t

i
ππππππππ

∞→
= . The goal of a Markov decision process is to find the optimal policy that maximizes ππππ

iv for all

i. However, in practice, we cannot use ππππ
iv directly for calculating the optimal policy since)(tvi

ππππ approaches
infinity when t approaches infinity. A commonly used alternative quantity is the limiting average reward:

∫ ∑=
=

⇒
∞→

t n

j

a
jji

t
avgi drp

t
v j

0 1

)(
,)(

1
lim ττ τππππππππ , (2.9)

Obviously, maximizing the limiting average reward for any fixed t is the same as maximizing π
iv .

Definition 2.8 A policy ππππ is stationary if the action is only a function of the state and independent of time, that is:

ππππ={ <i,ai> | ai∈ Ai, 1≤i≤n} for a deterministic policy, or ππππ={ <i, i
i
Ap > | 1≤i≤n} for a randomized policy.

Definition 2.9 A policy ππππ is piecewise-stationary if for any τ, interval [0, τ) can be divided into a finite number of
intervals [0, t1), [t1, t2), …, [tm-1, τ) such that inside each interval, the policy is stationary.

Theorem 2.2 [14] There exists a stationary policy that maximizes ππππ
avgiv , over the class of piecewise-stationary

policies.

Based on this theorem, we conclude that we will not lose generality if our search for the optimum policy is
restricted to the set of stationary policies. Therefore, actions and policies that we will discuss from now on are all

time-independent and we will reduce the notation aj(t) and)(tp i
i
A to ai and i

ipA .

The goal of a Markov decision process is to find a policy that maximizes the expected reward. In our case, we
want to find a policy that minimizes our cost function (i.e. power dissipation). These two problems become
equivalent if we use the negative of cost as the reward. In the remainder of the paper, we will use the term cost

8

instead of reward and use ci,i and ci,j instead of ri,i and ri,j, ci,avg instead of vi,avg. In our work, we actually used a
constraint Markov decision process to model the power-managed system. In the constraint Markov decision
process, for each state, there is an object cost c_obj and several constraint costs c_con. The goal of the constraint
Markov decision process is to find a policy that minimizes the expected value of objective cost while meeting the
given constraint. That is:

)_(Minimize ,
π

π avgiobjc , s.t. Constraintconc avgi ≤π
,_

The value of π
avgiobjC ,_ and π

avgiconC ,_ can be calculated based on c_obj and c_con using (2.9). We will

introduce how we define and calculate the objective cost and the constraint cost in our system model in Section V.

III. COMPONENT MODELING
In this section, we describe the mathematical models of the components in a power-managed system.

A. Assumptions

The power-managed system consists of four components: a server that processes requests with different power
modes (SP) , a generator that generates the service request (SR), a queue which stores the requests that cannot be
immediately serviced upon arrival (SQ), and a power manager (PM) that issues mode-switching commands to the
SP. The SR is independent to the rest of the system. Requests generated by the SR can be divided into two
categories: low-priority requests and high-priority requests, which are generated independently of each other.

Both the request arrival events and the request service completion events are stochastic processes and follow the
Poisson distribution. When we state that the request arrival event is a Poisson process, it means that during time
(0, t], the number of the events follows a Poisson distribution with mean λt. Consequently, the request inter-
arrival time follows an exponential distribution with mean 1/λ. A Poisson distribution with a mean value of 5
(t=1) and an exponential distribution with a mean value of 1/5 are illustrated in Figure 3. Notice a request that
arrives when the SQ is full will be rejected. We also assume that the time that is needed for the SP to switch from
one state to another follows an exponential distribution. In reality, the switching time for the SP is usually a small
fixed value. We know that if the expected value of an exponentially distributed random variable is a then its
variance is a2. If a is very small, then the variance will be negligible. Therefore, if the switching time of the SP is
much shorter than the service time or input generation time, then it can be modeled by an exponential distribution
without introducing much error.

Figure 3 Examples of Poisson distribution and exponential distribution.

In the remainder of this paper, we will use upper case bold letters (e.g., M) to denote matrices, lowercase bold
letters (e.g., v) to denote vectors, italicized Arial-Font letters (e.g., S) to denote sets, uppercase italicized letters
(e.g., S) to denote scalar constants and lower case italicized letters (e.g., x) to denote scalar variables.

Poisson distribution Exponential distribution

9

B. Model of the Service Provider

The Service Provider (SP) is modeled as a stationary, continuous-time Markov decision process with state
(operation mode) set S={si s.t. i=1, 2, …, S}, action set A, and parameterized generator matrix)(aSPG , a∈ A. It

can be described by a quadruple (χχχχ, µ(s), pow(s), ene(si, sj)) where: (i) χχχχ is an S×S matrix; (ii) µl(s) and µh(s) are
functions, µl,µh: S→R; (iii) pow(s) is a function, pow: S→R; (iv) ene(si, sj) is a function, ene: S× S→ R.

We call χχχχ, the switching speed matrix of the SP. The (i,j)th entry of χχχχ is denoted by
ji ss ,χ and represents the

switching speed from state si to state sj. The average switching time from state si to state sj is then 1/
ji ss ,χ . We set

ii ss ,χ to be ∞, because the switch from state si to itself is instantaneous.

The entries of the parameterized generator matrix)(aSPG can be calculated as:

jiji
ssjss asa ,,),()(χδσ ⋅= , si≠sj; (3.1)

∑−=
≠ ij

jiii ss
ssss aa)()(,, σσ (3.2)

where

=
otherwise0

actionofstatendestinatiotheisif1
),(

as
asδ (3.3)

The service rates µl(s) and µh(s) represent the service speed of the SP for low-priority requests and high-priority
requests in state s, respectively. Therefore, 1/µl(s) (1/µh(s)) gives the average time which is needed by the SP to
complete the service for a low (high) priority request when it is in state s.

A power consumption pow(s) is associated with each state s∈ S. It represents the power consumption of the SP
during the time it occupies state s. The cost rate cs,s of state s is equal to pow(s).

A switching energy ene(si, sj) is associated with each state pair (si, sj), si,sj∈ S, si≠sj. It represents the energy
needed for the SP to switch from state si to state sj. The cost

ji ssc , is equal to ene(si, sj).

From Eqn. (2.5), we know that the expected power consumption (cost rate) of the SP when it is in state s and
action as is chosen, can be calculated as:

∑ ′+=
≠′

′
ss

ssss sseneaspowc),()()(,σ .

In reality, states (i.e. working modes) of the SP can be divided into three groups: busy, idle, and power-down. In
busy states, the SP is fully powered and working on the first request in the SQ. We assume that each request
service is atomic so that the SP cannot switch to any other state when it is working on some request. In other
words, the switch from the busy state to another states is not controllable. It only occurs when the SP finishes one
service. For each busy state, there exists a corresponding idle state. In the idle states, the SP is fully powered, but
it is not working on any request. An idle state is the only state that connects to its corresponding busy state. When
the SP finishes a service, it will automatically switch from the busy state to its corresponding idle state. When SP
wants to switch from some other state to a busy state, it will first switch to the corresponding idle state then goes
to the busy state. Notice that the idle states are not physical states of SP. When the SP is in an idle state, it is in the
same power mode as when it is in the corresponding busy state. We only use the idle state to convenient our
modeling. In power-down states, the SP is partially or completely shut down, i.e., it is not operational. The SP
may have multiple power-down states (e.g. standby, soft off, hard off).

Not all actions in A are valid in all SP states. Constraints on a valid action can be stated as follows:

1. When the SP is in a busy state, its transition is not controllable, Abusy=Φ.

2. The action cannot make a transition from a power-down state to a busy state.

3. The action cannot make a transition from an idle state to a busy state other than its corresponding busy state.

10

Definition 3.1 Power down state s1 is more vigilant than inactive state s2 if the SP in state s1 wakes up (switches
to an active state) faster than the same SP does in state s2.

Different busy states may be used to model a component working under different supply voltages. We associate
different power and delay (service rate) values to each of these states to model the server performance under
different supply voltages. Therefore, our policy optimization approach (cf. Section V) can also find the best policy
for dynamic voltage scaling as it finds the optimal policy for power management.

Example 3.1 Consider a SP with six states, S={busy1, busy2, idle1, idle2, wait, sleep}. When the SP is in state
busy1, it services the requests at a low speed. Assume that the average time needed for each service (for both low-
priority requests and high-priority requests) is 5 ms. Therefore, µl(busy1) and µh(busy1) are 0.2. Also assume that
in state busy2, the SP services the request at a higher speed, e.g., µl(busy2)=µh(busy2)=0.4. µl(idle1), µh(idle1),
µl(idle2), µh(idle2), µl(wait), µh(wait), µl(sleep) and µh(sleep) are all 0. Let the command set be defined as
A={go_busy1, go_busy2, go_idle1, go_idle2, go_wait, go_sleep}. Notice that not all four commands are valid (or
available) in all states. The switching speed matrix χχχχ is given by:

∞
∞

∞∞
∞∞

∞
∞

=

5.1166.0166.000

5.1454.0454.000

5.01100

5.01100

004.000

0002.00

χ

By default, the order of states in rows and columns of this matrix are the same as the left-to-right order of states in
S.

ii ss ,χ =∞ means that the SP can transfer from state si to sj immediately.
ji ss ,χ =0 means that the SP can never

transfer from state si to sj. In this example, the transfer from any state to itself needs no time. The SP can transfer
from busy state to idle state with the transition rate equal to the service rate because it autonomously goes to the
idle state immediately after it finishes a request. The SP cannot switch between the busy state and wait state (or
sleep state) directly (it must go through the idle state), therefore the corresponding entries in the matrix are 0.

The power consumption is: pow(busy1)=2.3W, pow(busy2)=6.5W, pow(idle1)=2.3W, pow(idle2)=6.5W,
pow(wait)=0.8W, pow(sleep)=0.1W.

The switching energy ene(si, sj) matrix is:

∞∞
∞∞

∞
∞

∞∞∞∞
∞∞∞∞

=

093030

66.004.44.4

2103.00

213.000

00

00

),(

mJmJmJ

mJmJmJ

mJmJmJ

mJmJmJ
ssene ji

ene(si, sj)=∞ means that the SP cannot switch between the corresponding states. Note that the energy cost of
autonomous state change (busy to idle) is zero.

A graphical illustration of the SP is shown in Figure 4. The transition rates associated with the edges have not
been shown in the figure. They can be extracted from)(aSPG for specific actions. The self-transitions of each state
are not shown in the figure. ٱ

11

Figure 4 Markov process model of the SP.

C. Model of the Service Requester

The Service Requester (SR) is modeled as a stationary, continuous-time Markov process with state set R={ri s.t.
i=0, 1, 2, …, R} and generator matrix GSR. It can be characterized by a pair (ττττ, λ(r)), where: (i) ττττ is an R×R
matrix, (ii) λ l(r) and λh(r) are functions λ: R→ R.

We call ττττ the switching speed matrix of the SR. The (i,j)th entry of ττττ is denoted as
ji rr ,τ . We assume that the time

needed for the SR to switch from one operation state to another is a random variable with exponential distribution.
The average switch time from state ri to state rj is given by 1/

ji rr ,τ . We set
ii rr ,τ to be ∞ because the switch from

state ri to ri is instantaneous. The SR model is a continuous-time Markov process with the generator matrix GSR.
The value of

ji rr ,σ (the transition rate from state ri to state rj) can be calculated as:

jiji rrrr ,, τσ = , ri≠rj; ∑−=
≠ ij

jiii
rr

rrrr ,, σσ (3.4)

The request rates λ l(r) and λh(r) are associated with state r∈ R. When the SR is in state r, the generation of the
low-priority requests follows the Poisson process with mean value 1/λ l(r), whereas the generation of the high-
priority requests follows the Poisson process with mean value 1/λh(r).

