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Abstract—Recurrent neural network (RNN) based language
model (RNNLM) is a biologically inspired model for natural
language processing. It records the historical information
through additional recurrent connections and therefore is very
effective in capturing semantics of sentences. However, the use
of RNNLM has been greatly hindered for the high computation
cost in training. This work presents an FPGA implementation
framework for RNNLM training acceleration. At architectural
level, we improve the parallelism of RNN training scheme and
reduce the computing resource requirement for computation ef-
ficiency enhancement. The hardware implementation primarily
targets at reducing data communication load. A multi-thread
based computation engine is utilized which can successfully
mask the long memory latency and reuse frequent accessed
data. The evaluation based on the Microsoft Research Sentence
Completion Challenge shows that the proposed FPGA im-
plementation outperforms traditional class-based modest-size
recurrent networks and obtains 46.2% in training accuracy.
Moreover, experiments at different network sizes demonstrate
a great scalability of the proposed framework.

Keywords-recurrent neural network (RNN); language model;
FPGA; acceleration;

I. INTRODUCTION

Language models that approximate and evaluate the rel-
ative likelihood of phrases in text and speech applications
are widely used in natural language processing. They are
the critical components in systems for text and speech
recognition [1][2][3], machine translation [4], etc. Inspired
by routinely massive data acquisition from data centers [5],
the user-behavior prediction starts gaining attentions. As an
important part of it, language models are particularly useful
in human understanding of languages [6].

Sequential data prediction has been considered as the
key in language model development. Extensive studies were
conducted to improve the ability of models over the sim-
ple but effective n-gram models [7]. Advanced techniques
based on decision trees [8] and maximum entropy [9] were
investigated. Rather than solely replying on the relationship
of words, these works incorporate more features, such as
part of speech tags and syntactic structure. Deep neural
networks (DNNs) also demonstrated great potential in the
domain of language models [10]. Prior research and exper-
iments showed that neural network based language models
(NNLM) can outperform many major advanced language
modeling techniques [11].

Recurrent neural network (RNN) is a special type of
neural network that operates in time domain. Unlike DNNs
where all the layers process input data in a uniform direc-
tion, RNN uses additional recurrent connections to capture
the long-range dependencies of input data and store such
historical information in hidden layer for later use. Thus, it
is regarded as an expressive model to deal with nonlinear
sequential processing tasks [12]. However, its training proce-
dure involves with very high computation cost. Assume the
hidden layer has 1, 000 nodes, then 10, 000× 1, 000 = 107

parameters are required to represent the weights between the
hidden and output layers. Moreover, the unstable relationship
of parameters and the dynamic temporal states of the hidden
layer results in a large number of epochs for convergence
and hence long training time.

These difficulties in training procedure severely increases
the system complexity in RNN implementation. The situ-
ation becomes even worse in the case of routinely mas-
sive data acquisition. For example, to process the ever-
increasing amount of text available on the Internet, Google
used distributed systems to conduct daily training of RNN
based language model (RNNLM). The implementation led
to extremely high costs in system development and power
consumption: a typical voice search language model for
US English stream trained on 230B words consumes 1KJ
energy per search [13]. The hardware acceleration, thus, is
necessary and implementations in ASICs [14], GPUs [15]
and FPGAs [16] have been explored. Among them, FPGA
based accelerators have attracted great attentions for flexible
reconfiguration capability and high energy efficiency.

FPGA-based platform, e.g., Convey computer system [17]
used in this work, offers a large number of configurable
logic elements and high external memory bandwidth. To
maintain the design scalability, it is crucial to optimize and
balance the computation resources and memory accesses. In
this work, we propose an FPGA implementation framework
for RNNLM training acceleration. A holistic approach is
adopted which combines the computation efficiency en-
hancement at architectural level and the memory access load
reduction in hardware implementation. The main contribu-
tions of this paper include:

• At architectural level, the framework extends the inher-
ent parallelism of RNN and adopts a mixed-precision



scheme. The approach enhances the utilization of con-
figurable logics and improves computation efficiency.

