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Abstract

In this paper, we present a statistical method for estimating the peak power dissipation in VLSI circuits.
The method is based on the theory of extreme order statistics applied to the probabilistic distributions of
the cycle-by-cycle power consumption, the maximum likelihood estimation, and the Monte-Carlo
simulation. It enables us to predict the maximum power in the space of constrained input vector pairs as
well as the complete space of all possible input vector pairs. The simulation-based nature of the proposed
method allows us to avoid the limitations of a gate-level delay model and a gate-level circuit structure.
Last, but not least, the proposed method produces maximum power estimates to satisfy user-specified
error and confidence levels. Experimental results show that this method typically produces maximum
power estimates within 5% of the actual value and with a 90% confidence level by simulating less than
2500 input vectors.

I. INTRODUCTION

Circuit reliability is an important issue in today’s VLSI design. There are many sources that may cause
circuit failure; one of them is large power dissipation over a short period of time. High current dissipation
in a short amount of time may cause excessive heat generation resulting in permanent circuit damage or
give rise to unwanted voltage change on the power supply lines resulting in temporary circuit failure. To
circumvent these problems, designers have to have accurate estimates of maximum power dissipation in
VLSI circuits. Estimation of maximum power in VLSI circuits is therefore essential for determining the
appropriate packaging and cooling techniques or optimizing the power and ground routing networks.

In most of the previous research work, maximum power estimation refers to the problem of estimating the
maximum power (or current) that the circuit may consume within any clock cycle. The problem is thus
equivalent to searching for the maximum power-consuming vector pair among all possible input vector
pairs. Therefore, these techniques focus on finding lower and upper bounds on the maximum power
dissipation in a VLSI circuit. However, design requirements of today’s complex VLSI chips make things
more complicated. In general, we divide the scope of the maximum power estimation problem into two
categories:

I.1. The maximum power for all possible vector pairs applied to the inputs of the circuit. We refer to this
quantity as the unconstrained maximum power.

I.2. The maximum power for an input sequence with given average switching activity. We refer to this
quantity as the constrained maximum power.
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A number of techniques have been developed to solve the problem in Category I.1 [1]-[9]. A method
using Boolean function manipulation was proposed in [1]. The problem of finding the input-pair that
maximizes the weighted activity was transformed to a weighted max-satisfiability problem that can be
solved exactly (albeit with exponential complexity) or approximately. Even an approximate solution of
the satisfiability problem is time-consuming when the number of primary inputs is large or a complex
delay model is used for the analysis.

The authors of [2] extended the method in [1] to compute the maximum power cycles of a finite state
machine by modeling the problem as a calculation of maximum average length cycles of a weighted
directed graph. Symbolic methods based on algebraic decision diagrams were used to compute the
maximum average length cycles and the number of gate transitions in the circuit, which are needed to
construct the weighted directed graph. This method is time consuming when the number of primary
inputs and/or states is large.

The method proposed in [3] propagates signal uncertainty waveforms throughout the circuit to obtain a
loose upper bound on the maximum power. The bound is then made tighter by computing the signal
correlations in the circuit. However, the bound tightening method tends to be time consuming when the
number of the primary inputs is large.

Automatic test pattern generation (ATPG) based techniques [4]-[5] try to generate an input vector pair
that produces the largest switched capacitance in the circuit. The power consumption by the vector pair is
then used as a lower bound on the maximum power of the circuit. ATPG-based techniques are very
efficient and generate a tighter lower bound than that generated by random vector generation. However,
the limitations of ATPG-based techniques are that they handle simple delay models such as the zero-delay
and unit-delay models and that the analysis is done at the gate-level instead of the circuit level.
Consequently, the estimation accuracy has yet to be improved.

Statistical methods have also been used for maximum power estimation. In [4] a Monte Carlo based
statistical technique for maximum current estimation was briefly discussed. The method randomly
generates high-activity vector pairs, and the maximum power is then estimated by the simulation. This
method also suffers from low efficiency.

A continuous optimization method was proposed in [6], which treats the input vector space as a
continuous real-valued vector space and then performs a gradient search to find the function maximum.
The method uses the unit delay model during the function transformation. Therefore, similar to the
ATPG-based techniques, the estimation accuracy is not high.

The authors of [7] proposed a technique for finding the maximum power-consuming vector using a
genetic search algorithm. The authors start with a set of randomly selected vector pairs that generate large
amount of power dissipation. By mixing up the highest power consuming vectors, they then generate the
next population and keep on iterating until some maximum iteration count has been exceeded. The
advantage of the method is that it is a simulation-based approach where the delay models do not limit the
estimation accuracy. The shortcoming of this approach is that it has low efficiency, i.e., requires
simulation of a large number of vectors.

The theory of order statistics has been applied in [8][9] to estimate the maximum power dissipation in a
circuit by estimating a high quantile point (e.g., the 99.9% quantile point). These techniques can be very
accurate because they are simulation-based techniques, but their efficiency is not much better than the
random vector generation technique.

In this paper, we present a simulation-based statistical method for maximum power estimation for
combinational circuits. It is a method of estimating the maximum power using the asymptotic theory of
Extreme Order Statistics. Compared to previous work, our approach makes the following contributions:
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1. Our approach is the first to provide the confidence interval for the estimated maximum power given a
user-specified confidence level.

2. Our approach is the first to do maximum power estimation for any given error and confidence level.

3. Our approach can estimate the maximum power defined in both categories I.1 and I.2.

4. Because our approach is simulative, the delay model or the circuit structure does not limit its
accuracy.

5. Due to statistical estimation of the extreme value distributions, the estimation efficiency of our
approach is much higher than that of other existing statistical methods (including simple random
sampling and quantile estimation).