Example 3.2 Consider a SR with two states, r1 and r2. When it is in state r1, it generates a low priority request
every 30 ms in the average, a high priority request every 50 ms in the average. When it is in state r2, it generates a
low priority request every 60 ms, a high priority request every 90 ms. So the request rates in each state is defined
as follows: λ l(r1)=1/30, λh(r1)=1/50, λ l(r2)=1/60, λh(r2)=1/90. The switch matrix τ is a 2×2 matrix, with one entry
for each state pair. For instance:

∞

∞
=

400/1

200/1
τ .

It means that when SR is in state r0 the expected time that it will switch to state r1 is 200 ms, when SR is in state
r1 the expected time that it will switch to state r0 is 400 ms. Therefore, the generator matrix of SR is:

−

−
=

400/1400/1

200/1200/1
GSR .

Figure 5 gives the illustration of the Markov process model of this SR. The self-transition of each states are not
shown.

ٱ

busy1 busy2

idle1 idle2

sleep wait

12

Figure 5 Markov process model of the service requester.

D. Model of the Service Queue

A Single Service Queue (SSQ) is modeled as a stationary, continuous-time Markov process, with state set
QSSQ={qi , i=0, 1, 2, …, Q} and the generator matrix GSSQ(s, r), where Q is the maximum length of the queue, s is
the state of SP, r is the state of SR.

The number of waiting requests in the queue decides the state of the SSQ. If there are i requests waiting in the
queue, then the queue is in the state of qi. The entries of the parameterized generator matrix GSSQ(s, r) can be
calculated as:

)(
1, r

ii qq λσ =
+

,)(,1
s

ii qq µσ =
+

, ∑−=
≠ ij

jiii
qq

qqqq ,, σσ , 0 ≤ i ≤ Q−1

0, =
ji qqσ , for other state pairs

λ(r) and µ(s) are the request input rate and service rate of the queue. The shortcoming of using SSQ as the
stochastic model of the service queue is that we can assign only one delay constraint (i.e. the constraint on the
average waiting time of the requests) during the policy optimization. In a power-managed system, the SP, under
control of the PM, may thus not service an incoming request immediately in order to achieve better power-delay
trade-off. However, there may exist high-priority requests that need immediate service by the SP. In this case, if
we use a loose delay constraint (which means the power management policy may not service the request
immediately) the consequent long latency is however not acceptable for high-priority requests. If instead use a
tight delay constraint to ensure that the high-priority requests are serviced immediately, then there will be
undesirable power dissipation related to unnecessarily tight delay constraint on low-priority requests.

We henceforth model the service queue as a combination of two SSQs: one (denoted as HSQ) for the high-
priority requests and the other (denoted as LSQ) for the low-priority requests. The relationships between these
two queues are:

1. Two different delay constraints are assigned to HSQ and LSQ separately such that the requests in HSQ have
smaller waiting time than those in LSQ.

2. The SP will not start serving the requests in LSQ until it finishes all the requests in HSQ. Therefore, we
define the service rate of LSQ as a function that relate to both the state of SP and the state HSQ: µ′ l(s, hqi),
where s is the SP state, hqi is the HSQ state. If i=0 then µ′ l(s, hq0)=µl(s), otherwise, µ′ l(s, hqi)=0.

Although we have introduced two queues in our stochastic model of the service queue, we are actually modeling a
single priority queue. The SQ model can be used to model the commonly used priority queue in an operating
system where two different priorities are assigned to tasks and high-priority tasks, when they come, are inserted
into the front of the queue. Moreover, obviously, the SQ model can be extended to model a queue of requests that
have more than two priority levels.

The formal definition of the SQ model is as follows.

The Service Queue (SQ) is modeled as a stationary, continuous-time Markov process, which is the combination of
two SSQs: LSQ and HSQ. The state set of the SQ is given by Q= QLSQ× QHSQ and the generator matrix is given by

r1

1/200

1/400

r2

λ l(r1)=1/30
λh(r1)=1/50

λ l(r1)=1/60
λh(r1)=1/90

13

GSQ(s, r)= GLSQ(s, r)⊕ GHSQ(s, r, hq), where s is the state of SP, r is the state of SR state, and the “⊕ ” operation is
the tensor sum defined in Definition 4.1.

The number of waiting requests in the HSQ and LSQ decides the state of the SQ. If there are i requests waiting in
the LSQ and j requests waiting in the LSQ, then the queue is in the state of (lqi, hqj). The entries of both the
parameterized generator matrix GHSQ(s, r) and GLSQ(s, r, hq) is calculated in the same way as GSSQ(s, r) except
that they use λ l(r), µ′ l(s, hq) and λh(r), µh(s) as input rate and service rate respectively.

Example 3.3 Consider a HSQ and a LSQ. Assume that the maximum length of HSQ is 1, the maximum length of
LSQ is 2. The generator matrix of HSQ and LSQ are:

−

−
=

)()(

)()(
),(

ss

rr
rsG

hh

hh
HSQ µµ

λλ
,

′−′
−′−′

−
=

),(),(0

)()(),(),(

0)()(

),,(

hqshqs

rrhqshqs

rr

hqrsG

ll

llll

ll

LSQ

µµ
λλµµ

λλ
.

The generator matrix of SQ is:

=

5,5

4,4

3,3

2,2

1,1

0,0

)(0000

)(0)(00

)(0)(00

0)()(0)(

00)(0)(

000)()(

),(

σµ
λσµ
λσµ

λλσµ
λσµ

λλσ

s

rs

rs

rrs

rs

rr

rsG

h

hl

lh

lhl

lh

lh

SQ

To save place, we did not write out the value of diagonal entries. Figure 5 shows an example of HSQ, LSQ and
SQ.

ٱ

Figure 6 Markov process model of the service queue.

Notice that request starvation may occur when high priority requests keep coming while there are some low
priority requests waiting. However, this problem can be solved by the OS. If a low priority request has been

λh(r)
0

µh(s)

1

HSQ

0
λ l(r)

µl(s, hq)

1
µl(s, hq)

2

λ l(r)

LSQ

0,0

λ l(r)

µl(s)

1,0

µl(s)

2,0

λ l(r)

0,1 1,1 2,1

λ l(r) λ l(r)

µh(s)λh(r) µh(s) µh(s)λh(r) λh(r)

SQ

14

waiting in the queue for too long, the OS will change its priority to high so that it will get serviced. Most of the
existing operating system codes have a similar mechanism to prevent starvation. As a result, the power manager
need not be concerned with this problem.

IV. SYSTEM MODELING
We first show how to construct the model of the entire system by combining the component models. Next we
explain how the power-managed system model is applied to practical applications.

A. Model of the Power-Managed System

The Power-Managed System (SYS) can be modeled as a controllable continuous-time Markov process which is
the composition of the models of the SP, the SR and the SQ. The state set is given by: X=S×Q×R−{invalid states
where SP is busy and SQ is empty}. An action set of all possible actions which is the same as A in the SP model. A
parameterized generator matrix GSYS(a) gives the state transition rates under action a. The SYS state can be
represented as (s, r, (lq, hq)), where s∈ S, r∈ R, lq∈ QLSQ and hq∈ QHSQ.

Similar to the case of the SP model, not all actions are valid for any system state. The action constraints (which
are described in Section III.A) for the SP model still apply to the model of SYS. In addition, we add the following
constraints related to the SYS model.

(1) When both LSQ and HSQ are full and the SP is in an inactive state, the SP cannot make a transition to
another inactive state which is less vigilant (c.f. Definition 4.1) than the current one. This constraint is
reasonable because the SP must go to a fully functional state as soon as possible in this situation.

(2) When both LSQ and HSQ are full and the SP is in an idle state, the SP cannot make a transition to a power-
down state or another idle state whose corresponding busy state has a slower service rate. This constraint is
also reasonable because when SP and SQ are in the above states, it means that the service speed is not enough
to match the incoming speed of the requests. Therefore, we need to increase the service rate, not decrease it.

Proposition 4.1 If the SYS satisfies the above two constraints, there is only one ergodic chain in the system and
the states outside the ergodic chain are all transient states.

B. Calculating the generator matrix

We next introduce an efficient method for calculating the generator matrix GSYS(a) of the system from the
generator matrices of the system components: GSP(a), GSR, and GSQ(s, r).

First, we show how to calculate the generator matrix of a joint process of two independent continuous-time
Markov processes. Proposition 4.2 gives a method to obtain the joint transition rate of two independent
continuous-time Markov processes. Proposition 4.3 gives the method for generating the generator matrix of the
joint system using matrix operations.

Proposition 4.2 Given two independent stochastic processes X and Y, let σ(x,y),(x’y’) denote the transition rate of the
joint process from the joint state (x,y) to joint state (x′,y′), where x and x′∈ state space of X, y and y′ ∈ state
space of Y. Let σx,x′ denote the transition rate of process X from state x to state x′ and σy,y′ denote the transition
rate of process Y from state y to state y′. Then σ(x,y),(x,y′) = σy,y′, σ(x,y),(x′,y) = σx,x′, σ(x,y),(x′,y′) = 0, σ(x,y),(x,y)=σx,x+σy,y.

Let matrices A and B be defined as:

=

2221

1211

aa

aa
A and

=

333231

232221

131211

bbb

bbb

bbb

B

15

Definition 4.1 The tensor product C=A⊗⊗⊗⊗ B is given by

=

BB

BB
C

2221

1211

aa

aa
. The tensor sum C=A⊕ B is given

by: BIIAC ⊗+⊗=
12 nn , where n1 is the order of A, n2 is the order of B,

inI is the identity matrix of order ni.

Proposition 4.3 Given two independent continuous-time Markov processes with generator matrices A and B, the
generator matrix of the joint process is given by A⊕ B.

We have mentioned in Section III.A that the SR is independent from the rest of the system. Therefore, GSYS(a)
can be calculated as:

GSYS(a)=GSP-SQ(a, r)⊕ GSR (4.1)

where GSP-SQ(a, r) is the generator matrix of the joint process of SP and SQ. Notice that GSYS(a) generator matrix
is also a parameterized matrix of action a.

The transition of SP from a busy state to its corresponding idle state is correlated with the transition of SQ from
state (lqi, hqi) to state (lqi, hqi-1) or the transition of SQ from state (lqi, 0) to state (lqi-1, 0). This is because
whenever the SP makes a transition from a busy state to an idle state (finishes the service for a request), the SQ
makes a transition from state (lq, hq) to state (lq′, hq′) where lq+hq=lq′+hq′+1. The other transitions of SP and SP
are independent. Therefore, we can calculate each entry of GSP-SQ as this:

Let σx,x′ denote the transition rate for the transition from state x=(s, (lq, hq)) to state x′=(s′, (lq′, hq′)).

If s is a busy state, s′ is the idle state corresponding to s and (lq+hq)−(lq′+hq′)=1, then σx,x′ equals σ(lq, hq),(lq′, hq′),
which is the transition rate of SQ from state (lq, hq) to state (lq′, hq′).

If s is a busy state and s′ is the corresponding idle state, but (lq+hq) − (lq′+hq′)≠1, then σx,x′ equals 0.

If s is a busy state and (lq+hq)−(lq′+hq′)=1, but s′ is not the corresponding idle state of s, then σx,x′ equals 0.