• The hardware implementation integrates a groups of
computation engines and a multi-thread management
unit. The structure successfully conceals the irregular
memory access feature in data back-propagation stage
and reduces external memory accesses.

• Our framework is designed in a scalable manner to
benefit the future investigation for ever-larger networks.

We realized the RNNLM on Convey HC-2ex system [17].
The design was trained with a dataset of 38M words. It
consists of 1, 024 nodes in hidden layer. Our design performs
better than traditional class-based modest-size recurrent net-
works and obtains 46.2% in accuracy in Microsoft Research
Sentence Completion (MRSC) challenge. The experiments at
different network sizes on average achieve 14.1× speedup
over the optimized CPU implementation and a comparable
performance with high-end GPU system, demonstrating a
great system scalability.

The rest of our paper is organized as follows: Section II
introduces the language model and RNN algorithm; Section
III presents our analytical approach for accelerator design
optimization; Section IV and V explain our proposed ar-
chitecture and the corresponding hardware implementation,
respectively; Experimental results and analysis are shown in
Section VI; and Section VII concludes the paper.

II. BACKGROUND

A. Language Models
Rather than checking linguistic semantics, modern lan-

guage models based on statistical analysis assign a prob-
ability to a sequence of words by means of a probability
distribution. Ideally, a meaningful word sequence expect to
have a larger probability than an incorrect one, such as

P (I saw a dog) > P (Eye saw a dog). (1)

Among developed language models, n-gram model is the
most commonly used. In an n-gram model, the probability
of observing the ith word wi in the context history of
the preceding i − 1 words can be approximated by the
probability of observing it in the shortened context history
of the preceding n−1 words. For example, in a 2-gram (also
called as bigram) model, the probability of “I saw a dog”
can be approximated as

P (I saw a dog) =P (I|−)× P (saw|I)× P (a|saw)
× P (dog|a)× P (−|dog)

. (2)

Where, − represents the start or end of the sentence.
A conditional probability, e.g., P (a|saw) in Eq. (2), can

be obtained through statistical analysis based on training
data. The number of conditional probabilities required in n-
gram increases exponentially as n grows: for a vocabulary
with a size of V , an n-gram model need store V n parameters.
Moreover, the space of training data becomes highly sparse
as n increases. In other words, a lot of meaningful word
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Figure 1. (a) Feedforward neural network; (b) Recurrent neural network.

sequences will be missed in the training data set and
hence statistical analysis cannot provide the corresponding
conditional probabilities. Previous experiments showed that
the performance of n-gram language models with a larger n
(n > 5) is less effective [7]. N-gram model can realize only
the short-term perspective of a sequence, which is clearly
insufficient to capture semantics of sentences [18].

B. RNN & RNN based Language Model
Figure 1 illustrates the structure of a standard recurrent

neural network (RNN). Unlike feedforward neural networks
where all the layers are connected in a uniform direction,
a RNN creates additional recurrent connections to internal
states (hidden layer) to exhibit historical information. At
time t, the relationship of input ~x(t), the temporary state of
hidden layer ~h(t), and output ~y(t) can be described as

~h(t) = f
(
Wih~x(t) +Whh

~h(t− 1) +~bh
)
, and (3)

~y(t) = g
(
Who

~h(t) +~bo
)
. (4)

Where, Wih is the weight matrix connecting the input and
hidden layers, Who is the one between the hidden and output
layers. Whh denotes the recurrent weight matrix between the
hidden states at two consecutive time steps, e.g., ~h(t−1) and
~h(t).~bh and~bo are the biases of the hidden and output layers,
respectively. f(z) and g(z) denote the activation functions
at the hidden and output layers, respectively.

The input/output layer of RNN-based language model
(RNNLM) corresponds to the full or compressed vocabulary.
So each node represents one or a set of words. In calculating
the probability of a sentence, the words will be input in
sequence. For instance, ~x(t) denotes the word at time t. And
output ~y(t) represents the probability distribution of the next
word, based on ~x(t) and the historical information stored as
the previous state of network ~h(t− 1).

