
Resource-aware High Performance Scheduling for Embedded MPSoCs
With the Application of MPEG Decoding

Parth Malani, Ying Tan, Qinru Qiu

Department of Electrical and Computer Engineering
Binghamton University, State University of New York

Binghamton, New York 13902, USA
{parth, ytan3, qqiu}@binghamton.edu

Abstract – In this paper, we propose a scheduling algorithm to
minimize the resource contentions and the processing latency
for applications running on a multiprocessor system-on-chip
(MPSoC) platform. The scheduling algorithm is applied on an
MPSoC MPEG decoder to improve the system performance.
Application specific task partition and mapping techniques are
further investigated. The experimental results show average
improvement of 17% in total latency when comparing to the
ad-hoc scheduled method.

I. INTRODUCTION
Multiprocessor system-on-chip (MPSoC) platform has become

more and more popular in the design of embedded systems. Due to
the parallel architecture, the MPSoC provides significant
performance improvement compared with the traditional single
processor SoC.

The hardware components in an MPSoC, such as memory, I/O
and processing elements (PEs), are usually referred as resources. If
certain resources are shared among the PEs, there will be a potential
resource contention. For example, shared memory architecture is
widely used in multiprocessor system. CELL processor from
SONY, TOSHIBA and IBM, Daytona [1] from Lucent and Piranha
[2] from DEC/Compaq are all single chip multiprocessor using
shared memory architecture. In these systems, the contention for
bus and memory access may be the performance bottleneck of the
applications that require frequent memory read and write.

As the number of PEs in the MPSoC increases, the potential
resource contention also increases. The conventional way to resolve
resource contention such as bus contention or memory contention is
to use an arbiter. For example, the function of a bus arbiter is to
prioritize the bus requests and to grant the bus access to the device
that has the highest priority. This increases the hardware cost.
Furthermore, a PE is idle while it is waiting to be granted for bus
access. This wastes the processing bandwidth. An efficient
scheduling algorithm should be able to reduce the time that a PE
spent waiting for any shared resource. The traditional scheduling
algorithms cannot solve this problem because they assume that each
operation occupies only one resource. However, in an MPSoC
system, an operation that uses a shared resource must also occupy
one of the PEs at the same time. Therefore, two or more resources
must be allocated to one operation.

This paper presents a modified force directed scheduling
algorithm that solves the above mentioned problem. Although this
algorithm is designed for general multi-resource scheduling
problems, here we apply it particularly to the scheduling problem
for an MPEG video decoder implemented on an MPSoC with
shared memory. We use an example of CELL architecture here to
show how our approach can fit onto this type of systems.

The proposed scheduling algorithm starts with task partition
and distribution. In most image processing applications there is a

repetitive sequence of operations that are performed independently
on tiny samples of the whole job. For example, in MPEG decoder
the whole frame is decoded by applying the same decoding
procedure on an 8x8 pixel area called block. These blocks do not
depends on each other and require only information from past
frames that are stored in the memory. The similar processing nature
is observed in other DSP applications as well, such as Edge
Detection in an image. We consider these small blocks as a task unit
and distribute them among available processors so that there is no
communication between processors when decoding the same video
frame. Each task unit is further divided into subtasks, which will be
the input of the scheduling procedure. Compared with traditional
task partition and mapping, which distributes operations, such as
Run Length Decoding, Inverse Discrete Cosine Transform (IDCT)
and motion compensation onto different processors on an MPSoC
platform [3], the proposed approach significantly reduces inter-
processor communication. The force-directed scheduling algorithm
prioritizes and schedules the subtasks based on the resource
utilization probability in each cycle. The algorithm schedules the
subtasks so that the resource utilization probability will be
distributed evenly in each control cycle. This implies a balanced
resource usage during the task execution.

There are many works focusing on performance optimization of
MPSoC running DSP applications especially MPEG. Many of them
divide different decoding function of MPEG video decoder to
different PEs to achieve performance improvement [4]-[6].
However, the only work in MPSoC behavioral synthesis which
focuses on reducing inter-processor-communication (IPC) is
suggested in [7]. It assumes a hardware architecture that has the
point-to-point communication between the processors, which is
different from the architecture that is interested here. In this paper
we present an approach which totally eliminates the inter processor
communication for a given application and a scheduling algorithm
and mapping techniques to obtain minimum latency with resource
contention avoidance.

The rest of this paper is organized as follows. Section II
introduces the targeted hardware architecture and scheduling
problem in MPEG decoding. Section III presents our resource-
aware multiprocessor scheduling algorithm for general purpose. We
present our experimental results and discussion in Section IV.
Finally, the conclusions are given in Section V.

