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Abstract 0 In this paper we present a methodology and
techniques for generating cycle-accurate macro-modelsfor RT-
level power analysis. The proposed macro-model predicts not
only the cycle-by-cycle power consumption of a module, but
also the moving average of power consumption and the power
profile of the module over time. We propose an exact power
function and approximation steps to generate our power
macro-model. First order temporal correlations and spatial
correlations of up to order 3 areconsidered in order toimprove
the estimation accuracy. A variable reduction algorithm is
designed to diminate the “insignificant” variables using a
statistical sensitivity test. Population stratification is employed
to increase the model fidelity. Experimental results show our
macro-models with 15 or fewer variables, exhibit <5% error
for average power and <20% errors for cycle-by-cycle power
estimation compared to circuit simulation results using
Power mill.
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I. INTRODUCTION

Due to rapid progress in the semiconductor manufacturing, the
device dendty and operating frequency have greatly increased,
making power consumption a mgjor design concern. High power
consumption exacerbates the reliability problem by raising the die
temperature and by increasing current density on the supply rails. It
also reduces the battery life which is a key concern in portable
devices. Therefore, low power design requirements are driving a
new breed of computer aided design methodologies and tools
which in turn rely on accurate and efficient estimation tools at
various design abstraction levels.

Power estimation at RT level is crucid in achieving a short design
cycle. The standard hierarchica simulation approach to RT-level
power estimation consists of three steps: 1) functionally simulate
the RT-level description and collect the input sequences for each
circuit block. 2) smulae each block at gate or circuit-level usng
the collected input sequences. 3) add the power consumption for al
blocks to produce the power consumption of the whole circuit. The
disadvantage of this approach is that it requires the interaction
between RT-level smulators and low-level simulators and that
power evaluation is actually done at gate-level or circuit-level
where the simulation speed islow.

Alternatively, one could use the macro-modeling technique for
power estimation a& RT-level. In this technique, low-level
simulations of modules under their respective input sequence is
replaced by power macro-model equation evaluation (which can be
performed very fast).

Macro-modeling techniques use capacitance models for circuit
modules and activity profiles for data or control signals [1-5]. The
Power Factor Approximation (PFA) technique [1] uses an
experimentally determined weighting factor, called the power
factor, to model the average power consumed by a given module
over a range of desgns. To improve the accuracy, more
sophisticated macro-model eguations have been proposed. Dual Bit
Type model, proposed in [2], exploits the fact that, in the data path
or memory modules, switching activities of high order bits depend
on the tempord correlation of data while lower order bits behave
similarly to white noise data. Thus a module is completely
characterized by its capacitance models in the MSB and LSB
regions. The break-point between the two regions is determined
based on the signal statistics collected from simulation runs. The
Activity-Based Control (ABC) model [4] is proposed to estimate
the power consumption of random-logic controllers. An Input-
Output model has been proposed in [5] to capture the relation
between power and input signal probability, input transition
dendity, and output transition density. By introducing variables
related to output activity, the Input-Output model improves the
estimation accuracy compared to the models which do not make
use of the output information. One common feature of the above
macro-model techniques is that, they only provide information
about average power consumption over ardatively large number of
clock cycles.

The above techniques, which are suitable for estimeting the
average-power dissipation, are referred to as cumulative power
macro-modds. In some applications, however, estimation of
average power only is not sufficient. Other important tasks include
the etimation of the k-cycle moving average of the power, power
profiling on a cycle-by-cycle basis, and estimation of the rate of
current change from one cycle to next. This information is crucia
for circuit reliability (maximum current limits, heat dissipation and
temperature gradient calculation, latch-up conditions) analysis,
DC/AC noise andysis (DC drop and inductive bounce on power
and ground lines), and design optimization (power/ground net
topology, construction and szing, number and placement of
decoupling capacitors, buffer insertion, etc.). For example, the k-
cycle average power can provide power consumption information
for any given window of time. To perform these tasks requires
knowing the power consumption value for every clock cycle. If the
macro-modeling technique does not provide such information, the
circuit designers will have to resort to gate-level or circuit-level
simulation again. Consequently, cumulative macro-models are
considered to have limited use.

The notions of a pattern-dependent macro-mode [6][7] and a
cycle-accurate macro-mode [8] are related. In the following, we
describe cycle-accurate macro-models as initially described in [8].
Let P, denote the power consumption of some module in clock
cycle k, then we can write:

A = F(Vk-1.Vk) (11)
where V, and V,.; dencte the input vectors applying to the module
at cyclesk and k-1, and F is some function of the input vector pairs.
Note that the above definition for cycle-accurate macro-model is
based on the assumptions that there is no glitching at the inputs of



the module and that dl input transitions arrive a the same time.