RNNLM uses internal states at hidden layer to store
the historical information, which is not constrained by the
length of input history. Compared with n-gram models,
RNNLM is able to realize a long-term perspective of the
sequence. Note that the hidden layer usually has much less
nodes than the input/output layer and its size shall reflect
the amount of training data: the more training data are
collected, the larger hidden layer is required. Moreover,
the aforementioned sparsity of the training data in n-gram
language model is not an issue in RNNLM, indicating that
RNNLM has a stronger learning ability [12].

C. The RNN Training
When training a network of RNNLM, all data from

training corpus are presented sequentially. In this work, we
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Figure 2. Unfold RNN for training through BPTT algorithm.

used back-propagation through time (BPTT) algorithm. As
illustrated in Figure 2, the approach truncates the infinite
recursion of a RNN and expands it to a finite feed-forward
structure, which then can be trained by following the regular
routine of feed-forward networks.

For a given input data, the actual output of network shall
first be calculated. Then the weights of each matrix will be
updated through back-propagating the deviations between
the actual and desired outputs layer by layer. The update of
weight wji between node i of the current layer and node j
of the next layer at time t can be expressed as

wji ← wji + η ·
T∑

t=1

δj(t) · xi(t), (5)

where xi(t) is the input of node i; η is the learning rate;
δj(t) is the error back-propagated from node j; and T is the
BPTT step for RNN training.

At the output layer, we adopted softmax activation func-
tion g(z) = ez∑

ke
zk

as the cross-entropy loss function. The
error derivative of node p δp(t) can be obtained simply from
RNN’s actual output op(t) and the desired one tp(t):

δp(t) = tp(t)− op(t). (6)

Sigmoid function f(z) = 1
1+e−z is utilized at the hidden

layer. The error derivative of node k δk(t) is calculated by
δk(t) = f ′(x)|f(x)=hk(t) · δBPTT(t). (7)

Where, hk(t) is the state of node k in hidden layer at time
t. δBPTTis the accumulation of the errors back-propagated
through time, that is,
δBPTT(t) =

∑
o∈output

wokδo(t) +
∑

h∈hidden

whkδh(t+ 1). (8)

Here, δo(t) denotes the error of output layer at time t, while
δh(t+1) is the error of hidden layer back-propagated from
the following time step t+1. wok and whk are the transposed
weights of Who in Eq. (3) and Whh in Eq. (4), respectively.

III. ANALYSIS FOR DESIGN OPTIMIZATION

We first analyze the utilization of computation and com-
munication resources in RNNLM as these are two principal
constraints in system performance optimization.

Computation resource utilization. To analyze the compu-
tation cost, we implemented RNNLM on a CUBLAS-based
NVIDIA GPU [19] and profiled the runtime of every major
function. The result in Table I shows that the matrix-vector

Table I
RNN COMPUTATION RUNTIME BREAKDOWN IN GPU

Matrix-vector Activation Sum of Vector Delta Others
Multi. Functions Vector Elem. Scaling
71.0% 21.4% 2.3% 1.9% 1.0% 2.4%
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Figure 3. The system speedup is saturated with the increment of CPU
cores as the memory accesses become the new bottleneck.

multiplication consumes most of computation resource. The
activation functions, as the second contributor, consume
more than 20% of runtime. So we mainly focus on enhancing
the computation efficiency of these two functions.

Memory accesses. During training, the matrix-vector mul-
tiplication in the back-propagation phase requires the trans-
posed form of weight matrices as shown in Eq. (8). Such a
data access exhibits irregular behavior, making the further
performance improvement very difficult. To explore this
effect experimentally, we mapped RNNLM on a multi-
core server with Intel’s Math Kernel Library (MKL) [20].
Figure 3 shows the normalized system performance. As
more cores are utilized, the major constrain changes from
computation resource to memory bandwidth. Accordingly,
the speedup becomes slower and eventually saturated when
the memory bandwidth is completed consumed.

Scalability. A scalable implementation must well balance
the use of computation units and memory bandwidth. As
the configurable logic elements on FPGA grow fast, the im-
plementation shall be able to integrate additional resources.
Our approach is to partition a design into multiple identical
groups and migrate the optimized development of a group
to bigger and ore devices for applications in larger scale.