On average, our proposed method can perform maximum power estimation by simulating only about
2500 vector pairs to achieve a 5% error at a confidence level of 90%. It may be of interest to the reader to
note that our statistical sampling technique, which builds on the limiting distributions of extreme order
statistics, can be equally useful in estimating the peak value of any other distribution. For example, one
can use it to estimate the maximum delay through a circuit under process variations, temperature
variations and different input populations. However, this is outside the scope of this paper. A shorter
version of this paper was published in [18].

This paper is organized as follows. Section II introduces the asymptotic theory of extreme order statistics
and maximum likelihood estimation. Section III describes our approaches for maximum power
estimation. Section IV presents our experimental results, and Section V gives the concluding remarks.

II. BACKGROUND

In this section, we introduce some key concepts and theorems from the asymptotic theory of extreme
order statistics and maximum-likelihood estimation, which will be useful for our purpose of estimating
the maximum power dissipation of a VLSI circuit.

2.1 The asymptotic theory of extreme order statistics

The (cumulative) distribution function (d.f.) of a random variable (r.v.) x is defined as:

}{)( txPtF ≤= (2.1)

The density function of x is:

)()( xFxf ′= if F(x) is continuous and differentiable.

The quantile function (q.f.) of a d.f. F is defined as:

]1,0[},)(:inf{)(1

random
qqtFtqF ∈≥=− (2.2)

where inf(S) calculates the lower bound of set S. Notice that the q.f. 1−F is a real-valued function, and
1−F (q) is the smallest q quantile of F. That is, if Z is a r.v. with d.f. F, then 1−F (q) is the smallest value t

such that P{Z < t} ≤ q ≤ P{Z ≤ t}. We remark that F(x)=sup{q∈ [0,1]: 1−F (q) ≤ x}. Let z1, z2, ..., zn be n
random units drawn from a common distribution. When they are drawn in a random manner, they are
called independent identically distributed (i.i.d.) r.v.’s. If we are interested not in the order in which
z1,z2,...,zn are drawn, but in the order of the magnitude of their values, then we have to examine the
ordered sample values

nnnn XXX ::2:1 ≤≤≤ !

which are the order statistics of a sample of size n.

Xr:n is called the rth order statistic, and the random vector (X1:n, X2:n, ..., Xn:n) is the order statistic. Note
that X1:n is the sample minimum, and Xn:n is the sample maximum. X1:n is called the minima order statistic,
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and Xn:n is called the maxima order statistic, or in general, they are called the extreme order statistics of a
sample of size n.

Let Xr:n be the rth order statistic of n i.i.d. random variables z1, z2, ..., zn with common d.f. F and density f.
Then its d.f. is given by:
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and the density of Xr:n is given by:
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In the special case where we are only interested in the sample maxima Xn:n, we obtain the d.f. as:
n

nn tFtXP )(){ : =≤ (2.5)

and the density of Xn:n is:
1

:
−= n

nn nfFf (2.6)

Here we give three distribution types [12] that are used for studying the limiting d.f. of sample maxima
(in other words, extreme value d.f.’s):
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−−= , “Gumbel” (2.9)

where α > 0 is a shape parameter. It will be convenient to write G3,α in place of G3 where α is understood
to be always 1. Example plots of density function of these three d.f.’s are shown in Figure 1. We say that
two d.f.’s G1 and G2 are of the same type (isomorphic under an affine transformation) if G1(b+ax)=G2(x)
for some a>0 and real b. The following identities show that the d.f.’s Gi,α are in fact the limiting d.f.’s of
sample maxima. We have:

)()log(),()(),()( 33,2,2,1,1
11

xGnxGxGxnGxGxnG nnn =+== −
αααα

αα

that is, these d.f.’s are max-stable in the above sense. It is one of the notable achievements of the classical
extreme value theory that one can show that the G1,α, G2,α, G3 are all of the possible limiting d.f.’s of
sample maxima [11].

Figure 1 Plots of density functions

(a) Density function for Fréchet d.f. when α = 3
(b) Density function for Weibull d.f. when α = 3
(c) Density function for Gumbel d.f.

(a) (b) (c)
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Definition 1 [11] F is said to belong to the weak domain of attraction of limiting d.f. G, if there exist
constants an > 0 and reals bn such that:

∞→→+ nxGxabF nn
n ),()( (2.10)

for every continuity point of G.

Let us define the right endpoint of d.f. F as:

)1(}1)(:sup{)( 1−=<= FxFxFω (2.11)

Theorem 1 [11] A d.f. F belongs to the weak domain of attraction of an extreme value d.f. Gi,α if and
only if one of the following conditions holds:
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and ↓ represents approaching decreasingly and ↑ represents approaching increasingly.

Moreover, the constants bn and an can be chosen in the following way:

)11(,0:),1( 1** nFab nn −== −α (2.16)

)11()(),(:),2( 1** nFFaFb nn −−== −ωωα (2.17)

)(),11(:)3( **1*
nnn bganFb =−= − . (2.18)

If a distribution F satisfies one of the conditions in Theorem 1, we simply call the corresponding Gi,α the
asymptotic distribution of the sample maxima of distribution F. Theorem 1 gives the conditions
describing to which d.f. G, the extreme distribution, will converge. In addition, it provides us with the
guidelines to choose the correct asymptotic extreme distribution for a specific application.

Example [11]: We want to study the limiting distribution for the sample maxima of the common Uniform
Distribution function F(x) that is defined as follows:









>
≤≤
<

=
1for1

10for

0for0

)(

x

xx

x

xF

Since ω(F)=1, according to Theorem 1, we exclude the Fréchet distribution.

Now let us check the condition in (2.14). Since
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cannot tend to e-x as t→1 [11], (2.14) fails and the limiting distribution cannot be the Gumbel distribution.

Therefore the only possible distribution is the Weibull distribution if (2.13) holds. Let us define, for x>0,
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We find that, for x>0, as t→+∞,
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Therefore condition (2.13) holds and the limiting distribution for sample maxima of the [0,1] uniform
distribution exists and follows the Weibull distribution defined in (2.8) with α=1.