These assumptions are valid in synchronous designs. In addition,

(1.2) assumes that the influence of the states of the floating nodes

within gates can be ignored, that is, the power dissipation of a

combinationa module only depends on a pair of consecutive

vectors. This assumption holds in most cases of interest.

The goal of power macro-modeling is to find function F, given an

input vector sequence V (the so called training set) for the module

and given the corresponding power consumption val ues.

In this paper, we propose the methodology of building cycle-

accurate macro-models for circuit modules. Compared to previous

work, our approach makes the foll owing tangible contributions:

1. The macro-model generated by our approach can predict the
cycle-based power consumption, as well as the average power.
Our cycle-accurate macro-model equation can be easily
transformed into a cumulative macro-model equation.

2. We present an exact power consumption function which
captures the relation between the circuit power consumption
and the spatial-temporal correlations of primary inputs. Thisis
used as the starting point for our macro-model generation. It
can be a useful guide for generating macro-models for other
purpose.

3. We introduce piecewise linear power macro-model equations
to increase the fidelity of the macro-model.

4. A satisticad dgnificance test is proposed to eliminate
“insignificant variables’ and therefore simplify the macro-
model equation.

5. Because of the statistical nature of our macro-model, it can be
validated and improved by statistical methods. The estimation
error can be predicted for given confidence level.

Experimenta results show that, our cycle-accurate macro-models

having 15 or fewer variables, exhibit <5% error in average power,

and <20% error in cycle power compared to circuit simulation

results using Powermill [9].

This paper is organized as follows. Section Il gives the theoretical

background for regression analysis.  Section Ill discusses a

procedure of building the macro-model whereas Section IV

presents the experimenta results. Section V is the conclusion of our

work.

1. BACKGROUND

A. Introduction to linear regression analysis
We define a cycle-accurate power macro-model as alinear function
between egtimated power dissipation of a vector pair and the
characteristic values of the vector pair, that is, we write:
P=fo+P1X1+BaXo+ -+ fr Xk (27)
where P is the predicted power dissipation, Bg,B;.--. B¢ ae

constants called the regresson coefficients or parameters of the
macro-model, and Xq,X5,---, X ae characteristic variables

extracted from the input vector pair. The methods for extracting
values of X, Xo,---, X Will be discussed in Section 3.1. The

regression parameters are calculated by doing least-squaresit
during the linear regression anaysis.

Based on the theory of linear regresson analysis [10], we can
define the relation between the actual power P (e.g. the power
value simulated by Powermill) and the estimated power as:

P=P+e=fo+ B X +BpXp+ e+ B Xy +€ (22

where ¢is called the resdua term of the linear regression model
and follows a norma distribution with mean value 0 and variance

7% Equation (2.2) means that P is arandom variable which follows
anormal distribution with mean value P and variance &
Assume that we have been given the equation form of the macro-
model as in Egn.(2.1) and have performed Powermill simulations
(observations) on m randomly sampled vector pars in the
population (this set of m vector pairs is referred to as the training
set) so that we have obtained m simulation results (observation
values) of power consumption. The linear regression model for
vector pairs from the training set can be written as:

R =Bo+Bixip+BeXig++PuXik+&, i=12,m  (2.3)
or in matrix form as:

P=XB+¢ (2.9)
where Py’s are random variables corresponding to observations:
(X1, X2, Xik) i=12.,m; pBo,Br, B ae the regresson
coefficients; x 1,% 2, %k ae known vaues derived from the
input vector pair (Vi1,Vi2), and &'s are independent random
variates representing deviation from the mean value of power with
variance VAR[g]=0?, and Covg £;1=0, for i#j.
Consequently, the random vector P has an expected value of
E[P]=XP and the variance-covariance matrix of P is Cov[P] = o
where isthe identity matrix.