IV. ARCHITECTURE OPTIMIZATION

This section describes the optimization details at the
architectural level. We propose a parallel architecture to
improve the execution speed between the hidden and output
layers. Moreover, the computation efficiency is enhanced by
trading off data and function precision.

A. Increase Parallelism between Hidden and Output Layers
Previously, Li et al. proposed a pipeline architecture to

improve the parallelism of RNN [15]. As illustrated in
Figure 4, it partitions the feed-forward phase into two stages:
the data flow from input to hidden layer represented by
gray boxes and the computation from hidden to output
layer denoted in white boxes. Furthermore, it unfolds RNN
along time domain by tracing B previous time steps (usually
2 ∼ 10) and pipelines these calculations.

However, our analysis reveals that the two stages have
extremely unbalanced throughputs. Assume a RNN with V
nodes in the input and output layers and H nodes in the
hidden layer. The input layer activates only one node at a
time, so Wih~x(t) in Eq. (3) can be realized by extracting
the row of Wih corresponding to the activated node, that
is, copying a row of Wih to the destination vector. Thus,
the computation complexity of ~h(t) is mainly determined
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Figure 4. The data flow of a two-stage pipelined RNN structure [15]. The
computation complexity of white boxes in output layer is much bigger than
that of gray boxes in hidden layer.
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Figure 5. Our proposed parallel architecture for RNNLM.

by Whh
~h(t − 1), which is O(H × H). The calculation of

~y(t) has a computation complexity of O(H × V ) because
Who

~h(t) is dominant. Usually V is related to the vocabulary
and can easily reach up to a size of 10K ∼ 200K while H
can maintain at a much smaller scale like 0.1K ∼ 1K. Thus,
the execution time of the second stage is much longer than
that of the first one. Such a pipelined structure [15] is not
optimal for the entire workload.

Our effort is dedicated in further improving the execution
of the second stage. As illustrated in Figure 5, we duplicate
more processing elements of the output layer. More specific,
our proposed architecture conducts the calculation of the
hidden layer in serial while parallelizing the computation
of the output layer. For example, assume B is 4. At time
step t − 3, the result of the hidden layer goes to Output
Layer I. While Output Layer I is in operation at t− 2, the
hidden layer will submit more data to the next available
output layer processing element, e.g., Output Layer II. As
such, the speed-up ratio of the proposed design over the
two-stage pipelined structure [15] can be approximated by

Speed-up =
(tV + tH) + tV × (B − 1)

tH ×B + tV
, (9)

where tV and tH are the latencies of the output layer and the
hidden layer, respectively. For instance, assume V= 10K,
H= 0.1K, and B= 4, the execution of our architecture is
about 3.86× faster than the design of [15].

For the proposed design, B shall be carefully selected
based upon application’s scale. From the one hand, a bigger
B indicates more time steps processed in one iteration and
therefore requires more resources. From the other hand, the
higher B is, the faster execution can be obtained. Moreover,
by introducing more time steps, more historic information
are sustained for better system accuracy too.

B. Computation Efficiency Enhancement
Through appropriately trading off data and function pre-

cision of RNNLM, we can greatly improve its computation
efficiency without degrading the training accuracy.
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Figure 6. The impact of the reduced data precision of Who in RNNLM
on the reconstruction quality of word sequences.

Fixed-point data conversion. The floating-point data are
adopted in the original RNNLM algorithm and the corre-
sponding hardware implementation, which demand signif-
icant computation resources and on-chip data space. The
fixed-point operation is more efficient in FPGA implemen-
tation but the errors caused by precision truncation could
accumulate iteratively. Fortunately, neural networks exhibit
self-recovery characteristics, which refers to the tolerance to
noise in decision making.

Mixed-precision data format. As the computation of out-
put layer is more critical, lowering the data precision of Who,
if possible, would be the most effective option. We analyze
RNNLM using the Fixed-Point MATLAB Toolbox and
evaluate the quality of different data format by examining
the perplexity (PPL) of word sequences [12]. Figure 6 shows
that when Who has 16 or more bits and keep the other
training parameters as well as the states of hidden and output
layers in original 64 bits, a fixed-point implementation can
achieve the same reconstruction quality as a floating-point
design. In other words, this scheme improves the runtime
performance while maintaining the system accuracy to the
maximum extent.

