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Abstract 
In this paper we present a statistical method for estimating the 
maximum power consumption in VLSI circuits. The method is 
based on the theory of extreme order statistics applied to the 
probabilistic distribution of the cycle-based power consumption, 
maximum likelihood estimation, and Monte-Carlo simulation. The 
method  can predict the maximum power in the constrained space 
of given input vector pairs as well as the complete space of all 
possible input vector pairs. The simulation-based nature of the 
proposed method allows one to avoid the limitations imposed by 
simple gate-level delay models and handle arbitrary circuit 
structures. The proposed method can produce maximum power 
estimates to satisfy user-specified error and confidence levels. 
Experimental results show that this method provides maximum 
power estimates within 5% of the actual value and with a 90% 
confidence level by simulating, on average, about 2500 vector 
pairs. 

I. Introduction 
There are many factors that may cause circuit failure, including 
excessive power dissipation over a short period of time. High 
current flow over a short time frame may lead to permanent 
circuit damage, voltage change on the power/ground distribution 
nets, circuit slow down, or double clocking hazards. To design a 
reliable circuit, designers have to depend on efficient and accurate 
estimation of maximum power dissipation in the circuit. The 
maximum power may be averaged over the clock cycle, resulting 
in the cycle-based maximum power value. This is the focus of our 
paper. 
In much of the previous work, the maximum power estimation 
problem refers to the problem of estimating the maximum power 
(or current) that the circuit may consume within any clock cycle. 
The problem is thus equivalent to finding the maximum-power-
consuming vector pair among all possible input vector pairs. 
Previous techniques, therefore, focus on finding lower bound and 
upper bounds on the maximum power dissipation in the circuit. In  
 
 
 
 
 
 
 
 
 

many applications, however, the space of input vectors that can be 
applied to a VLSI chip is constrained. This gives rise to the 
following classification: 
I.1 The maximum power for all possible vector pairs applied to 
the inputs of the circuit. We refer to this as the unconstrained 
maximum power estimation problem. 
I.2 The maximum power for given transition/joint-transition 
probability specification for the circuit inputs. We refer to this as 
the constrained maximum power estimation problem. 
A number of techniques have been developed to solve the 
problems in Category I.1 [1]-[10]. Category I.2 has however not 
been explored. The method proposed in [1] propagates the signal 
uncertainty through the circuits to obtain a loose upper bound on 
the maximum power. The bound is then made tighter by doing 
analysis of the circuit structure. The bound tightening method 
tends to be time consuming when the number of the primary 
inputs is large. 
Automatic test pattern generation (ATPG) based techniques [5]-
[6] attempt to generate an input vector pair that produces the 
largest switched capacitance in the circuit. The power 
consumption by the vector pair is then used as a lower bound on 
the maximum power of the circuit. The ATPG based techniques 
are very efficient and generate a tighter lower bound than that 
generated by random vector generation. The limitations are, 
however, that the ATPG based techniques can only handle simple 
delay models such as the zero-delay and unit-delay models, and 
that the analysis is done at the gate-level. Consequently, the 
estimation accuracy is not high. A continuous optimization 
method was proposed in [7], which treats the input vector space as 
a continuous real-valued vector space and then performs a 
gradient search to find the maximum. Similar to the ATPG based 
techniques, the estimation accuracy is not high. 
The authors of [8] proposed a technique for finding the maximum 
power-consuming vector using a genetic search algorithm. The 
limitation of this approach is that efficiency is not high. Statistical 
methods have also been studied for maximum power estimation. 
In [5] a statistical technique for maximum current estimation was 
briefly discussed. The method randomly generates high-activity 
vector pairs and maximum power is then estimated by simulation. 
This method also suffers from low efficiency. The theory of order 
statistics has been applied in [9][10] to estimate maximum power 
by estimating the high quantile point. The efficiency is however as 
low as the random vector generation technique. 
In this paper, we present a simulation-based statistical method for 
maximum power estimation for combinational circuits. It is a 
method of estimating the maximum power using the theory of 
Asymptotic Extreme Order Statistics. Compared to previous work, 
this approach makes the following contributions: 
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1. This approach can estimate the maximum power defined in 
both categories I.1 and I.2. 