Theorem 2 [11] The weak convergence to the limiting d.f. G holds for other choices of constants an and
bn if and only if

∞→→−→ nabbaa nnnnn as0)(and1 ** (2.19)

Theorem 2 gives other possibilities of choosing an and bn in Theorem 1. In special cases when F(x) has a
finite right endpoint, by Theorem 2, the choice of bn (n→∞) in Eqn.(2.17) is unique. This observation is
very important for our discussion in Section III.

Theorem 3 [11] Let G=Gi,α for some i and α > 0. Then the following two statements are equivalent:
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where (2.21) has to hold for every x in the support domain of G. Moreover,
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Theorem 3 provides a more intuitive and practical way of studying the conditions in Theorem 1.

2.2 Maximum-likelihood estimation for parameters of the Weibull distribution when αααα > 2

We use a maximum-likelihood estimator for parameters of a generalized Weibull distribution defined as:
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where µ is a location parameter which determines the right endpoint (i.e. maximum) of the distribution, β
> 0 is a scale parameter, and α is the shape parameter. We only consider the case of α>2 because it holds
for our application.

The maximum-likelihood estimation problem is defined as follows: Given m independent random
samples x1,x2,…,xm of G(x; α, β, µ), find the values of α, β, µ which maximize the likelihood function
[10]:
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This maximum likelihood estimator, when it exists, will be denoted by the vector )ˆ,ˆ,ˆ( mmm µβα and
satisfies
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Let 000 ,, µβα denote the actual values of parameters of the distribution, G. It was proved in [10] that,

when α > 2, )ˆ,ˆ,ˆ( 000
2
1

µµββαα −−− mmmm converges in distribution (m→∞) to a normal random
distribution vector with mean 0 and an appropriately defined covariance matrix VAR. We will show how
to calculate matrix VAR in Section 3.3.

III. THE ESTIMATION APPROACH

The problem of maximum power estimation can be stated as follows: Given a set V (called population) of
input vector pairs, estimate the maximum power dissipation of the circuit under any vector pair in the
population. A vector pair in V is called a unit of the population. In this paper, the population may include
all possible input vector pairs applied to a circuit, or all possible vector pairs with some fixed input
transition probability. Although there can only be a finite number of distinct vector pairs in the
population, the size of V, represented by |V|, is assumed to be infinite since there is the possibility of
repeating the vector pairs.

In this section we explain assumptions, justification, and details of our approach for maximum power
estimation.

3.1 The distribution of power consumption

If we regard power consumption for a vector pair as a random variable p, then a distribution of p is
formed by the power consumption values of vector pairs in set V. Figure 2 shows an example of power
distribution function F(p) and density function f(p). The average power is the mean value of the
distribution. The maximum power is then the right endpoint of the distribution.

Strictly speaking, the distribution function of power is different from ordinary probability distribution
functions because the support domain of the power d.f. is not continuous. Practically, however, we, like
most other researchers [4][8][9], make the assumption that d.f. of power in an LSI circuit is
approximately continuous when the size of circuit and the size of population is large. Therefore all
theories and approaches related to probabilistic distribution can be applied to the problems related to
power distribution. We also assume the d.f. of power consumption in a VLSI circuit has a continuous d.f.
in this paper as stated below.

Assumption 1 The d.f. of power consumption F(p) is continuous and differentiable at every point p in its
supporting domain.

Figure 2 An example of power d.f. and density function

Consider a simple two-input NAND gate; there are at most 16 possible power consumption values.
Therefore, we cannot and do not treat the power dissipation distribution of a simple NAND as a
continuous distribution. However, for large circuits that consist of thousands or tens of thousands of such

p (mW) p (mW)

F(p) f(p)
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simple gates, the total power distribution of the circuit can be safely modeled as a continuous function. It
is, of course, possible to envision and construct circuits where the total power distribution is not a
continuous function. However for most circuits, the continuity assumption holds. Note that a bimodal or
multi-modal power distribution can be and often are continuous.

This assumption is indeed conservative. However, our approach is not limited only to these “nearly”
continuous distributions because our interest is only in the tail of the distribution. In some situations
where the power distribution is not continuous, such as a distribution with multiple abrupt modes, as long
as we have samples in the mode with the highest power values, our method will still be applicable. In the
extreme cases such as when there is one unit in the population that consumes much higher power than any
other unit, then our method will fail. Note however that in such a case, any other method, short of an
exhaustive simulation method or an intractable analytical model with a simplistic delay equation, will fail.

3.2 The asymptotic distribution of the sample maximum power

Given the population V, the ith sample for maximum power estimation is formed by the power values of n
randomly selected units:

m,,ippp niii ,21,,, ,2,1, !! =

where n is called the sample size and m the number of samples. The maximum power in each sample is
defined as:

mipppp niiiMAXi ,,2,1},,,max{ ,2,1,, !! == (3.1)

According to Eqn.(2.5), the d.f. of pi,MAX can be written as: )()( , pFpH n
MAXi = .

Now let us try to determine the asymptotic distribution of pi,MAX when n→∞. As mentioned in Theorem 1,
H(bn+ pi,MAX ⋅an) converges to one of the three distributions defined in Eqn.’s(2.7), (2.8), and (2.9).

In the remainder of this paper, we will use ω(F) to denote the actual maximum power of the population.

Because F(p) cannot be written, we cannot directly prove that the asymptotic distribution of H(pi,MAX)
exists by using the conditions in Theorem 1 or Theorem 3. What we have are the following observations
which help us determine the asymptotic distribution of H(pi,MAX).

First we know that the power consumption in a LSI circuit is always a finite value, i.e., ω(F) < ∞.
Therefore the condition in (2.12) is not met, and H(bn+ pi,MAX ⋅an) cannot converge to G1,α.