II. MULTIPROCESSOR MPEG DECODER
This section provides a brief background on MPEG decoding

algorithm and discusses the design optimization of a shared
memory MPSoC MPEG decoder. The targeted hardware platform
has a CELL liked architecture [10] which is a heterogeneous chip
multiprocessor with a CPU core and a set of eight special purpose
processing units also known as Synergistic Processing Elements
(SPEs). A CPU is a POWERPC core that can run two threads and
has L1 and L2 cache. The SPEs do not have any cache but have a
small size (256kb) local storage (LS) instead. The assumed MPSoC

architecture in this paper is shown below in Figure 1. For
simplicity, a three-processor case is shown in the figure. We assume
that our scheduling and mapping algorithm resides in CPU and the
actual computation is carried out in the PEs utilizing the system
potential to the maximum. Each PE is connected to an on-chip
coherent bus and they use Direct Memory Access (DMA) technique
to communicate with shared memory.

The MPEG video stream has a hierarchical layered structure. It
is a sequence of GOPs (Group of Pictures), each one of which
comprises of several frames. There are three types of frames
defined in MPEG standard. I-frames or intra-coded frames are
encoded as a whole image i.e. it does not depend on any other
picture. P-frames or predictive coded frames are encoded using past
I or P frame as a reference. Finally there are B-frames also called as
bi-directionally predictive coded frames that use both past and
future I or P frames as references. Each frame is further divided into
vertical strips called slices. Each slice contains several macro blocks
that are a 16 by 16 pixel area of the image. There are six blocks per
macro block amongst which four are luminance (Y) and two are
chrominance (Cr and Cb) blocks.

Figure 1 The MPSoC architecture

The MPEG decoding consists of operations such as parse,
decode, motion compensation (MC), inverse quantization (IQ),
IDCT, variable length decode (VLD), display etc [3]. The smallest
data unit on which these operations are performed is a block. Based
on how they are encoded, the blocks can be categorized into 8 types
[11]. Each type of blocks goes through certain number of decoding
steps or operations, which are summarized in Table 1. Note that the
8th type of block is skipped block. It is directly copied from the
reference frame. No further processing is needed. Those blocks that
require motion compensation at decoder need to recall the reference
image from the memory. This operation is called as recall. Besides
the four operations listed in Table 1 and the recall operation, two
operations are must for all blocks. One of them is download, which
downloads the encoded block from the main memory. The other
one is write, which stores the decoded image back to the memory.

Table 1 Decoding steps for 8 types of MPEG blocks

 1 2 3 4 5 6 7 8
Forward MC √ √ √ √
Backward MC √ √ √ √
IDCT √ √ √ √
VLD, IQ √ √ √ √ √ √ √

The read, download, and write operations require two
resources, the PE and the memory subsystem. Those four operations
given in Table 1 only require the PE and they are always performed
after recall and download but before write. Therefore we merge
these four operations together and call them process. These four
operations (i.e. recall, download, write and process) are referred as
subtasks in the rest of the paper. Based on the number of subtasks
that are involved in the decoding procedure, the blocks can also be
classified into categories unpredicted and predicted. The
dependencies among the subtasks are illustrated in Figure 2.

One important fact is that there is no dependency between two
subtasks that belongs to different blocks of same frame. So in

homogeneous MPSoC it is advantageous to decode an entire block
on a single processor to reduce the inter-processor communication.

 Figure 2 Task set created from MPEG decoder

The execution time for the subtasks can be estimated before the
actual decoding started. The recall and write operations always
have fixed execution delay. The execution time for download
operation can be predetermined based the size of the encoded block.
The process nodes have variable execution delay depicting the
actual time spent decoding a particular block. Based on the block
type information, which can be extracted from the frame header, the
process time can be estimated fairly accurate [11].

The MPEG video frame comprises of hundreds of blocks that
belong to any of the two categories shown in Figure-2. These
blocks will be distributed to different processors for decoding. In
addition to the computation resources, the recall, download, and
write operations require shared resources such as the bus and
memory. The proposed scheduling algorithm arranges run time of
each block to avoid resource contention and achieving minimum
latency while maintaining QoS.

III. RESOURCE-AWARE SCHEDULING IN MPSOC
In this section, we propose a minimum latency resource

constrained scheduling algorithm for multi-processor system with
shared resources. The new algorithm improves the traditional
scheduling algorithm by allowing each operation to occupy more
than one resource.