For all the other σx,x′, we can use the value of the corresponding entry of matrix GSP(a)⊕ GSQ(s, r). Notice that,
after the operation, parameter s in GSQ(s, r) has been removed by substituting the real state of the SP. Therefore,
the generator matrix of GSP-SQ is parameterized matrix which depends on variables a and r.

The values of diagonal entries of GSP-SQ need to be recalculated using (2.4).

Example 4.1 Consider the SP and SQ model given in Example 3.1 and 3.3. The generator matrix of their joint
process can be calculated like this:

)()(11)0,0(),1,0())0,0(,()),1,0(,(11
busybusy hidlebusy µσσ == ,

)()0,(11))0,1(,()),0,2(,())0,0(,()),0,1(,(1111
busybusy llidlebusyidlebusy µµσσ =′== ,

0)1,(1))1,1(,()),1,2(,())0,0(,()),1,1(,(1111
=′== busylidlebusyidlebusy µσσ ,

0))0,1()),1,2(,())1,1(,()),0,0(,())0,1(,()),0,0(,())1,0(,()),0,0(,(1111111
===== busyidlebusyidlebusyidlebusy σσσσ $,

0),(),,(1
=′′ qsqbusyσ , where s′≠idle1, q, q′∈ Q.

The value of),(),,(2 qsqbusy ′′σ can be calculated in the same way as),(),,(1 qsqbusy ′′σ . The values of the other σx,x′,

equals the value of the corresponding entry of matrix GSP(a)⊕ GSQ(s, r).

ٱ

C. Application issues

16

Using the SYS model, a power-managed system in real application can work in the following way. When the SP
of the system changes state, it sends an interrupt signal SWITCH_DONE to the PM. The PM then reads the states
of all components in the power-managed system (hence obtains the joint system state) and issues a command
according to the chosen policy. The SP receives the command and immediately starts to switch to a state that is
dictated by the command. Notice that the command may ask the SP to switch to its current state; therefore the SP
state does not change. We assume that after the SP finishes a service, it stays in the idle state for a period of time
long enough for it to accept the command from the PM and to switch to another state.

V. SOLUTION TECHNIQUES
A. Problem formulation

The power management problem is to find the optimal policy (set of state-action pairs) for the PM such that the
average system power dissipation is minimized subject to the performance constraints. The performance of a
system is usually measured by the average delay of each request. We have the following theorem:

Theorem 5.0 In a power-managed system, if the loss rate of request is small enough, then D = Q ⋅ λ, where D is
the average request delay, Q is the average number of waiting requests in the queue, and λ is the average
incoming request speed. Furthermore, during any time period of length T, ET(d) = ET(q) ⋅ T / X, where ET(d) and
ET(q) denote the average request delay and the average number of waiting requests in the queue during time T,
and X is the number of incoming requests of this system during time period T.

Therefore, we define the objective cost of the constraint Markov decision problem),(__ x
a
x axpowcobjc x = ,

c_pow(x, ax) denotes the power consumption of the system when it is in state x and action ax is used. In this work,
we only consider the power consumption of the SP. We will explain how to calculate the objective cost in

difference solution approaches later in this section. We define two constraint cost)(__1 xlsqcconc xa
x = ,

)(__2 xhsqcconc xa
x = , c_lsq(x) and c_hsq(x) denotes the number of waiting requests in low priority queue and

high priority queue respectively when the system is in state x. Notice that, although the constraint cost for each
state is policy independent, since the state probability for each state is policy dependent, thus the total expected
constraint cost is policy dependent.

The problem can be formally described as:

Find a policy ππππ to minimize: ∫ ∑ ′⋅
∈

′⇒∞→
t

x
xxt

daxpowcp
t 0

'
),(_)(

1
lim

X
ττ ππππππππ ,

s.t. ∫ ∑ ≤′⋅
∈

′⇒∞→
t

x
Lxxt

Ddxlsqcp
t 0

'
)(_)(

1
lim

X
ττππππ

and ∫ ∑ ≤′⋅
∈

′⇒∞→
t

x
Hxxt

Ddxhsqcp
t 0

'
)(_)(

1
lim

X
ττππππ , ∀ x∈ X

where)(τππππ
xxp ′⇒ is the state transition (direct or indirect) probability from state x to x’ in a time period of τ under

policy ππππ. DH and DL are performance constraints for high priority queue and low priority queue.

B. The linear programming approach

If the delay constraint for the power management system is an active constraint [19], generally, the optimal power
management policy will be a randomized policy [15]. The randomized optimal policy can be obtained by solving
a linear programming problem. In this section, we first introduce how to solve the unconstraint continuous-time
Markov decision process using a linear programming approach, and then show how to apply this linear
programming approach to our constraint power management problem.

17

First we introduce the definition of some variables, which are used to measure the Markov process. Let tij denotes
the time that the system needs to switch from state i to state j. Qij(t) denotes the probability of the event that the
next observed state is state j and that state j is observed no later than time T+t, given that state i is observed at time
T. We know that Qij(t) is the probability that tij is the smallest among all til and tij is less than t, where l is the

possible next state of state i. We use ia
ijt and)(tQ ia

ij to denote the value of tij and Qij(t) when action ai is taken.

Proposition 5.1 If tij follows exponential distribution
t

ijij
ijetf

σσ −⋅=)(, j∈ J, (J is the set of all possible next

states of state i), then ∑−=
∈

∑−
∈

J

J

l
il

t

ijij
l

il
etQ σσ

σ
/)1()(.

Let ia
iτ denotes the expectation of the time that the system will be in state i if action ai is chosen in this state, then

∑ ∫=
∈

∞

Jj

a
ij

a
i ttdQ ii

0)(τ , J is the set of all possible next state of i. It is easy to show that, in a Markov process,

∑=
∈ Jj

a
ij

a
i

ii στ /1 . Let ia
ijp denotes the probability that the next system state is j if the system is currently in state i

and action k is taken, the)(∞= ii a
ij

a
ij Qp . In a Markov process we have ∑=

∈ Jl

a
il

a
ij

a
ij

iiip σσ / . Let ia
iγ denotes the

expected cost of the system during the time it stays in state i and action ai is taken, then

∑+=
∈ Jj

a
ijij

a
iii

a
i

iii pcτcγ (5.1)

Let ia
ix denotes the frequency that the next state of the system will be i and action ai will be taken if we take a

random observation of the system. Then ii a
i

a
ix τ is the probability that the system is in state i and action ai is taken

in a random observation, which is also called state-action probability. We know from the definition that

∑=
∈ ii

iiiii

a

a
i

a
i

a
i

a
i

a
i xxp

A
ττ / , ∑=

∈ iAi

ii

a

a
i

a
ii xp τπ and 1=∑ ∑

∈ ∈S Ai a

a
i

a
i

ii

iix τ . We also know that if a Markov process is

stationary, the input rate to each state needs to be equal to the output rate from that state [15]. That means

∑ ∑ ∑ =−
i i

iii
a j a

a
ji

a
j

a
i pxx 0 .

For a given policy, if we know that the resulting Markov process is irreducible, Theorem 5.1 shows that we can
use the variable x and γ to calculate the limiting average cost.

Theorem 5.1 If a Markov process is irreducible, then π
avgi

i a

a
i

a
i Cx

ii

ii
,=∑ ∑

∈ ∈S A
γ ∀ i∈ S.

To prove this, we need the following lemmas:

Lemma 5.1 Given a Markov process, ∑=∑ ∑
∈∈ ∈ SS A

A

i
ii

i a

a
i

a
i

i
i

ii

ii cpx
pπγ .

Lemma 5.2 If the Markov process is irreducible, there exists a πππ
avgavgiavg CCC =,, ∀ i∈ S. Furthermore,

ππ
avg

i
ii Ccp

i
i =∑

∈ S

Ap .

18

Using these lemmas, the statement in Theorem 5.1 is very obvious.

With the above-mentioned variables and their characteristics, we can write the linear programming as [15]:

LP1:)(Minimize
}{ ∑∑i a

a
i

a
ix i

ii
ia

i

x γ , ai∈ Ai (5.2)

subject to ∑ ∑ ∑ =−
i i

iii
a j a

a
ji

a
j

a
i pxx 0 i∈ S (5.3)

∑ ∑ =i a
a
i

a
ii

iix 1τ (5.4)

0≥ia
ix all i, ai (5.5)

Since the action in each state is unknown in the Markov decision process, in general cases, we cannot guarantee
that for every possible policy the resulting Markov process is irreducible. For those resulting Markov processes,
expression (5.2) may not equal to their average cost because Theorem 5.1 is no longer applicable. However we
have the following theorem:

Lemma 5.3 [15] Let }{ ia
ix be a basic feasible solution to LP1. Then set ∑ >=

i
i

a
a
ixiE }0,{ and

}0:),{(>= ia
ii xaiF identify a unique ergodic chain, and expression (5.2) is the cost rate for this chain.

Theorem 5.2 [15] LP1 is feasible and bounded. The positive variables in its optimal solution identify the states of
an ergodic chain whose cost rate is minimized over all chains.

In our power management system, we set constraints on the action sets so that the Markov process model of the
resulting power management system contains only one ergodic chain. Therefore, expression (5.2) gives the cost
rate for the entire system and the solution of LP1 identifies an optimal policy.

In our case, we add the delay constraint to the linear program, and formulate it as:

LP2:)_(Minimize
}{ ∑ ∑i a

a
i

a
ix i

ii
ia

i

powcx (5.6)

subject to ∑ ∑ ∑ =−
i

iii
a j k

a
ji

a
j

a
i pxx 0 i∈ X (5.7)

∑ ∑ =i a
a
i

a
ii

iix 1τ (5.8)

0≥ia
ix all i, ai (5.9)

∑ ∑ <i a H
a
i

a
ii

ii Dhsqcx _ (5.10)

∑ ∑ <i a L
a
i

a
ii

ii Dlsqcx _ (5.11)

In LP2, ia
ipowc _ , ia

ihsqc _ , ia
ilsqc _ denote the power consumption of the system, the high priority request

waiting cost and the low priority request waiting cost during the time it stays in state i and action ai is taken. They

can be calculated based on (5.1): ∑ ⋅+⋅= j
a
ijij

a
ii

a
i

iii penepowpowc τ_ , ii a
ii

a
i hqhsqc τ⋅=_ , ii a

ii
a
i lqlsqc τ⋅=_ .

DH and DL are performance constraints for high priority queue and low priority queue. If constraint (5.10) and
(5.11) are implied in the constraints (5.7), (5.8) and (5.9), (i.e. they are inactive constraint), the resulting optimal
policy must be a deterministic policy. Otherwise, the resulting optimal policy will be a randomized policy.

19

C. The nonlinear programming approach

Because a randomized policy may be undesirable in some applications, we are interested in finding the optimal
deterministic policy instead of the optimal randomized policy. In a deterministic policy, for each state i, there is

one and only one ia
ix , ai∈ Ai, which is non-zero. Therefore, we can formulate the problem of searching for an

optimal deterministic policy into a nonlinear program NLP1, which has a polynomial objective function and a set
of linear constraints. In NLP1 λ is an arbitrary large number.