Approximation of activation functions. Our preliminary in-
vestigation in Table I reveals that the activation functions are
the second contributor in runtime. This is because the com-
plex operations in sigmoid and softmax functions, such as ex-
ponentiation and division (Section II-C), are very expensive
in hardware implementation. Instead of precisely mapping
these costly operations to FPGA, we adopt the piecewise
linear approximation of onlinear function (PLAN) [21] and
simplify the activation functions with the minimal number of
additions and shifts. Our evaluation shows that on average,
the error between our approximation and the real sigmoid
calculation is only 0.59%, which doesn’t affect much on the
convergence properties in RNNLM training.

V. HARDWARE IMPLEMENTATION DETAILS

The hardware implementation in FPGA will be presented
in this section. We map the proposed architecture to com-
putation engines (CEs), each of which is divided into a few
processing elements (PEs). Moreover, the memory efficiency
is improved through data allocation and reuse.

A. System Overview
Figure 7 presents an overview of our hardware implemen-

tation on the Convey HC-2ex computer system. The CPU
on the host side is used for accelerator startup and weight
initialization. There are 16 DIMMs and 1024 banks in the
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Figure 7. An overview of the RNNLM hardware implementation.

off-chip memory. Thus the chance of bank conflicts is low
even the parallel accesses are random. The global control
unit receives commands and configuration parameters from
the host through application engine hub (AEH).

We map the proposed parallel architecture of RNNLM
into two types of computation engines (CEs): CE-H for the
hidden layer and CE-O for the output layer. According to
Figure 5, one CE-H and multiple CE-O are required. The
two types of CEs are customized for high efficiency, with
the only difference in the design of activation function. The
system configuration, e.g., the number and scale of CEs, is
upon users’ decision. Moreover, each CE is segmented into
several identical processing elements (PEs). Since the major
of RNNLM execution is performed through these PEs, the
proposed implementation can easily be migrated to a future
device by instantiating more PEs.

The matrix-vector multiplication not only consumes the
most runtime but also demands a lot of data exchange as
shown in Table II. The situation in the feed-forward phase
can be partially alleviated by data streaming and datapath
customization. However, the multiplication operations of
transposed matrices in the back-propagation phase exhibit
very poor data locality, leading to nontrivial impact on
memory requests. The long memory latencies potentially
could defeat the gains from parallel executions. In addition,
Table II implies that the data accesses in RNNLM have very
diverse characteristics, each of which shall be considered
specifically in memory access optimizations. These details
will be presented in the following subsections.

Table II
MEMORY ACCESS REQUIREMENT

Dataset Operation Total # Size (byte)
Training data read only 38M 152M
Wih, Who read & write V×H (10K× 1K) 40M

Whh read & write H×H (1K× 1K) 4M
bo, ~y(t) read & write V (10K) 40K

bh, ~h(t) read & write H (1K) 4K

B. Data Allocation
From the one hand, the RNNLM implementation is asso-

ciated with an extremely large data set, including a training
data set (e.g., 38M words in our test) as well as the weight
parameters (e.g., 40Mb for a vocabulary of 10K words and
the hidden layer of 1K nodes). From the other hand, only
a small amount of index data are required to control the
RNNLM training process: at a time step, only one input
node will be activated and only one output node will be
monitored. Therefore, we propose to store the training data
in the host main memory and feed them into the FPGAs
during each training process.

Though FPGAs in the Convey HC-2ex system (Xilinx
Virtex6 LX760) has a large on-chip block RAM (about
26MB), not all the space is available for users. Part of it
is utilized for interfacing with memory and other supporting
functions. Therefore, we keep the intermediate data which
are frequently access and update in the training process,
such as all the parameters (Wih, Whh, Who, bh, and bo)
and all the states of hidden and output layers, in the off-
chip memory instead of on-chip memory. Only a subset of
data is streamed into the limited on-chip memory at runtime
for the best utilization and system performance.