The input of the scheduling algorithm is a data flow graph G(V,
E), which models the data/control dependency of the operations that
have been mapped to different processors. A vertex v in the graph
corresponds to an operation. An edge from vertex v to vertex w
indicates that w cannot start until v has finished. A set of available
resources is given, which is denoted as Ares. Each vertex v in the
graph is associated with a set of resources Av, |Av|≥1. Operation v
cannot start until all of the resources in Av are available. Further,
each operation v takes Dv cycles to execute acquiring its resources
for this duration. For example, Figure-2 (a) and (b) show the data
flow graphs of the decoding procedure for one MPEG block. We
assume that the mapping between operations and PEs is given.

Our scheduling algorithm is a modified force-directed list
scheduling algorithm [9]. The major difference between the
algorithm proposed here and the classical force-directed algorithm
is that our resource set consists of processors and memory and there
are some operations that require more than one resource, while the
classical force-directed algorithm only considers single resource
type per operation.

The proposed scheduling algorithm prioritizes the tasks to be
scheduled using their total-force, which can be calculated using the
following equation.

∑ −+∑ −=−
∈∈

 vof predcessoror
successor '

),'(),,(),(
vAk

lvforcePSklvforceselflvforcetotal
v

In the above equation,),,(klvforceself − relates operation v that
requires resource k to cycle l and),'(lvforcePS − gives the
changes of self-forces of the successors/predecessors of v given the

(a) Unpredicted block

 PROCESS DOWNLOAD WRITE PROCESS WRITE

DOWNLOAD

 RECALL

(b) Predicted block

PE - I

LS
PE - II

LS
PE - III

LS

Shared Memory CPU

COHERENT BUS

condition that v is scheduled at cycle l. The following equations
calculate the self-force and PS-force.

 v
lst

estm
vlmk AkmPmQklvforceself

v

v

∈∑ −⋅=
=

,))(()(),,(_ δ ,

∑ ∑ −⋅= ∈ ≤≤ ='
))()(()(),'(_ '|'v vv vAk lstmest vltvk mPmPmQlvforcePS ,

where vest and vlst are the earliest and latest start time of v, δml =
1 if m = l and 0 otherwise, Pv (t) is the probability of an operation v
being scheduled at any given cycle t, it is calculated as

⎩
⎨
⎧ ≤≤−

=
otherwise 0

 if)(1
)(vvvv

v
lsttestestlst

tP ,

)(|' mP ltv v = is the)(' mPv given the condition that operation v is

scheduled at cycle l.)(lQk is the operation type probability. It
indicates the usage of given resource at particular time l, therefore

∑= ∈∈ vAkVv vk lPlQ ,)()(.

From the definition we can see that, the operations requiring
multiple resources has multiple self-forces. However, all of them
will be added to count the total force.

A force-directed scheduling algorithm picks the operation and
control cycle pair (v, t) which has the least total-force to be schedule
because such scheduling produces a more balanced resource usage
in each cycle. In this work, we extended the traditional algorithm to
consider multiple resource requirements. We not only changed the
definition of self-force, PS-force and total-force, but also modified
the scheduling algorithm to consider multi-resource contraints.
Figure 3 shows the modified force-directed list scheduling
algorithm. Here Sk is a set of all operations that requires resource k
and Ulk are those operations whose time frame includes the current
scheduling cycle. Tlk is a set of the operations that were scheduled
before and are still running at cycle l.

Figure 3 Proposed force-directed list scheduling algorithm

The algorithm first calculates the time frame (i.e. [estv, lstv]) for
each task accounting for the data dependencies. A time frame of an
operation is a valid period of time cycles inside which it can be
scheduled. Once the time frames are computed the probabilities of
each subtask within its time frame are computed followed by
operation type probability computation. An operation with least

total force is scheduled at every cycle l for each resource k by
setting its start time ti = l. After scheduling the operation, its
updated time frame is now reduced to a time cycle in which it has
been scheduled. When there is a tie in the total-force, candidate
operations that require more resource will have higher priority to be
scheduled. Once any operation is scheduled, resources required for
that operation is labeled busy until its execution is finished. On the
other hand, if an operation has more than one resource type, it must
satisfy all resource constraints to be scheduled. This whole
sequence of procedure is repeated until all operations are scheduled.