Second, because the upper bound of the supporting domain for G3 is infinite while that of G2,α is finite,
the probability that the condition in Eqn.(2.21) holds for G3 is lower than that for G2,α. Therefore H(bn+
pi,MAX ⋅an) is more likely to converge to G2,α rather than G3. Moreover, we can obtain the maximum power
value directly from the parameter of G2,α, which simplifies the maximum power estimation problem.

Finally, it is pointed out in [11] that most frequently sed continuous distributions with a finite right
endpoint ))(( ∞<Fω satisfy the condition in Eqn.(2.13). Therefore, in many engineering applications of
maxima or minima estimation, it is assumed that the distribution under study belongs to the weak
convergence domain of G2,α [12]. Below we have included some examples of these works.

Indeed the Gumbel distribution could have been used as well. However, the exact choice of the limiting
distribution is not critical to us because our contribution in this paper is that we design a Monte Carlo
statistical simulation technique to do maximum power estimation based on our choice of the limiting
distribution of the sample maxima. It will be rather straightforward to develop a similar Monte Carlo
based simulation procedure starting with a Gumbel distribution instead.

Example:



Revised Manuscript

9

1. In [13], the authors used the Weibull distribution to study the distribution of the maximum yield
strength of high-tensile steel.

2. In [14] and [15], the authors used both Weibull and Gumble distributions to study the distribution of
the maximum wind speed.

Therefore, the second and the last assumption of this paper is that the distribution of pi,MAX asymptotically
follows the Weibull distribution G2,α. This means that there exist an and bn such that:

minpGpabFpabF MAXinn
n

MAXinn ,,2,1,),()()( ,,2, !=∞→→+=⋅+ α (3.2)

or min
a

bp
GpF

n

nMAXi
MAXi ,,2,1,),()( ,

,2, !=∞→
−

→ α (3.3)

From Eqn.’s (2.17) and (2.19), we get )(Fbn ω= where ω(F) is the maximum power consumption of the
population. If we substitute the generalized Weibull distribution defined in Eqn.(2.23) into Eqn.(3.3), we
get

minpGpF MAXiMAXi ,,2,1,),,,;()( ,, !=∞→→ µβα

where β=(1/an)
α and µ=bn.

Experiments have been designed to verify the asymptotic distribution of sample maximum. The
distributions of sample maxima for six different sample sizes (n = 2, 10, 20, 30, 40, 50) were formed by
1,000 random samples (1000×n units) from the original population. The closest Weibull distributions
were obtained by using a least-square curve fitting technique. Figure 3 shows the results for circuit
C3540.

Figure 3 The comparison between distribution of sample maxima and Weibull distribution

n = 2 n = 10

n = 20 n = 30

n = 50n = 40
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We have repeated this experiment for other circuits and populations and obtained a similar result. From
these results we conclude that the difference between distributions of pi,MAX and the Weibull distribution
in the region near the maximum power is negligible when n is larger than or equal to some fixed value,
e.g., 30. Since we are only interested in estimating the maximum power, we fix the sample size n to 30
and assume that the distribution of pi,MAX follows the Weibull distribution when n ≥ 30.

Consequently, pi,MAX’s (i=1,2,…,m) (n = 30) become the samples of the generalized Weibull distribution
which was defined in Eqn.(2.23). More importantly, if previous assumptions hold, we have: µω =)(F .

The problem of maximum power estimation is therefore equivalent to that of estimating the location
parameter µ of a generalized Weibull distribution from random samples. The simplest way of doing this is
to curve-fit the samples to Eqn.(2.23) to get values of α, β, and µ. Unfortunately, our study shows that the
curve fitting approach is unstable since the problem becomes very difficult when we try to construct the
distribution from a small number of samples. Therefore, we choose another estimation method that is
more robust and has a solid theoretical support. After samples of the generalized Weibull distribution are
obtained (i.e. pi,MAX), the maximum-likelihood estimation method is used to estimate the parameters α, β,
and µ.

3.3 A Maximum-likelihood estimator of maximum power dissipation

The maximum-likelihood estimator for parameters of generalized Weibull distribution for α > 2 was
described in Section II. In fact, α is always larger than 2 if the sample size n is much smaller than the
population size |V|.

Theorem 4 [10] Let mmm µβα ˆ,ˆ,ˆ be the estimators that satisfy Eqn. (2.25), mmm µβα ˆ,ˆ,ˆ (m→∞) are

unbiased estimators of µβα ,, of the Weibull distribution, which means that mmm µβα ˆ,ˆ,ˆ (m→∞) follow
normal distributions with mean values of 000 ,, µβα and covariance matrix VAR. The matrix VAR is
defined as:
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(3.4)

where matrix A is symmetric and defined as:
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333231

232221

131211
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From Theorem 4 we know that the maximum power estimator mµ̂ converges to a normal distribution

with mean of µ0 (which is the actual maximum power ω(F)) and variance of m2
µσ .

Theorem 5 mµ̂ is an unbiased estimator for the maximum power ω(F). Given confidence level l

(l∈ (0,1)), the confidence interval of the estimated maximum power mµ̂ (m→∞) is given by:

])(,)([ 22 muFmuF ll µµ σωσω ⋅+⋅− (3.5)

where ω(F) is the actual maximum power, m is the number of samples, 2
µσ is defined in Eqn.(3.4), and ul

is defined as:
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Proof:

Because ω(F)=µ, from Theorem 4 we know mµ̂ is an unbiased estimator of µ and follows a normal

distribution with mean value µ and variance 2
µσ /m. Therefore, mµ̂ is also an unbiased estimator of ω(F)

and follows a normal distribution with mean value ω(F) and variance 2
µσ /m. From [16] we know that,

given confidence level l, the confidence interval of mµ̂ can be calculated by Eqn.(3.5).