2. Because it is a simulation-based technique, the delay model 
and circuit structure do not limit the accuracy of our method.  

3. The approach is the first to provide the confidence interval 
for the estimated maximum power for the user-specified 
confidence level.  

4. This is the first approach which can provide maximum power 
estimation for any given error and confidence level. 

5. By efficient statistical estimation of the extreme 
distributions, the estimation efficiency is significantly 
improved compared to existing statistical methods (including 
simple random sampling or quantile estimation).  

On average, our method can perform maximum power estimation 
by simulating only about 2500 vector pairs to achieve a 5% error 
at a confidence level of 90%.  
This paper is organized as follows. Section II introduces the 
theory of asymptotic extreme order statistics and maximum 
likelihood estimation. Section III describes our approach for 
maximum power estimation. Sections IV and V present our 
experimental results and concluding remarks. 

II. Background 
2.1 The asymptotic theory of extreme order statistics 
The (cumulative) distribution function (in short d.f.) of a random 
variable (in short r.v.) x is defined as: 
                            }{)( txPtF ≤=                                              (2.1) 
The quantile function (in short q.f.) of a d.f. F is defined as:  
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where inf(S) calculates the lower bound of set S. Notice that the 
q.f. F -1 is a real-valued function and F -1(q) is the smallest q 
quantile of F, that is, if Z is a r.v. with d.f. F, then F-1(q) is the 
smallest value t such that P{Z < t} ≤ q ≤ P{Z ≤ t}. We remark that 
F(x)=sup{q∈[0,1]: F -1(q) ≤ x}. Let z1, z2, ..., zn be n random units 
drawn from a common distribution. If they are drawn in at 
random, they are called independent identically distributed (in 
short i.i.d.) r.v.’s. If there is no interest in the order in which 
z1,z2,...,zn are drawn, but interest in the order of the magnitude of 
their values, the ordered sample values can be examined: 
                              nnnn XXX ::2:1 ≤≤≤ L  
which are the order statistics of a sample of size n. 
Xr:n is called the rth order statistic and the random vector (X1:n, 
X2:n, ..., Xn:n) is called the order statistic. Note that X1:n is the 
sample minimum and Xn:n is the sample maximum. X1:n is called 
the minima order statistic and Xn:n is called the maxima order 
statistic, or in general, they are called the extreme order statistics 
of a sample of size n. 
The distribution function of the sample maxima Xn:n, is given by: 
                          n

nn tFtXP )(){ : =≤                                       (2.3) 
Three distribution functions are given for studying the limiting 
d.f. of sample maxima (in other words: extreme value d.f.’s): 
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Definition 1 [12] F is said to belong to the weak domain of 
attraction of limiting d.f. G, if there exist series of constants an > 0 
and reals bn such that: 

                  ∞→→+ nxGxabF nn
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for every continuity point of G. 
Let us define the right endpoint of d.f. F as: 
                )1(}1)(:sup{)( 1−=<= FxFxFω                          (2.8) 

Theorem 1 [12] A d.f. F belongs to the weak domain of attraction 
of an extreme value d.f. Gi,α if, and only if, one of the following 
conditions holds: 
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and ↓ represents approaching decreasingly, ↑ represents 
approaching increasingly. 
Moreover, constants an and bn can be chosen in the following way: 
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If a distribution F satisfies one of the conditions in Theorem 1, we 
simply call the corresponding Gi,α the asymptotic distribution of 
the sample maxima of distribution F. Theorem 1 not only gives 
conditions under which the extreme value d.f. G will converge, 
but also guidelines for selecting the correct asymptotic extreme 
distribution for different application. 
Theorem 2 [12] The weak convergence to the limiting d.f. G 
holds for other choices of constants an and bn if, and only if, 

∞→→−→ nabbaa nnnnn   as   0)(        and      1 **            (2.15) 