The proposed force-directed scheduling algorithm is a general
purpose scheduling that can be applied to schedule any
multiprocessor applications. It can be used to schedule the decoding
tasks in a multiprocessor MPEG decoder. In such system, the
number of resources is fixed and includes all processor and a shared
system bus/memory. Ares = {PEi, M} 0<i<N. The data flow graph
is composed of many subgraphs. Each of these subgraphs has one
of the topologies that are given in Figure 2. The subgraphs are
disconnected to each other. Each vertex in the DFG corresponds to
one of the following subtasks {download, recall, process, write}.
Among these subtasks, download, recall and write operations
consume two resources, the system bus/memory and a PE. A
scheduling algorithm has to take care of this multiple resource case.
The other subtask process only requires a processor as a resource. A
latency upper bound of the decoding procedure needs to be
specified in order to run the scheduling algorithm. A natural choice
is to set it to the display period of the MPEG video frames.
However, this only gives a loose upper bound which increases the
scheduling complexity. Here we use the total decoding time on a
single processor as an estimation of latency upper bound. Since the
blocks are divided amongst available processors, it is highly
unlikely that the scheduling algorithm achieves minimum latency
greater than this upper bound.

The scheduling algorithm schedules the subtasks in the
decoding procedure for minimum latency with resource contention
avoidance. The configuration of the L1 cache size imposes some
additional constraints to the scheduling problem. In case there is
unlimited cache space, no extra handling is needed. If the cache is
only large enough to store a single block, then each PE can decode
only one block at a time. This constraint signifies that once a
subtask of a block is scheduled for any processor, no other subtask
of a different block can be scheduled for that processor until all
operations of the given block are scheduled. To work with such
constraint, the ASAP algorithm, which is used to calculate time
frame of each operation in our scheduling algorithm needs to be
modified. Any operation that belongs to the blocks that other than
the current scheduled block can only start after the current
scheduled block finishes its processing.

IV. EXPERIMENTAL RESULTS
We apply our approach to an MPEG video decoder [8]. To

divide each block of MPEG video frame into several subtasks, it
was necessary to know the execution time of each subtask. We ran
various probes on an MPEG-2 video decoder and figured out the
processing time for each of the eight block types shown in Table-1.
Two MPEG-2 movie clips (bobo and canyon) were tested for our
experiments. The total number of blocks inside each frame of these
movies (resolution) was 680 and 378. We tested four different types
of frames from both movies. For the experiment we used the
architecture with a CPU and three PEs as shown in Figure 1. Three
simple mapping techniques are used in our experiments.

FD_LIST_SCHEDULING_MPSoCs (G(V,E),a) {
1. Given set S of all operations,
2. repeat {
3. Compute Time Frames of unscheduled operations in S;
4. Compute operation and type probabilities;
5. Compute self-forces and predecessor/successor forces;
6. for each resource type k = 1,2,….,Ares {
7. Determine candidate operations Ulk Є {Sk};
8. Determine unfinished operations Tlk;
9. Select Vk Є Ulk vertices, such that |Vk| + |Tlk| ≤ 1 for all k;
10. Schedule the operation Vk with the least total force at step l

by setting ti = l and update its time-frame;
11. Make all the resources Av busy for Dv;
12. }
} until (all operations are scheduled);
return (t);
} // End FD LIST SCHEDULING MPSoCs

Sort_equal: The blocks are first sorted according to their
minimum execution time and then distributed to each PE one by
one so that the minimum delay of each PE is approximately equal.

Sort_unequal: The block are first sorted according to their
minimum execution time and then divided by total number of PEs
to distribute them to each PE. The minimum delays of each PE will
be different.

Random: The blocks to each PE are distributed randomly
without performing sorting procedure.

The effectiveness of our approach is evaluated in terms of
overall latency. We compared our algorithm with an ad-hoc
scheduling method which let the PE start decoding the next block as
soon it is available. Using the ad-hoc scheduling, the selection of
the blocks is based on the order of their locations in a video frame.
We assume that the system under ad-hoc scheduling has a fixed-

priority bus arbiter. To obtain the fair comparison we used the same
mapping techniques for both systems.

Table 2 shows the comparison between our algorithm and ad-
hoc scheduling for three different mapping techniques. The results
for modified force-directed algorithm proposed here are indicated
under columns marked as FD while those for ad-hoc scheduling are
marked as AH. Also shown for each frame is number of operations
after task partitioning. The latency for each case is indicated as
integral number of time cycles. As seen from the results, the overall
improvements achieved by our algorithm for all three mapping
techniques are 15.73% for sort_equal, 17.41% for random and
10.42% for sort_unequal. It can be also seen that the improvement
for the first frame of each movie is as high as 24%. These frames
are I frames which correspond to a high motion video scene. In I
frames, all blocks are of same type. The best schedule is achieved if
blocks are scheduled one by one for each processor. Since the ad-
hoc scheduling system has fixed priority it suffers