NLP1:)_(Minimize
,,}{ ∑ ∑∑ ∑ +⋅

∈≠ i a

a
i

a
ii lala

l
i

a
ix i

ii

iii

i
ia

i

powcxxx
A

λ

subject to ∑ ∑ ∑ =−
i i

iii

a j a

a
ji

a
j

a
i pxx 0 i∈ X

∑∑ =
i a

a
i

a
i

i

iix 1τ

0≥ia
ix all i, ai

∑∑ <
i a H

a
i

a
i

i

ii Dhsqcx _ , ∑∑ <
i a L

a
i

a
i

i

ii Dlsqcx _

There are specific algorithms to solve this kind of nonlinear programming problem. A classical algorithm is
feasible direction algorithm which can be found in [16].

D. The branch-bound approach

Another way to find the optimal deterministic policy is to use a branch and bound approach. In a power
management system, making different decisions in one system state has significant effect on the power and
performance of the system. For example, given two policies, the first one chooses action “Go_busy” when the
server is idle and there are 1 request waiting, however, the second one chooses action “Go_sleeping” when the
system is in the same state. No matter how the actions are chosen in the other state, the best performance of the
system using the second policy will be worse than that of the system using the first policy, because there is always
at least one request waiting in the queue. This observation is the root cause of the efficiency of the branch and
bound algorithm.

Figure 7 Algorithm of searching for an optimal deterministic policy using branch and bound.

I: set of states which have deterministic policy
S: set of states which have non-deterministic policy
K: set of actions for state I, i∈ I
I=Φ, S={all states}
Search_ Deterministic_Policy (I, S, K)
{

if (S≠Φ) {
pop state i from S, push i into I;
for each action k ∈ Ai {

set action of state a to be k, push k in K.
pow = power_of_randomized_policy_of_parital_decision_problem()
if (pow < min_pow) Search_Determnistic_Policy(I, S, K);

pop k from K;
}

}
else {

if the policy given by K satisfies the delay constraints and has less pow than
minpow {

record K, and update minpow;
}

}

20

The optimal deterministic power-management policy decision tree is a level X full tree, where X is the number of
states in the controllable Markov process. Each node in level x has Ax child nodes, where Ax is number of
available action in state x. Therefore for each leaf in the decision tree there is a corresponding deterministic
power-management policy. We are going to search for the power optimal performance constraint power-
management policy based on the decision tree using a branch and bound algorithm.

For each internal node in the decision tree, there is a partial decision problem with the same constraints and
objective as the original problem. We call it partial decision problem because its variables are a subset of that of
the original problem. We can find an optimal randomized policy for this partial decision problem using a linear
programming approach. The power consumption of this policy is the lower bound of the policies in this branch.
Therefore, we define the branch operation as: finding the optimal randomized policy for the partial decision
problem; We define the prune operator as: comparing the power consumption of that randomized policy with that
of the best deterministic policy we already have. If it consumes less power then we continue with this branch,
otherwise, we prune this branch. If we cannot find a policy that satisfies the performance constraint for the partial
decision problem, then we also prune this branch. The algorithm is given in Figure 7.

E. The policy iteration approach

The policy interation algorithm is widely used in searching for an optimal policy without constraint [17]. It starts
from a set of randomly selected actions for each state that is called the “initial policy”. It then calculates the
expected cost of the system under this policy, which is called the “reference cost”. Using this reference cost, by
some calculation we can find a new policy that has lower cost than the initial policy. The process is iterated until
the resulting policy cannot be improved further. Because of the mathematical nature of the policy optimization
problem, this simple greedy algorithm yields the provably optimal solution. Experiments show that the “policy
iteration” technique is a fast technique. For a system with 23 states and assuming that three commands are
available for each state, the “policy iteration” algorithm can find out the optimal solution within 4 iterations.
However, the policy iteration approach cannot directly be applied to the problem of constrained optimization. We
make some modification to this approach.

We first consider the power-managed system with only single priority SQ. We define a joint cost as a weighted
summation of the power and delay costs as:

x
a
x

a
x sqcwpowcjoint_cost xx __ ⋅+= (5.12)

Where xa
xpowc _ denotes the average power consumption when the system is in state x and action ax is chosen,

c_sqx is the number of waiting request in sq when the system is in state x. Let x be denoted by (s, qi), where s∈ S,

qi∈ Q. Using (2.5) the power cost can be calculated as: ∑+=
≠∈

′
ssSs

xss
a
x sseneaspowpowc x

','
,)',()()(_ σ . The

delay cost is: c_sqx=i. The constraint policy optimization procedure is given in Figure 8. We start from a
randomly selected weight w. Then we find a policy which has optimal joint_cost using policy iteration algorithm.
If the delay of this policy is approximately same as the given constraint, then report this policy, otherwise, we
increase or decrease the weight and continue searching using the new weight value.

This modified policy iteration algorithm is a heuristic algorithm. For certain performance constraint, it may not
find the policy consumes the minimum power. However, we can prove later that its output policy is the one that
consumes minimum power among a class of convex policies which satisfies the performance constraint. We first
gives the definition of an effective policy and a convex policy:

Definition 5.1 An effective policy is a policy that consumes the minimum power comparing to other policies
which have the same or better performance.

Definition 5.2 If we sorted the policy based on the increasing order of their power consumption and denote the
power and delay of a policy pi as powi and delayi. A policy pi is a convex policy if it is an effective policy and
(delayi−delayj)/(powj−powi)<(delayl−delayj)/(powerj−powl), ∀ j, j>i and ∀ l, l<i.

21

Comparing to the policies that consumes less power, a convex policy has the better power-delay trade off (smaller
ratio of increasing delay to the decreasing power). Figure 9 gives an illustration of convex policy and effective
policy. In that figure, policy a, b, c, d, e are all effective policies. However, policy c is not a convex policy.

Figure 8 Policy optimization workflow.

Figure 9 Example of effective, inferior and superior policy.

Theorem 5.3 The output of the modified policy iteration algorithm is a policy that consumes the minimum power
among the class of convex policies which satisfies the performance constraint.

To prove this theorem we will need the following lemma.

Lemma 5.4 Given a set of points S on the 2D plan. Let a convex point to be a point that is a vertex of the
minimum convex hull of these points. ∀ (x′, y′), if and only if (x′, y′) is a convex point of S, ∃ w, x′+w⋅y′ ≤ x+w⋅y,
(x, y) ∈ S.

We will not provide a strict mathematical proof for the theorem and lemma; however, we will show that this
theorem is true geometrically in Figure 10. Because (x′, y′) is a convex point, we can find a line l which pass this
point and all the other point in S are on the same side of line l. Let line k denote another line z = x and y = 0. Let a
denote an arbitrary point on line k. From a we can draw a line l′ which is parallel to line l. We can always
construct a 3D plan H based on the two lines k and l′. It is easy to see that the function of H has the form z = x +
w⋅y, and the value z′ = x′ + w ⋅ y′ is smaller than or equal to z = x + w ⋅ y, where (x, y) ∈ S. For all these non-
convex points, we cannot construct such a plan.

Given a set of policies and their power consumption and delay value pow and delay. We can associate each policy
with a pointer on 2D plan by letting x=delay, y=pow. It is easy to see that the points associated with convex

System Model

Output
optimal policy

If the delay is larger than
constraint then increase
the weight, otherwise
decrease the weight

Is delay of the policy
within certain range of the

delay constraint?

YES

NO

Policy Iteration
Algorithm

Delay

Power

a

b c

d e

22

policies are the convex points. From Lemma 5.4 we know that if a policy has the minimum joint cost then it is a
convex policy; if a policy is a convex policy then we can use our algorithm to find it by adjusting the value of w.

Figure 10 Illustration of Lemma 5.4.

In a power management system model with multiple priority queue, the similar cost function is used:

xx
a
x

a
x hsqcwlsqcwpowccost xx ___ 21 ⋅+⋅+= . Similarly, by adjusting both the weight coefficient w1, w2, we

can find the convex policy.

The policy iteration algorithm can be used as a fast algorithm to do on-line policy optimization when system
parameters change at runtime because it finds the optimal policy based on the previous optimal policy. It is more
efficient than the branch and bound algorithm as well as the NLP approach which starts solving from the very
beginning.

VI. EXPERIMENTAL RESULTS
Experiments have been designed to examine the performance of our system model and optimization method.

In the first part of the experiment, we will present the comparison of our power management policy for a simple
DPM system with an SSQ with the heuristic policies including greedy policy, time-out policy, and N-policy.

6.1 Experimental setups using the basic DPM model

In this experimental setup, the service requestor (SR) is implemented as an input trace file that stores the time
instances when the disk drive read/write requests arrive. The service queue (SQ) and service provider (SP) are
implemented in the event-driven simulator. The power manager (PM) is also implemented in the simulator that
controls the state transition of the SP based on the policy it reads from user-specified input file. Q, the capacity of
the SQ, is set to 20.

We will use two abstract models of the SP for the Fujitsu disk drive [24] in the experiments, which are shown in
Figure 11.

When the SP is in the “sleep” and “standby” state, it is inactive and therefore no request can be serviced. When
the SP is in the “idle” state, the SP is active; however, it is not working on any requests, which means that the SQ
is empty. The SP makes a transition automatically from “idle” to “busy” whenever a request arrives for service.
Similarly, the SP makes a transition automatically from “busy” to “idle” state whenever it finishes the service for
a request. The transitions between the “sleep,” “standby,” and “idle” are controlled by the PM, i.e., the DPM
policy.

(x′, y′)
l

X

Y

Z

k

l′
H

S

a

23

Figure 11 Three-state and four-state SP models.

The average power consumption and service time (time to finish a read/write operation) for each state of the SP is
shown in Table 1. The average energy consumption values for the SP to make transitions among the various states
are shown in Table 2. The average transition times for the SP to make transitions among the various states are
shown in Table 3. The data is obtained from [24] and [21].

Table 1 Average power consumption values and service times of the SP.

State “sleep” “standby” “idle” “busy”

Ave. power (W) 0.13 0.35 0.95 2.15

Ave. service time (s) 0 0 0 0.008

Table 2 Average energy consumption values for state transition of the SP.

Ave. energy (J) “sleep” “standby” “idle” “busy”

“sleep” 0 5.1 7.0 -

“standby” 0.006 0 2 -

“idle” 0.067 0.001 0 0

“busy” - - 0 0

Table 3 Average transition times for state transition of the SP.

Ave. transition time (s) “sleep” “standby” “idle” “busy”

“sleep” 0 0.6 1.6 -

“standby” 0.3 0 1.2 -

“idle” 0.67 0.4 0 0

“busy” - - 0 0

We have used five different distributions for the request inter-arrival time. They are:

(a)

sleep

idle

busy

sleep standby

idle

busy

(b)

24

Figure 12 Five distributions of request inter-arrival time.

p

Inter-arrival time (s)
(a) Exponential distribution

p

Inter-arrival time (s)
(b) Combination of exponential

and Pareto distributions

p

Inter-arrival time (s)
(c) Combination of two

exponential distributions

p

Inter-arrival time (s)
(d)Uniform distribution

p

Inter-arrival time (s)

(e) Normal distribution

25

1. Exponential distribution. This is the key assumption made by the continuous-timed Markov decision process
(CTMDP) approach. For the CTMDP policy to be optimal, the request inter-arrival time must follow
exponential distribution. In many research works related to hard drive performance, it is found that the request
inter-arrival time follows the exponential distribution. Figure 12 (a) gives the illustration of the density
function of exponential distribution.

2. Combination of the exponential and Pareto distribution. This combination is tried because of the observation
made in [21]. The Pareto distribution has a density function: f(t)=1-at-b. Figure 12 (b) gives the illustration of
the density function of exponential and Pareto distribution. Compared with exponential distribution, it models
an input sequence that shows more bursts.