C. Thread Management in Computation Engine
How to increase the effective memory bandwidth is crit-

ical in CE design. Previously, Ly and Chow proposed to
remove the transpose of a matrix by saving all the data in
on-chip block RAMs [22]. At a time, only one element per
row/column of the matrix is read out through a carefully
designed addressing scheme. As such, a column or row of
the matrix is obtained from one memory thread. However,
the approach requires that the weight matrix fits on-chip
memory and the number of block RAMs for the weight
matrix equals to the number of neurons in different layers.
It is not applicable to our RNNLM in a much larger scale.

There are 16 channels in the system. To improve the mem-
ory efficiency, we introduce a hardware supported multi-
threading architecture named as thread management unit
(TMU). Figure 8 illustrates its utilization in CEs. To process
all the elements of a matrix row through a single memory
channel, TMU generates a thread for each matrix row and
the associated start and end conditions. All the ready threads
are maintained by TMU. Once a channel finishes a row, it
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can switch to another ready tread, which usually has been
prefetched from memory so the memory latency is masked.
Each PE holds a busy flag high to prevent additional threads
from being assigned. When all the PEs are busy, TMU
backloads threads for later assignment.

TMU supports the data communication among a large
number of PEs and improves the execution parallelism. Note
that there is only one TMU in a CE. Increasing the number
of PEs does not introduce more hardware overhead.

D. Processing Element Design
The computation task within a CE is performed through

processing elements (PEs). These PEs operate independently,
each of which takes charge of a subset of the entire task.
For example, when realizing a matrix-vector multiplication,
each PE is assigned with a thread that computes a new vector
value based on a row of the weight matrix. Data transition
can operate in the burst mode: based on the start and end
addresses, a thread fetches all the requested data in a row
from the off-chip memory, as shown in Figure 9.

CE controls the memory requests of the weight matrix
and vector arrays. The Convey system supports the in-order
return of all memory requests, so the reordering of memory
accesses can be done through TMU assisted by the crossbar
interface from FPGAs to memory modules. Data returned
from memory can be buffered in Matrix and Vector FIFOs,
using the corresponding thread id as the row index. When
a new thread is assigned to a PE, it raises a busy flag and
requests the weight and vector data from memory based on
the start and end addresses. Once all the memory requests
for the thread are issued, the flag is reset, indicating that
the PE is ready for another thread even through the data of
the prior thread is still in processing. As such, the memory
access load can be dynamically balanced across all PEs.

E. Data Reuse
Off-chip memory accesses take long time. For example,

the memory latency on our Convey platform is 125 cycles
at 150MHz. To speed up the execution of RNNLM, we can
reduce off-chip memory accesses through data reuse.

Algorithm 1 presents the data flow from input to hidden
layer, during which the state of hidden layer is frequently
accessed. Similar data access pattern has also been observed
in the calculation of output layer. We propose reuse buffers

Algorithm 1 Data flow from input layer to hidden layer
1: for t = 0; t < BPTT ; t++ do
2: if t != 0 then
3: mvmulti (Whh, hidden(t− 1), hidden(t));
4: vdadd (hidden(t), bh, h(t));
5: vdadd (hidden(t), ~wk

ih, hidden(t));
6: else
7: vddadd ( ~wk

ih, bh, hidden(t));
8: end if
9: sigmoid (hidden(t), hidden(t));

10: end for

for matrix and bias vector respectively named as Wi Reg.
and Bias Reg. as shown in Figure 9. First, a row of weight
matrix are fed into an array of multipliers that are organized
in fine-grain pipeline and optimized for performance. While
data goes into the accumulator and completes the matrix
multiplication, the weight and bias are buffered registers.
After data summation is completed, PE enables its activation
function, e.g., sigmoid in CE-H or softmax in CE-O, to
obtain the state of hidden/output layer.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
RNNLM implementation and evaluate the proposed frame-
work in terms of training accuracy, system performance, and
efficiency of computation engine design.