Theorem 2 gives other possibilities of choosing an and bn in 
theorem 1. In special cases when F(x) has a finite right endpoint, 
by Theorem 2, the choice of bn (n→∞) in Eqn.(2.13) is unique.  
2.2 Maximum-likelihood estimation for parameters of 
the Weibull distribution when α > 2 
For reasons that will be made clear in a later section, we are 
interested in developing a maximum-likelihood estimator for 
parameters of a generalized Weibull distribution defined as: 
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where µ is the location parameter which determines the right 
endpoint (i.e. maximum) of the distribution, β > 0 is the scale 
parameter, and α is the shape parameter. 
The maximum-likelihood estimation problem is defined as 
follows: Given m independent random samples x1,x2,…,xm of G(x; 
α, β, µ), find the values of α, β, µ which maximize the likelihood 
function [11]: 
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This maximum likelihood estimator, when it exists, will be 
denoted by the vector )ˆ,ˆ,ˆ( mmm µβα and satisfies: 
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Let 000 ,, µβα  denote the actual values of parameters of the 
distribution, G. It was proved in [11] that, when α > 2, 

)ˆ(),ˆ(),ˆ( 000 µµββαα −−− mmm mmm  will all converge to 
normal distributions with mean 0, when m→∞. 

III. The Estimation Approach 
The problem of maximum power estimation can be stated as 
follows: Given a set V (called population) of input vector pairs, 
estimate the maximum power dissipation that the circuit may 
exhibit for any vector pair in the population. A vector pair in V is 
called a unit of the population. In this paper, the population may 
include all possible input vector pairs applied to a circuit, or all 
possible vector pairs under some transition probability constraints. 
Although there may be a finite number of distinct vector pairs in 
the population, the size of V, represented by |V|, is assumed to be 
infinite because repeating the vector pairs is allowed. 
3.1 The asymptotic distribution of the sample maximum 
power 
If we regard power consumption of a vector pair as a random 
variable p, a distribution of p is then formed by the power 
consumption values of vector pairs in set V. The average power is 
the mean value of the distribution. The maximum power is then 
the right endpoint of the distribution. We assume that the d.f. of 
power consumption in large circuits is continuous distribution. 
Given population V, the ith sample for maximum power 
estimation is formed by the power values of n randomly selected 
units: 
                   m,,ippp niii ,21            ,,, ,2,1, LL =  

where n is called the sample size and m the number of samples. 
The maximum power in each sample is defined as: 
            mipppp niiiMAXi ,,2,1     },,,max{ ,2,1,, LL ==          (3.1) 
According to Eqn.(2.3), the d.f. of pi,MAX can be written as:         
H( pi,MAX) = F(p)n. As mentioned in Theorem 1, H(bn+ pi,MAX ⋅an) 
asymptotically converges to one of the three distributions defined 
in Eqn.’s(2.4), (2.5) and (2.6). 
In the remainder of this paper, we will use ω(F) to denote the 
actual maximum power of the population. 
We know that power consumption in an LSI circuit is a finite 
value, i.e., ω(F) < ∞. Therefore the condition in (2.9) is not met 
and H(bn+ pi,MAX ⋅an) cannot converge to G1,α. Also, because the 
upper bound of the supporting domain for G3 is infinite whereas 
that of G2,α is finite, the condition in (2.10) is more likely to hold 
than that in (2.11). Therefore H(bn+ pi,MAX ⋅an) is more likely to 
converge to G2,α rather than G3. 
It is pointed out in [12] that, most frequently used continuous 
distributions with finite right endpoint (ω(F)<∞) satisfy the 
condition in Eqn.(2.10). Therefore, in many engineering 
applications of maxima estimation, it is assumed that the 
distribution under study belongs to the weak convergence domain 
of G2,α. This statement has also been empirically proved to be true 
by our experiments (cf. later this section). Therefore, we state that 
the distribution of pi,MAX asymptotically follows the Weibull 
distribution G2,α. This means that there exist an and bn such that: 
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From Eqn.’s (2.13) and (2.15), we get )(Fbn ω=  where ω(F) is 
the maximum power consumption of the population. If we 
substitute the generalized Weibull distribution defined in 
Eqn.(2.16) into Eqn.(3.3),  we get 
              minpGpF MAXiMAXi ,,2,1  ,  ),,,;()( ,, L=∞→→ µβα  

where β=(1/an)α and µ=bn. 
Experiments have been designed to verify the asymptotic 
distribution of sample maxima. The distributions of sample 
maxima for different sample size (n = 2, 20, 30, 50) was formed 
by 1,000 random samples from the population. Their closest 
Weibull distributions are obtained by using least mean squared 
error fit. Figure 1 shows the results for circuit C3540. 
 