3. Combination of two exponential distributions. We are using this distribution to approximate distribution 2.
Figure 12 (c) gives the illustration of the density function for the distribution.

4. Uniform distribution whose density function is illustrated in Figure 12 (d).

5. Normal distribution whose density function is illustrated in Figure 12 (e).

We have used two different distributions for the state transition time of the SP. They are:

1. Exponential distribution. This is another assumption made by the CTMDP approach. For the CTMDP policy
to be optimal, the SP transition time must follow exponential distribution.

2. Uniform distribution. This distribution is proposed and used by the authors of [21] in their work.

The mean values we used for these distributions are shown in Table 3. The deviation for the uniform distribution
is set to 0.1s, which is again observed in [21].

The policies we have used in this work are as follows:

1) The “time-out” policy

The “time-out” policy has a single parameter Tout. This policy can only be used for the three-state system model
shown in Figure 11 (a). Under the “time-out” policy, the PM switches the SP from “idle” to “sleep” after the SP
has been in the idle state and the SQ has been empty for a time period of Tout; the PM switches the SP from
“sleep” to “idle” immediately after a request has arrived.

In our experimental setup, we have used different values of Tout to study the performance and power
characteristics of the “time-out” policy.

2) The N-Policy

The N-policy has a single parameter N, which must be smaller than the capacity of the SQ, Q. Similar to the
“time-out” policy; this policy is only applicable to the three-state system model. Under the N-policy, the PM
switches the SP from “idle” to “sleep” immediately after the SQ is empty; the PM switches SP from “sleep” to
“idle” only after there are more than N requests waiting in the SQ.

In our experimental setup, we have used different values of N to study the performance and power trade-offs of
the N-policy.

3) The “always on” and “greedy” policies

The “always on” policy can be regarded as a special case of either the “time-out” policy when Tout is infinity, or
the N-policy when N is zero. As indicated by its name, the “always on” policy never turns off the SP.

The “greedy” policy can be regarded as a special case of either the “time-out” policy when Tout is zero, or the N-
policy when N is one.

4) The CTMDP policy

26

The CTMDP policy we use as described in Chapter 3. This policy is applied to both the three-state model and the
four-state model in Figure 11. Given any performance constraint, the power-optimal CTMDP policy can be
calculated by solving a linear program.

In our experiments, a series of CTMDP polices were generated for different performance constraints. The
CTMDP policies were applied using both the three-state SP model and the four-state SP model. Then the
simulator and real traces were use to evaluate this policy in real applications.

5) The 3CTMDP-Poll Policy

Because the CTMDP policy is a randomized policy, at times it may not turn off the SP even when there is no
request in the SQ. If our stochastic model exactly represents the system behavior, then this policy is optimal.
However, in practice, because the stochastic model is not accurate enough, the CTMDP policy may cause
unnecessary energy dissipation by not turning off the SP. For example, the real requests pattern on the SP may be
quite different from what has been assumed in theory, and the SP idle time may be much longer than we expected
based on the assumption of exponential input inter-arrival time. In this case keeping the SP on while it is idle
wastes much power. We need to put some mechanism in place that will prevent such a case in real applications.

Based on the original description of the CTMDP policy, we have designed a modified CTMDP policy by adding a
polling state. The functionality of the polling state is very simple. After adding this state, if the CTMDP policy
allows the SQ to stay on when the SQ is empty, the policy will re-evaluate this decision after some random-length
period of time. For example, if the SQ is empty and the PM has made a decision (with probability of 0.1) of
letting the SQ stay on, then after 2s, if there is no change in the SQ, we enter the polling state, and the PM has to
re-evaluate its decision. At this time, the probability for it to still let SQ remain on is again 0.1. So as the time
goes on, the total probability of the SQ remaining on reduces in a geometric manner. In this way, we can make
sure that the SP will not be idle for too long, resulting in less wasteful energy dissipation. We name this modified
policy the 3CTMDP with Polling (3CTMDP-Poll) policy and implement it in our experiments based on
3CTMDP policy.

The simulation results are presented in the following tables. We use the average number (#) of waiting requests in
the SQ as the performance metric and the average power consumption (W) as the power metric.

27

Table 4 Simulated performance and power values for the N-policy.

Transition
time

distribution

Exponential Uniform

N
Inter-
arrival
time

distribution

Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor. Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor.

Perf. 0.011 0.003 0.007 0.011 0.110 0.011 0.003 0.007 0.011 0.1100

Power (W) 0.963 0.955 0.959 0.963 1.082 0.963 0.955 0.959 0.963 1.082

Perf. 1.737 0.453 1.110 1.715 1.776 1.016 0.264 0.657 0.986 0.9341

Power (W) 2.658 0.809 1.800 2.868 2.926 2.453 0.738 1.629 2.743 2.636

Perf. 2.016 0.693 1.352 2.035 2.110 1.397 0.510 0.969 1.414 1.3622

Power (W) 2.166 0.674 1.462 2.314 2.370 2.054 0.632 1.368 2.240 2.215

Perf. 2.381 0.982 1.709 2.391 2.486 1.823 0.822 1.321 1.865 1.8153

Power (W) 1.849 0.583 1.258 1.930 2.003 1.772 0.558 1.185 1.902 1.928

Perf. 2.777 1.335 2.100 2.820 2.904 2.256 1.187 1.720 2.332 2.2804

Power (W) 1.606 0.520 1.099 1.677 1.755 1.561 0.503 1.051 1.659 1.717

Perf. 3.183 1.760 2.502 3.237 3.347 2.712 1.579 2.142 2.809 2.7545

Power (W) 1.420 0.470 0.981 1.470 1.576 1.403 0.461 0.949 1.479 1.554

Perf. 4.577 3.031 3.872 4.646 4.718 4.117 2.884 3.536 4.254 4.2018

Power (W) 1.094 0.382 0.749 1.117 1.222 1.082 0.378 0.742 1.121 1.239

Perf. 5.494 3.917 4.818 5.571 5.686 5.079 3.818 4.420 5.230 5.17410

Power (W) 0.944 0.343 0.658 0.960 1.085 0.947 0.343 0.653 0.975 1.108

Perf. 6.915 5.340 6.252 6.998 7.111 6.539 4.932 5.900 6.714 6.65713

Power (W) 0.802 0.305 0.562 0.807 0.939 0.806 0.305 0.562 0.821 0.969

Perf. 7.880 6.283 7.137 7.973 8.081 7.532 6.257 6.761 7.688 7.63715

Power (W) 0.734 0.284 0.516 0.735 0.875 0.736 0.287 0.519 0.750 0.902

28

Table 5 Simulated performance and power values for the “time-out” policy.

Transition
time

distribution

Exponential Uniform

Tout

(s)

Inter-
arrival
time

distribution

Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor. Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor.

Perf. 1.606 0.421 1.054 1.607 1.651 0.943 0.247 0.613 0.910 0.7400.1

Power (W) 2.539 0.778 1.740 2.756 2.806 1.409 0.776 0.946 1.561 1.896

Perf. 1.408 0.370 0.910 1.375 1.386 0.796 0.212 0.525 0.746 0.3010.3

Power (W) 2.332 0.724 1.595 2.526 2.521 1.544 0.767 1.035 1.745 2.200

Perf. 1.186 0.309 0.794 1.137 0.973 0.659 0.179 0.445 0.522 0.1270.5

Power (W) 2.127 0.665 1.463 2.269 2.074 1.675 0.757 1.115 1.948 2.312

Perf. 0.971 0.265 0.667 0.892 0.503 0.542 0.149 0.374 0.187 0.1110.7

Power (W) 1.919 0.618 1.346 1.983 1.525 1.789 0.748 1.188 2.194 2.322

Perf. 0.803 0.218 0.545 0.586 0.187 0.445 0.121 0.305 0.011 0.1100.9

Power (W) 1.755 0.573 1.228 1.647 1.168 1.887 0.739 1.252 2.302 2.322

Perf. 0.596 0.167 0.406 0.175 0.112 0.317 0.088 0.223 0.011 0.1101.2

Power (W) 1.532 0.518 1.089 1.157 1.083 2.008 0.728 1.331 2.302 2.322

Perf. 0.418 0.127 0.336 0.011 0.110 0.219 0.073 0.192 0.011 0.1101.5

Power (W) 1.362 0.479 1.009 0.963 1.082 2.100 0.729 1.380 2.302 2.322

Perf. 0.326 0.107 0.275 0.011 0.110 0.174 0.069 0.186 0.011 0.1101.7

Power (W) 1.273 0.460 0.963 0.963 1.082 2.145 0.734 1.404 2.302 2.322

Perf. 0.263 0.095 0.263 0.011 0.110 0.138 0.066 0.181 0.011 0.1101.9

Power (W) 1.209 0.452 0.952 0.963 1.082 2.181 0.739 1.428 2.302 2.322

Perf. 0.119 0.082 0.247 0.011 0.110 0.067 0.058 0.168 0.011 0.1102.5

Power (W) 1.070 0.445 0.951 0.963 1.082 2.249 0.754 1.495 2.302 2.322

Perf. 0.013 0.056 0.180 0.011 0.110 0.012 0.042 0.122 0.011 0.1105

Power (W) 0.966 0.442 0.955 0.963 1.082 2.301 0.811 1.726 2.302 2.322

Perf. 0.011 0.038 0.090 0.011 0.110 0.011 0.028 0.065 0.011 0.11010

Power (W) 0.963 0.457 0.954 0.963 1.082 2.302 0.897 2.012 2.302 2.322

Perf. 0.011 0.027 0.034 0.011 0.110 0.011 0.019 0.022 0.011 0.11020

Power (W) 0.963 0.490 0.960 0.963 1.082 2.302 1.014 2.229 2.302 2.322

Perf. 0.011 0.018 0.008 0.011 0.110 0.011 0.013 0.008 0.011 0.11040

Power (W) 0.963 0.540 0.959 0.963 1.082 2.302 1.170 2.298 2.302 2.322

Perf. 0.011 0.013 0.007 0.011 0.110 0.011 0.009 0.007 0.011 0.11080

Power (W) 0.963 0.609 0.959 0.963 1.082 2.302 1.364 2.301 2.302 2.322

29

Table 6 Simulated performance and power values for the CTMDP policy using a three-state SP model.

Transition
time

distribution

Exponential Uniform

Perf.

Cons.
Inter-
arrival
time

distribution

Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor. Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor.