A. Experiment Setup
We implemented the RNNLM on the Convey HC-2ex

platform [17]. We described the design in System C code,
which then was converted to Verilog RTL using Convey
Hybrid Threading HLS tool ver. 1.01. The RTL is connected
to memory interfaces and the interface control is provided
by Convey PDK. Xilinx ISE 11.5 is used to obtain the final
bitstream. Table IV summarizes the resource utilization of
our implementation on one FPGA chip. The chip operates
at 150MHz after placement and routing.

B. Training Accuracy
Microsoft Research Sentence Completion (MRSC) is used

to validate our FPGA based RNNLM. The challenge consists
of fill-in-the-blank questions [23]. The experiment calculates
the score (probability) of a sentence filled with each given
option and takes the option that leads to the highest score
as the final answer of the model.

A set of the 19th and early 20th Century novels were used
in training. The dataset has 38M words and the vocabulary
of the training data is about 60K. In the implementation,
we merge the low-frequency words and map the remaining
10, 583 words to the output layer. For better accuracy, we
set the hidden layer size to 1, 024 and BPTT to B= 4.

Table IV
RESOURCE UTILIZATION

LUTs FFs Slice DSP BRAM
Consumed 176,355 284,691 42395 416 280
Utilization 37% 30% 35% 48% 39%



Table III
RUNTIME (IN SECONDS) OF RNNLMS WITH DIFFERENT NETWORK SIZE

Hidden BPTT = 2 BPTT = 4 BPTT = 8
Layer CPU- CPU-

GPU FPGA
CPU- CPU-

GPU FPGA
CPU- CPU-

GPU FPGA
Size Single MKL Single MKL Single MKL
128 404.89 139.44 39.25 35.86 627.72 182.4 61.84 43.93 1313.25 370.37 97.448 90.74
256 792.01 381.39 49.89 69.72 1317.34 625.656 76.11 86.86 2213.64 770.02 114.71 146.46
512 1485.56 764.29 73.78 139.44 2566.80 1218.70 110.01 160.72 4925.50 2173.68 159.39 290.97
1024 2985.31 1622.56 130.45 278.88 5767.08 2242.24 191.82 327.44 10842.51 4098.85 271.13 625.94

Table V
ACCURACY EVALUATION ON MSRC

Method Accuracy
Human 91%

vLBL+NCE5 [25] 60.8%
RNNME-300 [24] 49.3%

RNNLM (this work) 46.2%
RNN-100 with 100 classes [12] 40%

Smoothed 3-gram [23] 36%
Random 20%

Table V compares the training accuracy of various lan-
guage models. Our FPGA-based RNNLM effectively real-
izes long-term perspective of the sentence and beats the n-
gram model. RNNME that integrates RNN with maximum
entropy model [24] is able to further improve the training
accuracy to 49.3%. Though vLBL+NCE5 [25] obtains the
best training effect, it has far more computation cost than our
RNNLM because vLBL+NCE5 used a much larger dataset
(47M), integrated a data pre-processing technique called
noise-contrastive estimation (NCE), and analyzed a group
of words at the same time.

C. System Performance
We evaluated the performance of the proposed design by

comparing it with implementations on different platforms.
The configuration details are summarized in Table VI. A
simplified training set of 50K words was selected because
the training accuracy is not the major focus. The vocabulary
size of the dataset is 10, 583.

To conduct a fair comparison, we adopted the well-tuned
CPU and GPU-based design from [15]. Furthermore, we
tested different network sizes by adjusting the BPTT depth
and the hidden layer size. The results are shown in Ta-
ble III. Here, CPU-Single represents the single-thread CPU
implementation; CPU-MKL is multi-thread CPU version
with Intel Math Kernel Library (MKL); GPU denotes the
GPU implementation based on CUBLAS; and FPGA is our
proposed FPGA implementation.

Compared to CPU-single, the performance gain of CPU-
MKL is mainly from the use of MKL, which speeds up
the matrix-vector multiplication. However, general-purpose
processor has to follow the hierarchical memory structure
so the space for hardware-level optimization is limited. Our
FPGA design customizes the architecture and datapath spe-

Table VI
CONFIGURATION OF DIFFERENT PLATFORMS

Platform Cores Clock Memory
Bandwidth

NVIDIA GeForce GTX580 512 772 MHz 192.4 GB/s
Intel R© Xeon R© CPU E5-2630 @ 2.30 GHz 12 2.3GHz 42.6 GB/s

Convey HC-2ex - 150 MHz 19.2 GB/s

cific to RNNLM’s feature. On average, it obtains 14.1× and
4× speedups over CPU-single and CPU-MKL, respectively.