 
 
 
 
 
 
 
 
 
Figure 1 Comparison between distribution of sample maxima 

and Weibull distribution 
Experiments are done for other circuits and populations and 
similar results are obtained. From these results we concluded that 
the difference between distributions of pi,MAX

  and Weibull 
distribution in the region near the maximum power is negligible 
when n ≥ 30. Since we are only interested in estimating the 
maximum power, we fix the sample size n to 30 and assume that 
the distribution of pi,MAX follows Weibull distribution when n ≥ 30. 
Consequently, pi,MAX (i=1,2,…,m) (n = 30) become the samples of 
the generalized Weibull distribution in (2.16). More importantly, 
if previous assumptions hold, we have: ω(F)=µ.  
The problem of maximum power estimation is thus equivalent to 
that of estimating the location parameter µ of a generalized 
Weibull distribution from random samples. The simplest way of 
doing this is to curve-fit the samples to Eqn.(2.16) to get values of 
α, β, and µ. However, our study shows that the curve fitting 
approach is unstable since the problem becomes difficult when we 
try to construct the distribution from a small number of samples. 
We therefore choose another estimation method that is more 
robust and has a solid theoretical support.  
3.2 A maximum-likelihood estimator of maximum 
power dissipation 
The maximum-likelihood estimators for parameters of generalized 
Weibull distribution for α > 2 have been introduced in Section II. 
In fact, α is always larger than 2 if the sample size n is much 
smaller than the population size |V|. Consequently, let mmm µβα ˆ,ˆ,ˆ  
be the estimators that satisfy Eqn. (2.18), we can prove the 
following result.  

Theorem 3 mmm µβα ˆ,ˆ,ˆ  (m→∞) are the unbiased estimators of 
µβα ,,  of the Weibull distribution, which means that  

mmm µβα ˆ,ˆ,ˆ  (m→∞) follow normal distributions with mean values 

n = 2 n = 20 

n = 30 n = 50



of 000 ,, µβα  and covariance matrix VAR. The matrix VAR is 
defined as: 
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From Theorem 3 it is shown that the maximum power estimator 
mµ̂  converges to a normal distribution with mean of µ0 (which is 

the actual maximum power ω(F)) and variance of m2
µσ .  

Theorem 4 mµ̂  is an unbiased estimator for maximum power 
ω(F). Given confidence level l (l∈(0,1)), the confidence interval 
of the estimated maximum power mµ̂  (m→∞) is given by: 

               ])(     ,)([ 22 muFmuF ll µµ σωσω ⋅+⋅−           (3.5) 

where ω(F) is the actual maximum power, m is the number of 
samples, 2

µσ  is defined in Eqn.(3.4), and ul is defined as: 
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Theorem 4 states the probability that the estimated maximum 
power falls into the interval defined in Eqn.(3.5) is l. For a given l, 
smaller confidence interval means higher estimation accuracy. 
Therefore, the relative estimation error is inversely proportional to 
the square root of the variance of the estimator.  
In practice, the theoretical confidence interval cannot be 
calculated directly because 2

µσ  is unknown. Therefore, we do not 
know a priori how many samples are needed to achieve certain 
confidence interval at given confidence level.  An iterative 
(Monte-Carlo) method has been designed to solve this problem. 
3.3 The iterative estimation procedure 
Experiments have been designed to study the distribution of the 
maximum likelihood estimator for maximum power in cases when 
the number of samples m is finite (we know from Theorem 3 that 
when m→∞ this maximum likelihood estimator for ω(F) follows 
a normal distribution). The sample size is fixed at n=30 and a 
different number of samples are used (m=10,50). During each 
single experiment, m samples with sample size n are randomly 
selected from the population. Maximum power is then estimated 
by using the maximum likelihood estimator mµ̂ . For each 
distinct m, the sampling-estimation procedure is repeated 100 
times to form the distribution of estimated value. The distributions 
of estimated maximum power for different values of m are then 
formed and their nearest normal distributions are obtained by 
least-square curve fitting. The results for circuit C3540 are shown 
in Figure 2. 
 