Perf. 0.017 0.030 0.011 0.019 0.114 0.017 0.004 0.009 0.018 0.1150.01

Power (W) 0.963 0.954 0.958 0.963 1.082 0.963 0.955 0.959 0.963 1.082

Perf. 0.020 0.121 0.013 0.026 0.128 0.021 0.009 0.016 0.024 0.1200.02

Power (W) 0.963 0.950 0.958 0.963 1.083 0.963 0.954 0.958 0.963 1.082

Perf. 0.034 0.164 0.025 0.043 0.142 0.026 0.030 0.026 0.030 0.1360.03

Power (W) 0.963 0.951 0.957 0.962 1.082 0.963 0.952 0.957 0.963 1.082

Perf. 0.041 0.093 0.030 0.044 0.140 0.041 0.009 0.018 0.040 0.1410.04

Power (W) 0.963 0.953 0.956 0.963 1.081 0.963 0.952 0.958 0.963 1.082

Perf. 0.056 0.175 0.047 0.058 0.165 0.039 0.016 0.028 0.054 0.1500.05

Power (W) 0.963 0.952 0.955 0.963 1.082 0.963 0.953 0.958 0.963 1.082

Perf. 0.094 0.342 0.073 0.111 0.234 0.075 0.036 0.062 0.101 0.1840.1

Power (W) 0.962 0.947 0.956 0.963 1.081 0.962 0.951 0.956 0.963 1.082

Perf. 0.141 0.612 0.134 0.156 0.296 0.105 0.085 0.084 0.158 0.2520.15

Power (W) 0.960 0.939 0.952 0.961 1.080 0.962 0.947 0.955 0.962 1.082

Perf. 0.199 0.702 0.154 0.217 0.324 0.144 0.080 0.139 0.174 0.2690.2

Power (W) 0.959 0.941 0.951 0.960 1.080 0.962 0.946 0.951 0.962 1.081

Perf. 0.235 0.896 0.185 0.246 0.418 0.178 0.154 0.183 0.242 0.3310.25

Power (W) 0.959 0.934 0.948 0.961 1.082 0.961 0.937 0.947 0.962 1.081

Perf. 0.476 1.811 0.459 0.550 0.720 0.369 0.301 0.286 0.482 0.5560.5

Power (W) 0.955 0.911 0.936 0.955 1.080 0.958 0.917 0.943 0.959 1.080

Perf. 0.943 3.729 0.830 1.046 1.301 0.723 0.597 0.679 0.983 1.0131

Power (W) 0.950 0.868 0.908 0.949 1.072 0.955 0.878 0.918 0.954 1.077

Perf. 1.977 7.682 1.711 2.184 2.430 1.569 1.203 1.365 1.965 1.9702

Power (W) 0.937 0.764 0.864 0.939 1.061 0.943 0.800 0.877 0.947 1.074

Perf. 3.129 12.035 2.680 3.266 3.501 2.530 1.835 2.283 2.963 2.9333

Power (W) 0.928 0.663 0.803 0.932 1.051 0.933 0.721 0.816 0.938 1.069

Perf. 4.181 15.670 3.641 4.392 4.649 3.624 2.765 3.133 4.065 4.0324

Power (W) 0.901 0.576 0.741 0.915 1.039 0.921 0.602 0.763 0.928 1.064

Perf. 5.405 20.563 4.702 5.512 5.753 4.924 3.852 4.327 5.198 5.1365

Power (W) 0.892 0.422 0.671 0.894 1.045 0.901 0.427 0.673 0.920 1.058

30

Table 7 Simulated performance and power values for the CTMDP-Poll policy using a three-state SP model.

Transition
time

distribution

Exponential Uniform

Perf.

Cons.
Inter-
arrival
time

distribution

Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor. Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor.

Perf. 0.020 0.015 0.019 0.014 0.018 0.016 0.020 0.020 0.019 0.1150.01

Power (W) 0.963 0.936 0.963 0.963 0.963 0.963 0.933 0.958 0.963 1.082

Perf. 0.035 0.042 0.034 0.031 0.026 0.024 0.045 0.028 0.028 0.1220.02

Power (W) 0.962 0.899 0.963 0.963 0.963 0.963 0.907 0.957 0.963 1.082

Perf. 0.031 0.078 0.049 0.043 0.049 0.027 0.074 0.059 0.033 0.1270.03

Power (W) 0.963 0.878 0.962 0.963 0.963 0.963 0.870 0.955 0.963 1.082

Perf. 0.062 0.092 0.048 0.052 0.057 0.045 0.085 0.069 0.045 0.1440.04

Power (W) 0.963 0.861 0.963 0.963 0.962 0.963 0.854 0.953 0.963 1.082

Perf. 0.067 0.136 0.064 0.068 0.067 0.059 0.136 0.062 0.057 0.1450.05

Power (W) 0.962 0.835 0.963 0.962 0.964 0.963 0.831 0.954 0.963 1.082

Perf. 0.124 0.237 0.131 0.119 0.109 0.093 0.240 0.138 0.099 0.1950.1

Power (W) 0.960 0.748 0.960 0.960 0.962 0.962 0.755 0.947 0.962 1.082

Perf. 0.185 0.315 0.185 0.209 0.196 0.159 0.319 0.244 0.150 0.2220.15

Power (W) 0.959 0.699 0.960 0.960 0.960 0.961 0.702 0.939 0.962 1.082

Perf. 0.261 0.470 0.256 0.255 0.238 0.182 0.459 0.289 0.192 0.2790.2

Power (W) 0.959 0.653 0.960 0.959 0.960 0.961 0.641 0.933 0.962 1.081

Perf. 0.302 0.509 0.302 0.321 0.309 0.225 0.523 0.359 0.251 0.3340.25

Power (W) 0.960 0.615 0.960 0.960 0.958 0.961 0.625 0.926 0.961 1.081

Perf. 0.609 0.866 0.615 0.625 0.600 0.498 0.725 0.643 0.481 0.5380.5

Power (W) 0.954 0.528 0.954 0.953 0.957 0.956 0.531 0.904 0.959 1.080

Perf. 1.238 1.359 1.195 1.192 1.241 0.957 1.224 1.248 0.949 0.9811

Power (W) 0.951 0.451 0.950 0.949 0.949 0.952 0.456 0.853 0.955 1.077

Perf. 2.391 2.289 2.333 2.377 2.407 1.878 2.005 2.283 1.927 1.9552

Power (W) 0.931 0.390 0.931 0.930 0.935 0.939 0.394 0.766 0.947 1.073

Perf. 3.455 2.963 3.470 3.529 3.484 2.904 2.632 3.044 2.971 2.9763

Power (W) 0.915 0.362 0.922 0.929 0.922 0.927 0.361 0.710 0.937 1.068

Perf. 4.528 3.411 4.514 4.501 4.485 3.994 3.128 3.824 4.039 4.0424

Power (W) 0.906 0.341 0.910 0.900 0.901 0.914 0.344 0.660 0.930 1.063

Perf. 5.535 4.191 5.527 5.505 5.529 5.062 3.826 4.539 5.195 5.1615

Power (W) 0.894 0.332 0.898 0.890 0.891 0.901 0.332 0.630 0.920 1.059

31

Table 8 Simulated performance and power values for a CTMDP policy using a four-state SP model.

Transition
time

distribution

Exponential Uniform

Perf.

Cons.
Inter-
arrival
time

distribution

Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor. Exp. Exp.

&

Par.

Exp.

&

Exp.

Uni. Nor.

Perf. 0.027 0.010 0.022 0.032 0.127 0.029 0.014 0.025 0.028 0.1280.01

Power (W) 0.962 0.953 0.957 0.962 1.081 0.962 0.952 0.957 0.962 1.081

Perf. 0.027 0.010 0.023 0.031 0.133 0.028 0.014 0.022 0.026 0.1290.02

Power (W) 0.963 0.952 0.957 0.963 1.081 0.962 0.952 0.957 0.963 1.082

Perf. 0.042 0.017 0.034 0.044 0.151 0.036 0.020 0.024 0.039 0.1400.03

Power (W) 0.962 0.952 0.955 0.962 1.082 0.962 0.950 0.957 0.962 1.081

Perf. 0.049 0.025 0.038 0.062 0.168 0.042 0.044 0.041 0.050 0.1490.04

Power (W) 0.962 0.948 0.955 0.962 1.081 0.962 0.943 0.954 0.962 1.081

Perf. 0.063 0.039 0.052 0.071 0.177 0.056 0.038 0.046 0.064 0.1590.05

Power (W) 0.961 0.946 0.954 0.961 1.081 0.961 0.944 0.954 0.961 1.081

Perf. 0.124 0.056 0.091 0.138 0.252 0.119 0.048 0.090 0.113 0.2130.1

Power (W) 0.959 0.943 0.947 0.960 1.081 0.958 0.944 0.949 0.959 1.079

Perf. 0.186 0.095 0.148 0.206 0.330 0.168 0.083 0.133 0.174 0.2690.15

Power (W) 0.957 0.929 0.944 0.959 1.079 0.956 0.930 0.941 0.957 1.077

Perf. 0.246 0.134 0.196 0.261 0.406 0.222 0.122 0.172 0.222 0.3370.2

Power (W) 0.955 0.922 0.934 0.956 1.079 0.954 0.916 0.937 0.955 1.075

Perf. 0.301 0.179 0.225 0.347 0.472 0.268 0.156 0.225 0.278 0.3800.25

Power (W) 0.953 0.906 0.933 0.956 1.076 0.951 0.909 0.928 0.953 1.074

Perf. 0.608 0.351 0.482 0.666 0.831 0.544 0.288 0.457 0.570 0.6670.5

Power (W) 0.943 0.858 0.899 0.947 1.073 0.939 0.865 0.896 0.941 1.066

Perf. 1.203 0.668 0.980 1.299 1.473 1.100 0.664 0.882 1.148 1.2261

Power (W) 0.922 0.758 0.843 0.932 1.063 0.914 0.754 0.834 0.922 1.049

Perf. 2.407 1.494 1.966 19.999 2.570 2.226 1.419 1.834 2.271 2.3392

Power (W) 0.868 0.485 0.686 0.130 1.032 0.850 0.480 0.668 0.871 1.008

Perf. 3.335 2.341 2.890 3.440 3.560 3.220 2.341 2.775 3.291 3.3703

Power (W) 0.737 0.452 0.601 0.754 0.902 0.730 0.449 0.593 0.742 0.887

Perf. 4.332 3.447 3.845 4.429 4.572 4.216 3.375 3.774 4.292 4.3804

Power (W) 0.668 0.433 0.553 0.675 0.831 0.659 0.430 0.548 0.666 0.817

Perf. 5.336 4.251 4.811 5.416 5.557 5.212 4.144 4.720 5.298 5.3835

Power (W) 0.621 0.420 0.524 0.624 0.781 0.611 0.418 0.517 0.617 0.772

The comparisons of performance-power trade-off curves for the DPM policies for all the combinations of SP state
transition distribution (TD) and request inter-arrival time distribution (RD) are shown in the following figures. In
the legends of the figures, “3CTMDP” means CTMDP policy using a three-state SP model and “4CTMDP”
means CTMDP policy using a four-state SP model. The X-axis gives the performance value, which is represented

32

by the average number of waiting requests in queue. In all the figures, the X-axis is given in logarithmic scale.
The Y-axis gives the system power consumption.

Figure 13 Performance-power trade-off curves for Exp. TD and Exp. RD.

Figure 14 Performance-power trade-off curves for Uni. TD and Exp. RD.

0

0.5

1

1.5

2

2.5

3

0.01 0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time Out

3CTMDP

4CTMDP

3CTMDP-POLL

0

0.5

1

1.5

2

2.5

3

0.01 0.1 1 10

Performance

P
o

w
er

Always On Greedy

N-Policy Time-Out

3CTMDP 4CTMDP

3CTMDP-POLL

33

Figure 15 Performance-power trade-off curves for Exp. TD and Exp. & Par. RD.

Figure 16 Performance-power trade-off curves for Uni. TD and Exp. & Par. RD.

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10

Performance

P
o

w
er

Always On Greedy
N-Policy Time Out
3CTMDP 4CTMDP
3CTMDP-POLL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.01 0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time-Out

3CTMDP

4CTMDP

3CTMDP-POLL

34

Figure 17 Performance-power trade-off curves for Exp. TD and Exp. & Exp. RD.

Figure 18 Performance-power trade-off curves for Uni. TD and Exp. & Exp. RD.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.01 0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time-out

3CTMDP

4CTMDP

3CTMDP-POLL

0

0.5

1

1.5

2

2.5

0.01 0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time Out

3CTMDP

4CTMDP

3CTMDP-POLL

35

Figure 19 Performance-power trade-off curves for Exp. TD and Uni. RD.