Table 2 Achieved minimum latency (cycles) for different mapping techniques

Movie Frame Operations Mapping Techniques
 Sort_equal Random Sort_unequal
 FD AH Improvement FD AH Improvement FD AH Improvement

89 1944 1948 2592 24.85 % 2056 2661 22.74% 1948 2592 24.85 %
90 2580 3223 3792 15.01 % 3253 3992 17.27 % 3233 3493 7.44 %
91 2580 3224 3633 11.26 % 3248 3735 13.04 % 3231 3436 5.97 %

Bobo

92 2364 2788 3581 22.14 % 2799 3727 24.90 % 2930 3382 13.36 %
17 1134 1138 1512 24.74 % 1270 1605 20.87 % 1138 1512 24.74 %
18 1506 1884 2003 5.94 % 1894 2126 10.91 % 1884 1939 2.84 %
19 1506 1882 2080 9.52 % 1898 2180 12.94 % 1879 1951 3.69 %

Canyon

20 1476 1826 2085 12.42 % 1828 2192 16.61 % 1828 1837 0.49 %
Average 2239 2659 15.73 % 2280 2777 17.41 % 2258 2517 10.42 %

from latency increase. The other three frames are P or B frames.
Also shown for each frame is the number of subtasks (operations).
It can be seen that in terms of improvement random mapping
achieves the best result while sort_unequal has the least amount of
improvement. However, this is mainly because the ad-hoc
scheduling system performs the worst under the random mapping
and the best under the sort_unequal mapping. The proposed
scheduling algorithm has a slightly better performance under the
sort_equal and it performs the worst under the random mapping.
Though the difference is small, it provides a good hint towards
developing a specific mapping algorithm to aid the given
scheduling algorithm.

V. CONCLUSIONS
In this paper we presented a scheduling algorithm for an MPEG
decoder running on MPSoC to achieve minimum latency
eliminating resource contentions. The experimental results show
that the proposed scheduling provides 17% of performance
improvement in average compared with a system with ad-hoc
scheduling. We also investigated several mapping techniques and
our experimental results provide strong reasons to consider
mapping and scheduling as a combined problem. In future, we see
more research efforts focusing on this combined problem
especially for embedded MPSoC.

REFERENCES
[1] B. Ackland; et.al, “A single Chip, 1.6-Billion, 16-MAC/s

Multiprocessor DSP”, IEEE J. Solid-State Circuits, March 2000, pp.
412-424.

[2] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S.
Qadeer, B. Sano, S. Smith, R. Stets, B. Verghese, “Piranha: A

Scalable Architecture Based on Single-Chip Multiprocessing”,
Proceedings of 27th Annual International Symposium on Computer
Architecture, 2000, pp. 282-293.

[3] M. Pastrnak, P. Poplavko, P.N.H. de With, and D.S. Farin, “Data-
flow timing models of dynamic multimedia pplications for
multiprocessor systems,” Proceedings of 4th IEEE International
Workshop on System-on-Chip for Real-Time Applications, July 2004.

[4] Y. Cho, G. Lee, S. Yoo, K. Choi, N. Zergainoh. “Scheduling and
Timing Analysis of HW/SW On-Chip Communication in MP SoC
Design,” Conference and Exhibition on Design, Automation and Test
in Europe, 2003.

[5] J. M. Paul, A. Bobrek, J. E. Nelson, J. J. Pieper and D. E. Thomas,
“Schedulers as Model-Based Design Elements in Programmable
Heterogeneous Multiprocessors”, Design Automation Conference,
2003.

[6] P. Yang, P. Marchal, C. Wong, S. Himpe, F. Catthoor, P. David, J.
Vounckx and R. Lauwereins, “Managing dynamic concurrent tasks in
embedded real-time multimedia systems”, Proceedings of the 15th
international symposium on System Synthesis, 2002.

[7] G. Varatkar and R. Marculescu, “Communication-aware task
scheduling and voltage selection for total systems energy
minimization,” International Conference on Computer Aided Design,
November 2003.

[8] http://bmrc.berkeley.edu/frame/research/mpeg/
[9] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the

behavioral synthesis of ASICs,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Volume 8, Issue 6,
pp. 661-679, June 1989.

[10] Cell Broadband Engine Architecture,
www.ibm.com/developerworks/power/cell , Aug. 2005.

[11] Y. Tan, P. Malani, Qinru Qiu and Q. Wu, "Workload Prediction and
Dynamic Voltage Scaling for MPEG Decoding, "Proc. of Asia and
South Pacific Design Automation Conference, Jan. 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