 
 
 
 

Figure 2   The distributions of estimated maximum power 
compared with the nearest normal distribution 

Similar results are obtained for other circuits. From the 
experimental results, we can conclude that the estimator for 
maximum power is approximately normally distributed when the 
number of samples is large enough (m≥10). Therefore, we assume 
normal distribution of estimator for maximum power when m≥10. 

Before we introduce our practical maximum power estimation 
procedure, we summarize our discussions in the beginning of this 
section as shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3   Synopsis of maximum power estimation method 
In Figure 3, a hyper-sample is defined as the result of one run of 
maximum power estimation for m samples with size n. We fix the 
value of n to 30 and value of m to 10, so the number of units 
which is needed to form a hyper-sample is 300. 

Theorem 5 Let MAXiP ,
ˆ  (i=1,2,...,k) denote the ith hyper-sample, 

for n=30 and m=10, MAXiP ,
ˆ  follows the normal distribution with 

mean value of ω(F) and variance of 102
µσ , where 2

µσ  is defined 
in Eqn.(3.4). Let us define: 
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Theorem 6 MAXP  and s2 are unbiased estimators of the actual 

maximum power ω(F) and 102
µσ , respectively. Given 

confidence level l, the confidence interval for the actual maximum 
power is given by: 
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where tl,k-1 is the l×100% percentile point of the t distribution with 
k-1 degrees of freedom. 
Theorem 6 gives a guideline for designing an iterative procedure 
for maximum power estimation subject to the required accuracy 
(relative error less than or equal to ε) at given confidence level l. 
The basic workflow is shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 

Figure 4 Iterative flow of maximum power estimation 
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In Figure 4, the generation of a hyper-sample follows the 
procedure shown in Figure 3. Confidence interval is calculated 
using Eqn.(3.8). The maximum relative error is calculated using 

the confidence interval as MAX
kl P

k

st ⋅−1, . If this quantity is 

larger than the required ε, then the estimated value has not 
converged and one more hyper-sample is added; otherwise, the 
estimation has converged and the estimation result is reported. 
3.4 Practical issue: finite population versus infinite 
population 
The approach discussed earlier in this section is designed for 
estimating the maximum power of an infinite population. 
However, we must deal with a finite population in real 
applications. As an example, our experimental setup in the next 
section uses finite populations. Experimental results shows that, if 
we use the same approach for finite population as for the infinite 
population, there will be a bias in the maximum likelihood 
estimation in the sense that the mean of the estimated value will 
always be larger than the actual maximum power of the 
population. This happens because µm estimates the maximum 
power of an infinite population that should have (with some 
probability) a tail even after the actual maximum power value for 
the population. Obviously, this tail does not exist in the case of a 
finite population.  
To solve this problem, we can regard the finite population V as a 
sample of size |V| selected randomly from the assumed continuous 
distribution for the infinite population. Assume there is only one 
unit in the finite population which consumes the maximum power, 
then the maximum power of the finite population becomes the 
estimated (1-1/|V|) quantile point of the assumed continuous 
distribution. According to the tail-equivalence property between a 
distribution and the limiting distribution of its sample maxima 
[12], estimating the (1-1/|V|) quantile point of the original 
population is equivalent to estimating the (1-1/|V|) quantile point 
of the generalized Weibull distribution of the sample maxima. 
Therefore, when estimating the maximum power of a finite 
population, instead of using the theoretical mµ̂  (which is the 
100% quantile point of the estimated generalized Weibull 
distribution), we use the (1-1/|V|) quantile point of the Weibull 
distribution (whose parameters are calculated by using the 
maximum likelihood estimator) as the estimator for the maximum 
power. We call this the “finite population estimator”. 
Experimental results show that the modified estimator gives an 
unbiased estimator for finite populations. 

IV. Experimental Results 
Category I.1. Estimating the unconstrained maximum power. 
In this category, the goal is to estimate the maximum power of the 
circuit for all possible input vector pairs. Consequently, the simple 
random sampling procedure can be realized by randomly 
generating vector pairs, that is, the two methods of random vector 
generation and simple random sampling are equivalent in this 
case. Except for the fact that the sampling technique is replaced 
by the random vector generation, the remaining parts of the 
estimation flow (cf. Figure 3 and Figure 4) are unchanged.  
Let us give a theoretical analysis of the efficiency of the 
estimation method of random vector generation (or simple 
random sampling). Assume we want to estimate the maximum 
power of a population with an error less than 5% at a confidence 
level of 90%. Let the size of the population be |V|. Define the 
“qualified units” as those units whose values are within 5% of the 
actual maximum. Assume the number of the “qualified units” is Z. 