Figure 20 Performance-power trade-off curves for Uni. TD and Uni. RD.

0

0.5

1

1.5

2

2.5

3

3.5

0.01 0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time-out

3CTMDP

4CTMDP

3CTMDP-POLL

0

0.5

1

1.5

2

2.5

3

0.01 0.1 1 10

Performance

P
o

w
er

Always On Greedy

N-Policy Time Out

3CTMDP 4CTMDP

3CTMDP-POLL

36

Figure 21 Performance-power trade-off curves for Exp. TD and Nor. RD.

Figure 22 Performance-power trade-off curves for Uni. TD and Nor. RD.

0

0.5

1

1.5

2

2.5

3

3.5

0.01 0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time-Out

3CTMDP

4CTMDP

3CTMDP-POLL

0

0.5

1

1.5

2

2.5

3

0.1 1 10

Performance

P
o

w
er

Always On

Greedy

N-Policy

Time-out

3CTMDP

4CTMDP

3CTMDP-POLL

37

From above figures we can see that,

1. In most situations, the stochastic policies out perform the heuristic policies.

2. The stochastic policies provide a good power-delay trade-off. We can always trade performance to reduce
power. However, the heuristic policies such as the time-out policy cannot provide a valid power-delay trade-
off. In all experiments, decreasing the time out threshold increases the average latency for the request.
However, decreasing the time out threshold does not necessarily decrease the average power consumption. In
Figure 15, 16, 17, 19, and 21, with the decrease of the time out threshold and the increase of the average
request latency, the system power consumption first decreases then increase. In these experiments, there is an
optimal time-out threshold, under which both the average request latency and system power consumption are
minimized. However, there is no formal way to find out this optimal threshold.

3. Three-states CTMDP policy is not efficient with input sequence with Exp. & Pareto inter-arrival time because
our stochastic model does not give as accurate representation of the real system. However, the 3CTMDP-poll
policy solves the above problem. The 3CTMDP-poll policy works almost as well as the four-state CTMDP.

4. Four-state CTMDP is robust in different TD, RD distributions. This means that if the device can provide us
with more operation modes of different performance and power consumption, the CTMDP policy can explore
these modes to make itself an always-robust DPM policy independent of the distribution of request inter-
arrival time or the distribution of SP transition time.

6.2 Experimental setup for DPM models with priority queue

In this setup, we call our algorithm POMP (Policy Optimization by Markov Decision Process).

A. Comparison of POMP with heuristic policy

In this experiment, we will present the comparison of POMP policy and the heuristic policies including greedy
policy, time-out policy and show that our policy consumes less power than the heuristic policies.

The system model used in this part includes:

A SP model that is the same as in Example 3.1 except that it has only one busy state, busy1, and one idle state,
idle1.

A SR model with two states r1 and r2, GSR(r1,r2)=1/200, GSR(r2,r1)=1/400, λ l(r1)= 1/30, λh(r1)=1/50, λ l(r2)= 1/60,
λh(r2)=1/90.

A SQ model with a LSQ of length 3 and a HSQ of length 2.

We compare the POMP policy with Greedy and Time-Out policies.

Two different traces of requests are used for simulation:

1. Requests are generated to exactly follow the SR model.

2. Requests are generated to follow the SR state transition rate between r1 and r2. However, in state r1, the inter-
arrival time of low-priority requests follows the uniform distribution (comparing with the exponential distribution
in trace 1) with mean value 1/λ l(r1)=30, the inter-arrival time of high-priority requests follows the uniform
distribution with mean value 1/λh(r1)=50. In state r2, the inter-arrival time of low-priority requests follows the
uniform distribution with mean value 1/λ l(r2)=60, the inter-arrival time of high-priority requests follows the
uniform distribution with mean value 1/λh(r2)=90.

In both cases, we simulated the heuristic policies to get the average delay of the low priority and high priority
requests. We then use these delay values as the delay constraint and searched for a randomized POMP policy

38

using linear programming. Finally, We simulated the POMP policies and compare the power and delay value with
that of heuristic policies.

Table 9 Comparison with heuristic policy with input trace 1.

Heuristic Policy LP-based POMP policy

Name of policy P (w) Dl Dh P ∆P (%)

Timeout policy tout=20 1.665 0.399 0.143 0.942 43.43

Timeout policy tout=40 2.080 0.232 0.118 1.156 44.42%

Timeout policy tout=60 2.244 0.183 0.104 1.865 16.89

Greedy policy 1.303 0.151 0.255 1.067 18.11

Table 10 Comparison with heuristic policy with input trace 2.

Heuristic Policy LP-based POMP Policy

Name of Policy P(w) Dl Dh P(w) ∆P
(%)

Dl ∆Dl

(%)
Dh ∆Dh

(%)

Timeout policy tout=20 1.515 0.439 0.121 1.121 26.0 0.406 7.51 0.119 1.7

Timeout policy tout=40 2.071 0.243 0.097 1.674 19.2 0.227 6.6 0.094 3.1

Timeout policy tout=60 2.242 0.151 0.085 2.142 4.5 0.149 1.3 0.083 2.4

Greedy policy 1.655 0.227 0.137 1.522 8.0 0.169 25.6 0.107 21.9

Table 9 and Table 10 present the comparison results by simulation. The column P, Dl and Dh give for the power,
low priority requests delay, high priority request delay for each power management policy respectively. The
column ∆P, ∆Dl and ∆Dh give the POMP policy’s improvement in power, low priority requests delay and high
priority request delay. The values are simulated using a commercial stochastic activity network analysis tool:
UltraSAN [20]. The conclusions we have from these experiments are,

If the inter-arrival time of the input requests follows exponential distribution, the POMP policy saves more than
30% power on average over heuristic methods while keeping the same delay for both the high priority and low
priority requests.

If the inter-arrival time of the input requests follows uniform distribution, the POMP policy cannot exactly meet
the delay constraint. It saves about 14% power on average, at the same time it reduces the delay of low priority
requests by about 10% and reduces the delay of high priority requests by about 7%.

Further reduces can be achieved using POMP method if we increase the delay constraint. In other words, the
POMP method can make different power-delay trade-offs by changing the delay constraints. Little can be done by
the heuristic method.

The POMP method can do optimal management for a complex system, while the heuristic methods can only do
simple management such as turn-on and turn-off.

The POMP method can adjust the optimal policy when workload characteristics changes, while the greedy and
timeout methods are not adjustable to workload change.

We did not compare DPM method with predictive method, because in our experiments the inter-arrival time of
each requests are assumed to be independent. Therefore, the predictive method is not applicable.

39

B) Comparison of our policy with N-policy

In this section we will show that the POMP method is powerful in finding power and delay trade-offs. When the
server has only two states: active and sleeping, it can easily be shown that the N-policy gives the minimum power
compared to other stationary policies with the same performance constraint. Our experiments show that, however,
for a system with more than two server states, the N-policy does not give the optimal power-delay tradeoff. In the
experimental results, we will present the comparison of our policy and the N-policy and show that our policy is
more efficient in finding power and performance trade-off than the N-policy.

In this experiment, the system model includes:

A SP model that is the same as that in the previous experiment.

A SR model with only one state r, λ(r)= 1/20, the inter-arrival time of each requests follows exponential
distribution.

A SQ model with a SSQ of length 5

Table 11 gives the result of comparison of our policy with N-policy, where N varies from 0 to 5. The result shows
that there is always a randomized policy, which has the exact delay as the N-policy and consumes less power than
N-policy. The deterministic policy consumes more power than a randomized policy, however, it is still more
efficient than N-policy. Furthermore, a N-policy in this experiment only gives 5 different policies. However, a
randomized policy can find power optimal policy under any delay constraint, which is achievable. Therefore, our
algorithm is more flexible and effective.

Table 11 Comparison of our policy with N-policy.

N-policy Randomized-policy Determinisitc-policy

N Power Delay Power ∆P(%) Delay ∆D(%) Power ∆P(%) Delay ∆D(%)

5 0.860 2.346 0.754 12.3 2.304 1.8 0.754 12.3 2.304 1.8

4 0.944 1.933 0.802 15.0 1.933 0 0.8107 14.1 1.869 3.3

3 1.045 1.483 0.861 38.7 1.483 0 0.869 16.8 1.425 3.9

2 1.216 1.027 0.952 20.9 1.027 0 0.966 20.6 1.005 2.1

1 1.623 0.608 1.160 28.5 0.607 0.2 1.213 25.3 0.606 0.3

0 2.3 0.332 2.3 0 0.332 0 2.3 0 0.32 0

VII. CONCLUSIONS
We have proposed a new system model and method for dynamic power management at the system-level. The
problem of system-level power management was formulated as an optimal policy selection problem based on the
theories of continuous-time Markov decision process, and stochastic network. Comparing with previous work, we
introduced new and more complete model of the system components, as well as the model of the whole system.
The proposed mathematical framework captures the characteristics of the real applications more accurately
compared to the models proposed by previous researchers. This is mainly because we solve the problem in
continuous-time domain while prevus authors solve the problem in discrete-time domain. We have also proposed
CTMDP-Poll techniques, which is better than the DMTDP-based technique and the vanilla CTMDP-based
techniquesin all cases. Furthermore, we have used a priority queue model, which is more general and adaptable to
real applications.

40

In the examples and the experimental results included in this paper, we have assumed that the system contains a
single SP. Therefore, all the requests in the SQ are targeted for that SP (which means that they have identical
type). However, please note that this does not mean that all the requests pose the same amount of work load to the
SP. The difference in the request work loads is captured by the exponentially distributed service time in the
model. More generally, our mathematical framework can handle systems with more than one SP and therefore,
service requests of different types can be handled. In this case, we have to create multiple SQ’s one for each type
(or class) of service requests. There will also be a compatibility relation describing what type of requests can be
serviced by which SPs. This adds complexity to the problem but is quite manageable within our proposed
mathematical framework.

A shortcoming of our CTMDP-based technique is that it is very difficult to use the model when attempting to
represent complex systems that consist of multiple closely interacting Service Providers and must cope with
complicated synchronization schemes. In this case, we need to use the modeling techniques based on the theory of
generalized stochastic Petri Nets (GSPN). Finally, in real applications, the inter-arrival time of service requests
may not follow an exponential distribution. Although our experimental results demonstrate that, in practice, the
our method remain effective for a wide range of distributions, it is still desireable from a theoretical point of view
to develop a new mathemnatical framework where arbitrary distributions can be easily handled. Again this
problem can be solved by using the “stage method” (series-parallel connection of exxponentially distrivuted
sources) based on the GSPN framework. However, GSPN is not in the scope of this manuscript.

REFERENCES

[1] A. Chandrakasan, R. Brodersen, Low Power Digital CMOS Design, Kluwer Academic Publishers, July 1995.

[2] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital Design”, IEEE Symposium on Low Power
Electronics, pp.8-11, 1994.

[3] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven Signal Processing: An Approach for Energy
Efficient Computing”, 1996 International Symposium on Low Power Electronics and Design”, pp.347-352, Aug.
1996.

[4] J. Rabaey and M. Pedram, Low Power Design Methodologies, Kluwer Academic Publishers, 1996

[5] L. Benini and G. De Micheli, Dynamic Power Management: Design Techniques and CAD Tools, Kluwer Academic
Publishers, 1997.

[6] Intel, Microsoft and Toshiba, “Advanced Configuration and Power Interface specification”, URL:
http://www.intel.com/ial/powermgm/specs.html, 1996.