█

Theorem 5 states that the probability that the estimated maximum power falls into the interval defined in
Eqn.(3.5) is l. For a given l, a smaller confidence interval means higher estimation accuracy. Therefore,
the relative estimation error is inversely proportional to the square root of the variance of the estimator.

The plot of 2
µσ (as a function of α and β) is shown in Figure 4. We can conclude from the figure that the

variance (and therefore the confidence interval) of the maximum power estimator will decrease when m
increases, α decreases, or β increases.

Figure 4 The plot of 2
µσ as a function of αααα and ββββ    

In practice, the theoretical confidence interval cannot be calculated directly because 2
µσ is unknown.

Therefore, we do not know a priori how many samples are needed to achieve a certain confidence
interval at a given confidence level. An iterative (Monte Carlo) estimation method has been designed to
solve this problem.

3.4 An iterative estimation procedure

Figure 5 The distributions of estimated maximum power compared with the nearest normal
distribution

m=10 m=50

2
µσ

α
β 
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Experiments have been designed to study the distribution of the maximum likelihood estimator for
maximum power in cases when the number m of samples is finite. (We know from Theorem 4 that when
m→∞, the maximum likelihood estimator for ω(F) follows a normal distribution.) The sample size is
fixed at n=30 and different number of samples are used (m=10,50). During each single experiment, m
samples with sample size n are randomly selected from the population. Maximum power is then estimated
by using the maximum likelihood estimator mµ̂ . For each distinct m, the sampling-estimation procedure
is repeated 100 times to form the distribution of estimated value. The distributions of estimated maximum
power for different values of m are then formed, and their nearest normal distributions are obtained by
least-square curve fitting. The resulting curves for circuit C3540 are shown in Figure 5.

Figure 6 Synopsis of the maximum power estimation method

Similar results are obtained for other circuits. From the experimental results we conclude that the
estimator for maximum power is approximately normally distributed when the number of samples is large
enough (e.g., m≥10). Therefore, we assume the normal distribution of the estimator for maximum power
for m≥10.

The actual distribution of the population definitely influences the efficiency and accuracy of our method.
One immediate impact would be on the choice of values for n and m. They are empirically chosen based
on our power measurement experiments on the testbench circuits under cases I.1 and I.2 discussed in
Section I. For an arbitrary power distribution, these values will have to be re-calculated.

Before we introduce a practical procedure for maximum power estimation, we summarize our discussions
in earlier part of this section as shown in Figure 6.

In Figure 6, a hyper-sample is defined as the result of one run of maximum power estimation for m
samples with size n. We fix the value of n to 30 and value of m to 10, then the number of units which is
needed to form a hyper-sample is 300.

Distribution of sample maxima
follows the distribution of
generalized Weibull distribution
G(pi,MAX; α,β,µ) when n≥30

Population

1 2 n

Sample

Distribution of sampled units
follows the distribution of the
original population F(p)

MAX MAX

Maximum-
Likelihood
Estimation

1 m

Hyper
Sample

The estimated maximum power
follows normal distribution
when m≥10

Sample
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Theorem 6 Let MAXiP ,
ˆ (i=1,2,...k) denote the ith hyper-sample, for n=30 and m=10, MAXiP ,

ˆ follows the

normal distribution with mean value of ω(F) and variance of 102
µσ , where 2

µσ is defined in Eqn.(3.4).

Proof:

Based on the two assumptions in Figure 6 and Theorem 5, MAXiP ,
ˆ is an unbiased estimator of ω(F) and

follows a normal distribution with mean value ω(F) and variance 102
µσ .

█

Define: ∑
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Theorem 7 [16] MAXP and s2 are unbiased estimators of the actual maximum power ω(F) and 2
µσ /m,

respectively. Given confidence level l, the confidence interval for the actual maximum power is given by:

],[ 1,1,

k

st
P

k

st
P

kl
MAX

kl
MAX

⋅
+

⋅
− −− (3.8)

where tl,k-1 is the l×100% percentile point of the t distribution with degree of freedom of k-1.

Figure 7 The basic iterative flow of maximum power estimation

Theorem 7 gives us a guideline for designing an iterative procedure for maximum power estimation
subject to the required accuracy (relative error less than or equal to ε) at given confidence level l. The
basic workflow is shown in Figure 7.

In Figure 7, the generation of a hyper-sample follows the procedure shown in Figure 6. The confidence
interval is calculated using Eqn.(3.8). The maximum relative error is calculated using the confidence

interval MAX
kl P

k

st ⋅−1, . If this quantity is larger than the required ε, then the estimated value has not

converged, and we add one more hyper-sample; otherwise, the estimation has converged, and we report
the estimation result.

Add one more hyper-sample

Is the confidence interval smaller than
the required value?

YES

START

Add one hyper-sample

Compute the confidence interval
for given confidence level

NO

Report Result
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Theorem 8 On average, to achieve some fixed error level at a given confidence level l, the number of
samples needed in theory (i.e., the number calculated based on Theorem 5) is smaller than the number

needed in practice (i.e., the number calculated based on Theorem 7) by a factor of ( )2
1, −kll tu , where tl,k-1

and ul are defined in Eqn.’s (3.5) and (3.8), respectively.

Proof:

To achieve same error level at the same confidence level l both in theory and in practice, the confidence
interval defined in Eqn.(3.5) and Eqn.(3.8) must be equal. This leads to:

kstmu kll ⋅=⋅ −1,
2
µσ

Because s2 is the unbiased estimator for 2
µσ , we have s2= 2

µσ . Therefore,

( )21, −= kll tukm .

Because ul is always smaller than tl,k-1, m is always smaller than k.

█

Since ul is always smaller than tl,k-1, the theoretical number of samples (given by Theorem 5) is lower
than the number obtained by the practical approach (given by Theorem 7). Moreover, other factors
introduced by procedures such as the random sampling and maximum likelihood estimation, will further
increase the required the number of samples in the practical approach.