The portion of the “qualifies units” in the whole population is then 
Y=Z/|V|. If we sample x units from the population, the probability 
that there is at least one “qualified unit” in these x units is given 
by: xYP )1(1 −−= . For P to be larger than or equal to 90%, we 
need on average x = log(0.1)/log(1-Y) sampled units. From our 
experiments, we have observed that Y is very small (e.g., 
<0.0001). This leads to very large x (e.g., >23,000). Thus we 
conclude that maximum power estimation using simple random 
sampling is not efficient. 
The experimental setup is as follows. The population contains 
160,000 randomly generated high activity (average switching 
activity larger that 0.3) vector pairs. Random vector generation is 
equivalent to random sampling of vector pairs from the 
population. The whole population is simulated using Powermill 
[13] to get the power consumption value for each unit and in the 
process the actual maximum power. Our approach (n=30, m=10) 
and simple random sampling (SRS) have been applied to do 
maximum power estimation for relative error < 5% at confidence 
level 90%. We perform maximum power estimation using our 
approach one hundred times for each circuit. Experimental results 
are shown in Table 1 and Table 2.  
Table 1 shows the efficiency comparison between our approach 
and simple random sampling (SRS). The portion of the “qualified 
units” in the whole population is given in the 2nd column. The 
maximum, minimum, and average (over 100 runs) number of 
units needed for our approach to converge are reported in the 3rd, 
4th, and 5th columns, respectively. The 6th column gives the 
theoretically calculated (according to the discussion in the second 
paragraph of this section) number of units needed by simple 
random sampling to achieve the same error (5%) and confidence 
(90%) level. The 7th and 8th columns give the absolute value of the 
maximum and minimum estimation error of our approach. The 
relative error for SRS is not given because the SRS technique 
cannot predict the maximum power subject to given error and 
confidence levels. 

# of units needed Relative error 
Our approach SRS Our approach 

 
Circuit 

Portion of the 
“qualified 

units” MAX MIN AVE AVE MAX MIN 
C1355 0.0001 2700 900 1924 23024 6.0% 0.3% 
C1908 0.00015 3600 1500 2410 15349 5.3% 2.4% 
C2670 0.000288 1500 600 924 7993 6.2% 0.6% 
C3540 0.000094 5100 600 2553 24494 5.2% 1.2% 
C432 0.000038 5400 2100 3544 60593 7.7% 1.7% 
C5315 0.000194 2700 600 1653 11868 5.8% 0.8% 
C6288 0.000163 900 600 676 14125 6.2% 0.05%
C7552 0.00005 4500 3300 3825 46050 8.2% 0.6% 
C880 0.000063 3000 2700 2859 36547 5.4% 2.9% 
Table 1   Efficiency comparison for unconstrained input 

sequences 

Table 2 shows the comparison for the estimation quality. SRS 
techniques using 2500, 10K, and 20K units are performed 100 
times, respectively. The 2nd column gives the actual maximum 
power of the population. Columns 3, 4, 5 and 6 give the results of 
largest-error estimates for different techniques. Column 7, 8, 9 and 
10 give the results of the percentage of the time when the 
estimated value exceeds the error level. 
The experimental results show that our approach is much more 
efficient than the SRS technique (about 12X speedup on average). 
More importantly, however, simple random sampling or similar 
techniques are not reliable because they cannot provide 
confidence interval and confidence level for maximum power 
estimation. Also the estimation quality of our approach is 



obviously better than simple random sampling. From the results 
of Table 2, if we compare our approach with simple random 
sampling with 20K units, the average largest error is 5.3% for our 
approach, and 10.4% for SRS. As for the percentage of estimated 
values with error larger than 5%, it is 4.3% for our approach and 
23% for SRS. It can be seen that the advantage of our approach 
over SRS increases for infinite population. 