At relative small network scales, our FPGA implementa-
tion operates faster GPU because of GPU’s divergence issue.
Besides, GPU spends significant runtime on complicated
activation functions, while the approximation in FPGA re-
quires only a small number of additions and shifts. However,
as the hidden layer and BPTT increase, the limited memory
bandwidth of the Convey system constrains the speedup of
FPGA. The GPU implementation, on the contrary, is less
affected because GTX580 offers 10× memory bandwidth.
This is why GPU performs better than FPGA at large scale
networks. By augmenting additional memory bandwidth to
system, the performance of FPGA shall be greatly improved.

Table III also demonstrates the effectiveness of our pro-
posed parallel architecture. Let’s take the example of 1, 024
nodes in hidden layer. As BPTT increases from 2 to 4,
implying the doubled timesteps within an iteration, the
FPGA runtime increases merely 17.6%. This is because the
CEs operate in a parallel format when calculating the output
layer results at different time steps. When increasing BPTT
from 4 to 8, the runtime doubles because only four CEs
were implemented.

Besides performance, the power efficiency is also an
important metric. Currently, we do not have a setup to
measure the actual power. So the maximum power rating is
adopted as a proxy. Table VII shows the power consumption
comparison when implementing a modest size network with
512 nodes in hidden layer and BPTT depth of 4. Across the
three platforms, our FPGA implementation achieves the best
energy efficiency.

D. Computation Engine Efficiency
The memory access optimization is reflected by the design

of CEs. As a CE is partitioned into multiple individual PEs
and each PE executes a subset of the entire workload, the
peak performance can be calculated by [26]

Throughput = PE · Freq ·Width · Channel. (10)

Where, PE is the number of PEs in each layer; Width
represents the bit width of weight coefficients; Freq is the
system frequency in MHz; and Channel denotes the number
of memory channels.

Table VII
POWER CONSUMPTION

Multi-core CPU GeForce GPU FPGA
Run time (s) 2566.80 110.01 160.72

Power-TDP (W) 95 244 25
Energy (J) 243846 (60.69×) 26842 (6.68×) 4018 (1×)



Table VIII
COMPUTATION ENGINE EFFICIENCY

Platform Cores Clock Peak Feed- BPTT Average
# GOPS forward Efficiency

Single-core CPU 1 2.3 GHz 2.3 1.03 0.83 40.43%
Multi-core CPU 6*2 2.3 GHz 27.6 3.6 2.6 11.23%
FPGA-Hidden 8 150 MHz 2.4 1.68 1.11 58.10%
FPGA-Output 8*4 150 MHz 9.6 5.2 3.5 45.52%

Table VIII compares the computation energy efficiency of
FPGA and CPU implementations, measured in giga opera-
tions per second (GOPS). The actual sustained performance
of the feed-forward and BPTT phases are calculated by
the total number of operations divided by the execution
time. Note that a PE is capable of two or more fixed-point
operation per cycle.

Though CPU runs at a much faster frequency, our FPGA
design obtained higher sustained performance. By mask-
ing long memory latency through multi-thread management
technique and reduce external memory accesses by reusing
data extensively, the computation engine exhibits a signifi-
cant efficiency that is greater than 45%.

VII. CONCLUSION

In this work, we proposed a FPGA acceleration frame-
work for RNNLM. The system performance is optimized
by improving and balancing the computation and com-
munication. We first analyzed the operation condition of
RNNLM and presented a parallel architecture to enhance
the computation efficiency. The hardware implementation
maps neural network structure with a group of computation
engines. Moreover, a multi-tread technique and a data reuse
scheme are proposed to reduce external memory accesses.
The proposed design was developed on the Convey system
for performance and scalability evaluation. The framework
shall be easily extended to large system and other neural net-
work applications, which will be the focus of our research.
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