3.5 Practical issue: finite population versus infinite population

The approach discussed in the earlier part of this section is designed for estimating the maximum power
of an infinite population. However we must deal with a finite population in real applications. As an
example, our experimental setup in the next section uses finite populations. Experimental results show
that if we use the same approach for the finite population as for the infinite population, there will be some
positive bias in the maximum likelihood estimation in the sense that the mean of the estimated value is
always larger than the actual maximum power of the population. This happens because estimator mµ̂ is
estimating the maximum power of an infinite population that should, after all, have a long tail after the
actual maximum power of the population. However this tail does not exist in the case of a finite
population.

To solve this problem, we can regard the finite population V as a sample of size |V| selected randomly
from the assumed continuous distribution for the infinite population. If we assume there is only one unit
in the finite population which consumes the maximum power, then the maximum power of the finite
population becomes the estimated (1-1/|V|) quantile point of the assumed continuous distribution.
According to the tail-equivalence property between a distribution and the limiting distribution of its
sample maxima [11], estimating the (1-1/|V|) quantile point of the original population is equivalent to
estimating the (1-1/|V|) quantile point of the asymptotic Weibull distribution of the sample maxima.
Therefore, when estimating the maximum power of a finite population, instead of using the theoretical

mµ̂ (which is the 100% quantile point of the estimated generalized Weibull distribution), we use the (1-
1/|V|) quantile point of the Weibull distribution (whose parameters can be estimated by using the
maximum likelihood estimator) as the estimator for the maximum power. We call this the “modified
estimator” for the finite population. Experimental results show that the modified estimator gives us a very
good normally-distributed estimator for finite populations where the bias has been nearly eliminated.
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IV. MAXIMUM POWER ESTIMATION AND EXPERIMENTAL RESULTS

Methods for estimating maximum power of different categories are slightly different from each other.
Experiments have been designed to study the efficiency and accuracy of our approach on maximum
power estimation. We present our experimental results and comparison with other techniques for different
categories separately.

Category I.1. Estimating the unconstrained maximum power.

Proposed method:

In this category, the goal is to estimate the maximum power of the circuit for all possible input vector
pairs. Consequently the simple random sampling procedure can be realized by randomly generating
vector pairs, that is, the two methods (i.e., random vector generation and simple random sampling) are
equivalent in this case. Except for the fact that the sampling technique is replaced by the random vector
generation, the remaining part of our approach (cf. Figure 6 and Figure 7) remains the same.

Experimental setup A:

For circuits with a large number of inputs, we are not able to compare our experimental results with the
“absolute” maximum power because that requires exhaustive simulation of an exponential number of
vectors. The only thing we can do is to generate and simulate as many vector pairs in the population as we
can and use the maximum of them as the basis for our comparison.

When comparing with the ATPG-based techniques, first we like to point out that the estimation speed of
the ATPG-based techniques is higher than our approach; however, the accuracy of our approach will be
higher because the ATPG-based techniques can only handle simple delay models at the gate-level.
Second we are not able to directly compare our results with those of the ATPG-based techniques even at
the gate-level because we have not been able to obtain the programs (although we have tried). As an
alternative, by studying the reported results for ATPG-based techniques, we have observed that the most
accurate maximum power estimation results generated by ATPG-based techniques are comparable with
the results obtained by simulating (at the gate-level) 10,000 randomly generated vector pairs [4][5][6].
Therefore, we indirectly compare the estimation quality of our approach with ATPG-based techniques by
comparing it with that obtained by the random vector generation approach.

We use a similar strategy to compare with other techniques in [6] and [7] for similar reasons.

Results and discussion:

When compared to the quantile estimation approach proposed in [8], we note that although the quantile
estimation technique can estimate a high-quantile (e.g., 99.999%) point as the maximum power at given
confidence level, it cannot give the confidence of estimating the maximum power. In other words, since
the actual maximum power in the population is unknown, there is no way to tell which quantile point
(99.99%, 99.999%, or 99.9999%?) to estimate such that the relative error of the estimated maximum
power w.r.t. the actual maximum is less than a given value (e.g., 5%). In addition, the efficiency of using
quantile estimator as the maximum power estimator is low. This is because if we use the a quantile
estimator to estimate the maximum power, the procedure is equivalent to simple random sampling in the
population with the maximum simulated power value as the estimation result (see below).

Now let us present a theoretical study of the efficiency of the estimation method of random vector
generation, or simple random sampling. Assume we want to estimate maximum power of error less than
5% at confidence level 90% for a population. Let the size of the population be |V|. Define the “qualified
units” as those units whose values are within 5% difference of the actual maximum. Assume the number
of the “qualified units” is Z. The portion of the “qualified units” in the whole population is then Y=Z/|V|. If
we sample x units from the population, the probability that there is at least one “qualified unit” in these x
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units is given by: xYP )1(1 −−= . For P to be larger than or equal to 90%, we need, on average, x =
log(0.1)/log(1-Y) sampled units. From our experiments, we have observed that Y is very small (e.g.,
<0.0001). This leads to very large x (e.g., >23,000). So we conclude that the efficiency of random vector
generation (and therefore quantile estimation) will be low.

The experimental setup is as follows. The population contains 160,000 randomly generated high activity
(i.e., average switching activity larger than 0.3) vector pairs. Random vector generation is equivalent to
generating a simple random sampling of vector pairs from the population. The whole population is
simulated using Powermill [16] to get the power consumption value for each unit and, in the process, the
actual maximum power. Our approach (with n=30 and m=10) and simple random sampling (SRS) have
been applied to perform maximum power estimation for relative error < 5% at confidence level 90%. The
experimental results are shown in Table 1 and Table 2. Our approach has been used to perform maximum
power estimation 100 times for each circuit.