Largest estimation error % of estimates with error > 
5% 

SRS SRS 

 
Circuits 

Actual 
max. 

power 
(mW) 

Our 
appr. 2500  10K  20K  

Our 
appr. 2500 10K 20K 

C1355 2.145 -6.0% -13% -8.5% -6.3% 6% 80% 52% 15%
C1908 2.745 -5.3% -14% 7.5% -6.3% 3% 73% 28% 8% 
C2670 6.529 -6.2% -8.6% -5.4% -2.5% 1% 38% 2% 0% 
C3540 10.732 5.2% -14% -10% -8.9% 5% 80% 52% 33%
C432 1.818 -7.7% -22% -13% -14% 8% 89% 73% 57%

C5315 14.372 5.8% -9.7% -7.7% -6.2% 2% 73% 27% 3% 
C6288 126.62 6.2% -21% -21% -21% 3% 76% 26% 5% 
C7552 31.237 8.2% -14% -10% -7.3% 7% 92% 69% 54%
C880 4.312 5.4% -20% -15% -11% 4% 88% 42% 29%
Table 2   Estimation quality comparison for unconstrained 

input sequences 

Category I.2. Estimating the constrained maximum power. 
The estimation flow is similar to Category I.1, except that vector 
pairs are generated under given constraints. 
We generate two populations (each of size 80,000) subject to the 
constraint that the average switching activity per input line is 0.7 
and 0.3, respectively. A detailed comparison with simple random 
sampling has also been performed.  

# of units needed Relative error
Our approach SRS Our approach

 
Circuit 

Portion of the 
“qualified units” 

MAX MIN AVE AVE MAX MIN
C1355 0.000241 3900 600 2112 9553 5.4% 1.8%
C1908 0.000378 3000 600 2403 6090 7.3% 2.0%
C2670 0.000778 900 600 675 2958 4.1% 0.5%
C3540 0.000196 1200 900 1054 11747 6.7% 4.0%
C432 0.000071 3300 1200 2259 32430 7.7% 2.2%
C5315 0.000488 1200 900 975 4717 7.1% 4.1%
C6288 0.000427 1200 600 1052 5391 4.5% 1.7%
C7552 0.000308 3900 900 2252 7475 8.0% 0.9%
C880 0.000135 2700 600 1703 17055 12% 2.1%

Table 3 Results for constrained input sequences (high activity) 

# of units needed Relative error
Our approach SRS Our approach

 
Circuit 

Portion of the 
“qualified 

units” MAX MIN AVE AVE MAX MIN
C1355 0.000119 4800 1500 3348 19384 3.6% 2.2%
C1908 0.000246 2700 900 2001 9359 6.6% 3.5%
C2670 0.000313 3600 1500 2584 7355 5.3% 1.7%
C3540 0.000053 5100 600 3587 43444 7.4% 2.9%
C432 0.000179 3000 1500 2389 12862 6.8% 2.4%

C5315 0.000231 3600 1200 2623 9967 13% 3.4%
C6288 0.000079 6000 2700 5424 29145 5.1% 0.6%
C7552 0.000194 2400 1200 1976 16446 7.1% 3.3%
C880 0.000018 2700 900 1897 127920 5.0% 1.9%

Table 4 Results for constrained input sequences (low activity) 

We provide only results for comparing efficiency and accuracy 
due to space limitation. The experimental results for populations 
of average switching activity 0.7 and 0.3 are shown in Table 3 and 

Table 4, respectively. The meaning of entries in different columns 
is the same as those in Table 1. The estimation quality comparison 
can be seen from the value of the portion of the “qualified units” 
in the 2nd columns of both tables. As expected when the number of 
qualified units in the population decreases, the number of units 
that are required to estimate the maximum power dissipation in 
the circuit increases. 

V. Conclusion 
A statistical approach for peak power estimation based on the 
asymptotic theory of extreme order statistics has been proposed. 
This is also the first approach which can do maximum power 
estimation for any user-specified error and confidence levels. The 
proposed approach can predict the maximum power in the space 
of constrained input vector pairs, as well as the complete space of 
all possible input vector pairs. It is an efficient simulation-based 
approach with high accuracy. The generality of this approach 
makes it applicable to other fields of VLSI design automation; for 
example, longest path delay estimation. 
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