[7] M. Srivastava, A. Chandrakasan. R. Brodersen, “Predictive system shutdown and other architectural techniques for
energy effcient programmable computation," IEEE Transactions on VLSI Systems, Vol. 4, No. 1, pp.42-55, 1996.

[8] C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method for Energy Saving of Event-Driven
Computation,” Proceedings of the International Conference on Computer Aided Design, pp. 28-32, Nov. 1997.

[9] G. A. Paleologo, L. Benini, et.al, “Policy Optimization for Dynamic Power Management”, Proceedings of the
Design Automation Conference, pp.182-187, Jun. 1998.

[10] Q. Qiu, M. Pedram, “Dynamic Power Management Based on Continuous-Time Markov Decision Processes”,
Proceedings of the Design Automation Conference, pp. 555-561, Jun. 1999.

[11] Q. Qiu, Q. Wu, M. Pedram, “Stochastic Modeling of a Power-Managed System: Construction and Optimization”,
Proceedings of the International Symposium on Low Power Electronics and Design, 1999.

[12] U. Narayan Bhat, "Elements Of Applied Stochastic Processes", John Wiley & Sons, Inc. 1984.

[13] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven Signal Processing: An Approach for Energy
Efficient Computing”, Proceedings of International Symposium on Low Power Electronics and Design, pp. 347-
352, Aug. 1996.

[14] B. Miller, “Finite State Continuous Time Markov Decision Processes With an Infinite Planning Horizon”. J. Of
Mathematical Analysis and Applications, No. 22, pp. 552-569, 1968.

[15] E. V. Denardo, “On Linear Programming in a Markov Decision Problem”, Management Sience, Vol. 16, No. 5, pp.
281-288, January, 1970.

41

[16] J. F. Shapiro, Mathematical Programming: Structures and Algorithms, John Wiley & Sons, Inc, 1979.

[17] R. A. Howard, Dynamic Programming and Markov Processes, Wiley, New York, 1960.

[18] D. P. Heyman, M. J. Sobel, Stochastic Models in Operations Research, McGraw-Hill Book Company, 1982.

[19] L. E. Scales, Introduction to Non-Linear Optimization, Springer-Verlag New York Inc, 1985.

[20] UIUC, Performability Engineering Research Group, “The UltraSAN Software”,
http://www.crhc.uiuc.edu/UltraSAN/, 1997.

[21] T. Simunic, L. Benini, G. De Micheli: "Dynamic Power Management of Portable Systems", MOBICOM, 2000.

[22] T. Simunic, L. Benini, G. De Micheli: "Dynamic Power Management of Laptop Hard Disk", DATE, 2000.

[23] Y. Lu, E. Chung, T. Simunic, L. Benini, G. De Micheli: "Quantitative Comparison of Power Management
Algorithms", DATE, 2000.

[24] “MHE2064AT, MHE2043AT, MHF2043AT, MHF2021AT Disk Drive Product Manual”, Fujitsu Limited, 1998.

42

APPENDIX
Proof of Proposition 4.1

Let s* denote the state of SP in which it has the highest service rate, q* denote the SQ state that both LSQ and
HSQ are full. From the definition of SR we also know that the states {(s*, r, q*), ∀ r∈ R} communicate with each
other. The two constraints ensures that for any state x∈ X , x→ (s*, r, q*), ∀ r∈ R. Therefore, there cannot exist two
separate communicating class in the system. According to the definition of ergodic chain, we know that there is
only one ergodic chain in the Markov process. For any state x∈ X , if x←(s*, r, q*), then x↔(s*, r, q*) which

means that x belongs to the ergodic chain. If x does not belong to the ergodic chain, then x� (s*, r, q*). Therefore,

P(Txx<∞)<1 and x is a transient state.

Proof of Proposition 4.2

Let o(t) denote the class of functions that 0/)(lim =
∞→

tto
t

. From the definition of transition rate (2.2) and (2.3), we

know that:

))((lim)(lim ',
0

'
0

tottp xx
t

xx
t

+=
→

⇒
→

σ

))((lim)(lim ',
0

'
0

tottp yy
t

yy
t

+=
→

⇒
→

σ

))(1(lim)(lim
'

',
00

tottp
xx

xx
t

xx
t

+∑−=
≠→

⇒
→

σ

))(1(lim)(lim
'

',
00

tottp
yy

yy
t

yy
t

+−= ∑
≠→⇒→

σ

From (2.4) we know that:

∑=∑=
≠′

′
≠′

′
yy

yyyy
xx

xxxx ,,,, , σσσσ

Since X1, X2 are independent, we have the following equations:

))()((lim)(lim '
0

)',(),(
0

tptptp yyxx
t

yxyx
t

⇒⇒
→

⇒
→

=

))((lim
'

2
',',',

0
tott

xx
xxyyyy

t
+∑+=

≠→
σσσ

))((lim ',
0

totyy
t

+=
→

σ (P1.1)

))()((lim)(lim '
0

),'(),(
0

tptptp yyxx
t

yxyx
t

⇒⇒
→

⇒
→

=

))((lim
'

2
',',',

0
tott

yy
xxyyxx

t
+∑+=

≠→
σσσ

))((lim ',
0

totxx
t

+=
→

σ (P1.2)

))()((lim)(lim ''
0

)','(),(
0

tptptp yyxx
t

yxyx
t

⇒⇒
→

⇒
→

=

))((lim))((lim
0

2
',',

0
totot

t
yyxx

t →→
=+= σσ (P1.3)

43

Therefore,

yy
yxyx

t
yxyx t

p
′

′⇒

→
=′ = ,

),(),(

0
),(),,(lim σσ

xx
yxyx

t
yxyx t

p
′

′⇒

→
′ == ,

),(),(

0
),(),,(lim σσ

0lim),(),(

0
),(),,(== ′′⇒

→
′′

t

p yxyx

t
yxyxσ

yyxx
yy

yy
xx

xx
yy

yxyx
xx

yxyxyxyx ,,,,),(),,(),(),,(),(),,(σσσσσσσ +=∑+∑=∑+∑=
≠′

′
≠′

′
≠′

′
≠′

′

Proof of Proposition 4.3

Assume the generator matrix A can be written as:

=

111

1

0

000

nnn

n

aa

aa

$
#"#

$
A

Assume the generator matrix B can be written as:

=

222

2

0

000

nnn

n

bb

bb

$
#"#

$
B

Let’s denote the new matrix as C, C=A⊕ B. From the definition of the Tensor sum we know that

≠≠
=≠
≠=
==+

=+⋅+⋅

njmi

njmia

njmib

njmiba

c
im

jn

jjii

nnmjni

,0

,

,

,

22 , (P2.1)

Let’s denote the generator matrix of the joint process as G. In the joint process, the states are ordered in the
lexicography order of A and B, i.e., they are ordered as:

………),,(,),,(),,(),,(,),,(),,(
22 2221212111 nn babababababa .Therefore, nnmjnibaba G

nmji +⋅+⋅=
22 ,),(),,(σ .

From Proposition 4.2 we know that:

≠≠=
=≠=
≠==
==+=

=+⋅+⋅

njmi

njmi

njmi

njmi

G

nmj

mijmji

njniji

jjiijiji

bab

aababa

bbbaba

bbaababa

nnmjni

,0

,

,

,

),(),,(a

,),(),,(

,),(),,(

,,),(),,(

,

i

11

σ
σσ

σσ
σσσ

(P2.2)

Because
mi aamia ,, σ= and

nj bbnjb ,, σ= , (P2.1) is equal to (P2.2). Therefore, A⊕ B is the generator matrix of

the joint process of A and B.

44

Proof of Proposition 5.1

Let function ξk,K-{k}(t) denote the probability that tik<t and tik<tim, ∀ m∈ K−{k}, K=J−{j}. Then

∫ ∑=
∈

t

ij
k

ijk-kijij dtttftQ
0

}{,)()()(
K

Kξ

Now we are going to prove that

t

k
k

k
ik

et
∑−

∈
∈=∑ K

K
{k}-K

σ
ξ)(, (p3.1)

If K2 contains only 2 elements, assume that K2={a, b}, we know that: t

{a,b}k
kk

ibiaet)(
}{,)(σσξ +−

∈
− =∑ K . Assume

that when Kn contains n elements, (p3.1) is true. When Kn+1=Kn+{z}, we have

∑ ∑⋅∫=∑
+ +

+
+ ∈ ∈

−
∞

∈ 1 1
1

1 }
},{,,)()()(

n n
n

n k
ik

-{km
ikmkm

t
ik

k
k dtttft

K K
K

K
M ξξ

∑ ∫ ⋅=
+

−+∈

∈

∞ ∑−
−

1

}{1

n

ik
knm

im
ikik

k t
ik

t
t

ik dtee
K

K
σ

σσ

t
nk

ik

e
∑−

+∈= 1K
σ

Therefore, (P3.1) is true for all K.

∑−=∫ ⋅=
∈

∑−− ∈

∑
∈

−

J

J
K

l
il

t

ij

t

ij
t

ijij
l

il
t

k
ik

ij edteetQ σσσ
σσ

σ

/)1()(
0

Proof of Lemma 5.1

∑ ∑ ∑+=∑ ∑
∈ ∈ ∈∈ ∈ S A JS A i a j

a
ijij

a
iii

a
i

a
i

i a

a
i

a
i

ii

iiii

ii

ii pcxcxx)(τγ

∑ ∑ ∑+=∑
∈ ∈ ∈∈ S J AS

A

i j a

a
i

a
ijijiiii

i
ii

ii

ii
i

i pcpcpcp)(σπππ p

∑ ∑ ∑ ∑+=
∈ ∈ ∈ ∈S J A Ai j a a

a
i

a
i

a
i

a
ijijiii

ii ii

iiii xpccp)(τσπ

∑ ∑+∑=
∈ ∈∈ ii

iii

a j

a
ijij

a
i

a
iiii

i
cxcp

A JS
)(στπ

Since ∑=
∈ iAi

ii

a

a
i

a
ii xp τπ and iii a

ij
a
i

a
ijp στ ⋅= , ∑=∑ ∑

∈∈ ∈ SS A

A

i
ii

i a

a
i

a
i

i
i

ii

ii cpx
pπγ .

45

Proof of Lemma 5.2

If the Markov process is irreducible, then ππ
ii

t
ptp =

∞→
)(lim . From the definition of π

avgiC , (2.9) we can derive these

equations.

Proof of Theorem 5.0

Consider a request x, the time that this request stays in the queue can be divided into N segments, where N is the
maximum capacity of the queue. In the ith segment, there are i requests in the queue. For request x, the length of
the ith segment is denoted as Ti(x), note that Ti(x) may equal to zero, which means that during the time that request
x is in queue, the number of waiting requests in queue has never been i. During time T, if the number of incoming
requests is X, then the average waiting time for each request is:

XxTdE
Xx

N

i
iT /)()(

1
∑∑
∈ =

= (P.4.1)

We also know that, during time Ti(x), there are i requests. Therefore, (P.4.1) can also be written as:

XTidE
N

i
iT /)(

1
∑

=
⋅=

where Ti denotes the sum of time during T that there are i requests in the queue. Let pi denote the probability that
there are i requests in queue, we know that pi = Ti / X, and

∑
=

⋅=
N

i
iT piqE

1

)(

Therefore, ET(d) = ET(q) ⋅ T / X.

Furthermore, if the loss rate of request is small enough, the average request incoming rate λ = T / X. Therefore,

D = Q ⋅ λ.