Table 1 shows the comparison of efficiency and accuracy of our approach versus simple random
sampling. The portion of the “qualified units” in the whole population is given in the 2nd column. The
maximum, minimum, and average number of units needed for our approach to converge are reported in
the 3rd, 4th, and 5th columns, respectively. The 6th column gives the theoretically calculated (according to
the discussion of the second paragraph from the bottom of page 14) number of units needed by simple
random sampling to achieve the same error (5%) and confidence (90%) level. The 7th and 8th columns
give the absolute value of the maximum and minimum estimation error of our approach. We have not
given the relative error for SRS because the SRS technique is not able to predict the maximum power
subject to given error and confidence levels.

Table 2 shows the estimation quality comparison. Simple random sampling techniques using 2500, 10K,
and 20K units are performed 100 times, respectively. The 2nd column gives the actual maximum power of
the population, which we call the “best-estimate (BE) maximum power” because it is the largest among
the simulated vector pairs. Columns 3, 4, 5, and 6 give the results of the largest-error estimates for
different techniques. Column 7, 8, 9, and 10 give the results of the percentage of the time when the
estimated value exceeds the error level.

Table 1 Experimental results for comparing the efficiency and accuracy (I.1)

# of units needed Relative error

Our approach SRS Our approachCircuit

Portion of the
“qualified

units”
MAX MIN AVE AVE MAX MIN

C1355 0.0001 2700 900 1923 23024 6.0% 0.3%

C1908 0.00015 3600 1500 2412 15349 5.3% 2.4%

C2670 0.000288 1500 600 924 7993 6.2% 0.6%

C3540 0.000094 5100 600 2553 24494 5.2% 1.2%

C432 0.000038 5400 2100 3543 60593 7.7% 1.7%

C5315 0.000194 2700 600 1653 11868 5.8% 0.8%

C6288 0.000163 900 600 675 14125 6.2% 0.05%

C7552 0.00005 4500 3300 3825 46050 8.2% 0.6%

C880 0.000063 3000 2700 2859 36547 5.4% 2.9%

The experimental results show that our approach is much more efficient than the simple random sampling
technique (about 12X speedup on average). More importantly, however, simple random sampling or
similar techniques are not reliable because they cannot provide a confidence interval and a confidence
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level for maximum power estimation. Also the estimation quality of our approach is obviously better than
simple random sampling. From the results of Table 2, if we compare our approach with simple random
sampling with 20K units, the average largest error is 5.3% for our approach and 10.4% for SRS. As to the
average percentage of estimated value with error larger than 5%, it is 4.3% for our approach and 23% for
SRS. It can be foreseen that the advantage of our approach over SRS will be more predominant for an
infinite population.

Table 2 Experimental results for comparing the estimation quality (I.1)

Largest estimation error % of estimates with error > 5%

SRS SRSCircuits

BE max.
power
(mW)

Our
appr. 2500 10K 20K

Our
appr. 2500 10K 20K

C1355 2.145 -6.0% -13% -8.5% -6.3% 6% 80% 52% 15%

C1908 2.745 -5.3% -14% 7.5% -6.3% 3% 73% 28% 8%

C2670 6.529 -6.2% -8.6% -5.4% -2.5% 1% 38% 2% 0%

C3540 10.732 5.2% -14% -10% -8.9% 5% 80% 52% 33%

C432 1.818 -7.7% -22% -13% -14% 8% 89% 73% 57%

C5315 14.372 5.8% -9.7% -7.7% -6.2% 2% 73% 27% 3%

C6288 126.62 6.2% -21% -21% -21% 3% 76% 26% 5%

C7552 31.237 8.2% -14% -10% -7.3% 7% 92% 69% 54%

C880 4.312 5.4% -20% -15% -11% 4% 88% 42% 29%

Experimental setup B: In this setup, we want to estimate the maximum power consumption of circuits
based on all possible input vector pairs.

It is however impossible to do exhaustive simulation of all possible input vector pairs for the ISCAS
benchmark circuits used in Setup A. This is because the number of inputs for these circuits ranges from
32 to more than 200. Therefore we arbitrarily choose 9 of the inputs to be changed exhaustively. The
other inputs are fixed at some random input combination. As a result, for each circuit, we obtain a
population of 2^18=262,144 units. We have done experiments on four circuits: C1355, C1908, C3540 and
C6288. The assignments of the fixed and changed inputs of these circuits are shown in Table 3.

Table 3 Assignment of fixed and changed inputs.

Circuits Number of Inputs Fixed Inputs Changing Inputs

C1355 41 1~16, 26~41 17~25

C1908 33 1~12, 22~33 13~21

C3540 50 1~21, 31~50 22~30

C6288 32 1~12, 22~32 13~21
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Table 4 Actual maximum power consumption (mW).

Circuits Fixed Input
Pattern 1

Fixed Input
Pattern 2

Fixed Input
Pattern 3

Fixed Input
Pattern 4

Fixed Input
Pattern 5

C1355 0.98 0.96 0.91 0.96 0.92

C1908 1.76 2.06 1.30 2.76 1.28

C3540 2.71 1.29 2.07 1.84 1.68

C6288 43.29 39.61 42.62 44.23 44.09

The experiments are repeated five times using five different combinations of random values for the fixed
inputs of each circuit. The maximum power value (at 5Mhz clock rate) of the population for each setup is
presented in Table 4.

Figure 8 shows some sample distributions for total power dissipation in different circuits.

Figure 8 Example distributions of total power consumption under partially changing inputs.
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We applied the same method that we used for Setup A to estimate the peak power dissipation in these four
circuits under partially changing inputs. Column entries in these tables are defined similar to those in
Table 1. The experimental results are reported in the Tables 5-9.

Table 5 Experimental results for Fixed Pattern 1.

# of units needed Relative error

Our approach SRS Our approachCircuits

Portion of the
“qualified

units”
MAX MIN AVE AVE MAX MIN

C1355 0.00006104 3600 600 2187 37721 10.0% 0.01%

C1908 0.00081250 1800 600 1095 2833 8.8% 2.0%

C3540 0.00125122 1800 600 1173 1839 7.0% 1.3%

C6288 0.00011444 2100 600 1335 20119 6.0% 0.1%

Table 6 Experimental results for Fixed Pattern 2.

# of units needed Relative error

Our approach SRS Our approachCircuits

Portion of the
“qualified

units”
MAX MIN AVE AVE MAX MIN

C1355 0.00028229 4800 600 2853 8156 10.5% 0.4%

C1908 0.00012207 3600 600 1881 18862 8.0% 0.002%

C3540 0.00109863 2100 600 1260 2095 9.9% 1.8%

C6288 0.00003052 2400 600 1092 75444 5.0% 0.05%

Table 7 Experimental results for Fixed Pattern 3.

# of units needed Relative error

Our approach SRS Our approachCircuits

Portion of the
“qualified

units”
MAX MIN AVE AVE MAX MIN

C1355 0.00104904 3600 600 2070 2194 10.3% 0.5%

C1908 0.00003815 3300 600 1932 60355 6.9% 0.2%

C3540 0.00048828 2400 600 1275 4715 6.2% 0.1%

C6288 0.00005722 2100 600 1188 40240 5.7% 0.3%

As we can see from data reported in these tables, compared to SRS, on average, our approach uses
between 1-70 times fewer input vector pairs to produce peak power estimates within the same level of
error.
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Table 8 Experimental results for Fixed Pattern 4.

# of units needed Relative error

Our approach SRS Our approachCircuits

Portion of the
“qualified

units”
MAX MIN AVE AVE MAX MIN

C1355 0.00042725 4500 600 2583 5388 11.4% 0.9%

C1908 0.00009918 3900 600 2022 23215 8.2% 0.3%

C3540 0.00078418 2100 600 1305 2935 8.7% 2.2%

C6288 0.00008011 2100 600 1266 28742 4.5% 0.09%

Table 9 Experimental results for Fixed Pattern 5.

# of units needed Relative error

Our approach SRS Our approachCircuits

Portion of the
“qualified

units”
MAX MIN AVE AVE MAX MIN

C1355 0.00072098 4200 600 2055 3193 7.6% 0.2%

C1908 0.00022888 2700 600 1734 10059 9.7% 0.3%

C3540 0.00022125 1800 600 1284 10406 7.1% 2.4%

C6288 0.00015640 3000 600 1521 14721 10.0% 0.3%

Category I.2. Estimating the constrained maximum power.

Proposed method: Similar to Category I.1, except that vector pairs are generated under given constraints
(e.g., average switching activity)

Table 10 Experimental results for comparing efficiency and accuracy (I.2)

# of units needed Relative error

Our approach SRS Our approachCircuit

Portion of the
“qualified

units”
MAX MIN AVE AVE MAX MIN

C1355 0.000241 3900 600 2112 9553 5.4% 1.8%

C1908 0.000378 3000 600 2403 6090 7.3% 2.0%

C2670 0.000778 900 600 675 2958 4.1% 0.5%

C3540 0.000196 1200 900 1053 11747 6.7% 4.0%

C432 0.000071 3300 1200 2259 32430 7.7% 2.2%

C5315 0.000488 1200 900 975 4717 7.1% 4.1%

C6288 0.000427 1200 600 1053 5391 4.5% 1.7%

C7552 0.000308 3900 900 2253 7475 8.0% 0.9%

C880 0.000135 2700 600 1704 17055 12% 2.1%

Experimental setup: Similar to the Setup A of Category I.1, this time we generate two populations (each
of size 80,000) subject to the constraint that the average switching activity per input line is 0.7 and 0.3,
respectively. A detailed comparison with simple random sampling has been performed as well. However,
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we give only the tables for comparing efficiency and accuracy in order to save space. The experimental
results for populations of average switching activity 0.7 and 0.3 are shown in Table 10 and Table 11,
respectively. The meaning of the entries in different columns is the same as that in Table 1. The
estimation quality comparison can be seen from the value of the portion of the “qualified units” in the 2nd

columns of both tables. As expected when the number of qualified units in the population decreases, the
number of units needed to estimate the maximum power dissipation in the circuit increases.

Table 11 Experimental results for comparing efficiency and accuracy (I.2)

# of units needed Relative error

Our approach SRS Our approachCircuit

Portion of the
“qualified

units”
MAX MIN AVE AVE MAX MIN

C1355 0.000119 4800 1500 3348 19384 3.6% 2.2%

C1908 0.000246 2700 900 2001 9359 6.6% 3.5%

C2670 0.000313 3600 1500 2583 7355 5.3% 1.7%

C3540 0.000053 5100 600 3585 43444 7.4% 2.9%

C432 0.000179 3000 1500 2388 12862 6.8% 2.4%

C5315 0.000231 3600 1200 2622 9967 13% 3.4%

C6288 0.000079 6000 2700 5424 29145 5.1% 0.6%

C7552 0.000194 2400 1200 1977 16446 7.1% 3.3%

C880 0.000018 2700 900 1896 127920 5.0% 1.9%

V. CONCLUSIONS

A statistical approach based on the asymptotic theory of extreme order statistics is presented. This is the
first maximum power estimation approach that can provide a confidence interval at a given confidence
level. This is also the first approach that can perform maximum power estimation for any user-specified
error and confidence level. The proposed approach can predict the maximum power in the space of
constrained input vector pairs as well as the complete space of all possible input vector pairs. It is an
efficient simulation-based approach with high accuracy. The generality of this approach also makes it
applicable to other fields of VLSI design automation, such as, maximum delay estimation.
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