The B coefficients are estimated using the least squares estimator
by substituting the actua power values for P:

b=(XT) TP (2.5)
where
= b7 2.
W L TN (26)

It has been proven in [10] that the least squares estimator is an
unbiased estimator for B, i.e.,, E[b]= .The estimated (fitted) power
from macro-model is given by the multiplication of input variables
and the estimated coefficients:

B=[By, By, B = Xb @7)
In the following, we define some relevant terms for regresson
analysis:

m
sum of squareserror: SSE = Y e
i1
meen squares error: MSE = SSE/(m-k -1)

m ~ —
regression sum of squares: SSR=3 (R - P)2

i=1
regresson mean squares: MSR = SSR/k

coefficient of multiple correlation: R=,/SSR/(SSR+ SSE)

B. Evaluating the quality of a macro-model

The quélity of the macro-models can be evaluated in terms of the
following criteria:

1. Correlation factor: From the coefficient of multiple correlation

R, we derive asimilar quantity r as:
r=1/(1-R?) =1+ SSR/SSE (2.8)

We cdl r the correlation factor of the macro-model. r is a
monotonic-increasing function of R. In many applications of linear
regression, r is a generd measure of the quality of a regresson
model since it represents linearity of the model and the magnitude
of the error. It also reflects the stability or fidelity of a macro-
model. The higher the r value, the better the quality of the
regression model. The r value may differ from one population to
next for the same macro-model. Therefore, the r vaues of different



macro-model s should be compared only when they are subjected to

the same input popul ation.

2. Errors: Error in cycle power (ECP) gives the average error
when estimating power on cycle by cycle basis while error in
average power (EAP) gives the average error when estimating
the average power. More precisely, we can write:

>A-3A
, EAP=IZL __i=L (2.9)

n
2R
i=1

In most cases the training set only represents a smdl portion of the
target population, and in some extreme cases, the training set will
be totaly different from the populaion. Designed based on such
training sets, the macro-models can exhibit good quality on the
training set and on populations which have similar characterigtics
as the training set, but not on other populations. To assess the
quality of macro-model, accuracy comparison of macro-models
should be carried out on populations (the set of input vector pairs
and corresponding Powermill power values) whose behavior is
different from that of the training set. On the other hand, the design
of training set is very important. The more closdly the training set
represents the target population, the more accurate the resulting
macro-model will be. In addition, it is very difficult to predict in
advance what type of population that macro-model will be
subjected to. Therefore, careful design of a good macro-model
equation form is the key to reducing the estimation error. Last, but
not least, extracting the Xj, X,,---, Xy variables in Eqn.(2.1) from

theinput vector pair isimportant in designing a good macro-model .

nR-R
ECP:EZ;
Nia

. Macro-MobeL CONSTRUCTION

The overall macro-model generation procedure is described in
Figure 1. The macro-model generation procedure consists of four
major steps:  variable selection, training set design, variable
reduction, and least sguares fit. Notice that the macro-model
equation design refers to not only the form of the equation (linear
function, values of coefficients), but aso the procedure for
extracting variable values from the input vector pair.

| Exact Power Function |

Order Reduction
Variable Grouping

Initial Macro-model
Equation

| Large Population |

Stratified Randol
Sampling

Powermill Simulation
v
Training Set
{(vector pair, power), ...}

Y Y
Sensitivity Analysis/
Variable Reduction

Least-Square Fit

Accurate Mod
NO

YES
DONE

Figure 1 The wor kflow of generating a cycle-accur ate macr o-
model

In the variable selection step, we start with an exact function that
relates the cycle power and the input vector pair. The function
terms are organized according to the order of spatial correlations

between bits of the input vector pair. During order reduction, high
order terms are dropped based on a performance-cost trade-off
consideration. Variable grouping is performed to collapse the
variables which have similar influence on power into the same
groups. At the end of this step, we obtain an initial macro-model
equation which is areduced form of the original exact function and
define the procedure for extracting variable values from the input
vector pair.

The training set design step is smple and straight forward
compared to other parts. It starts from a very large set of vector
pairs, which is in turn obtained either from real application or is
synthetically generated. Stratified random sampling is performed to
obtain a much smaller sub-set of vector pairs which is
representative of the original set. Findly, the module under anadysis
is simulated usng Powermill and by applying the vector pairs in
the sub-set. The vector pairs in the sub-set and their power values
form the so called training set.

In the third step of the flow, a statistical variable reduction
algorithm is applied on the initial macro-model equation using the
training set. The goa of this agorithm is to eliminate the variables
which have the least impact on the circuit power disspation, and
therefore, limit the number of variables in the final macro-model
equation. Subsequently, we obtain a finad macro-model equation
consisting of the most power-significant variables, that is, we
obtain the final macro-model equation in the form of Egn.(2.1) with
arelatively small number of variables (k<15).

In the fourth step of the flow, the training set is used once again to
form the linear regression model in Eqn.(2.2). By using Eqn.(2.5),
least-squares fit is performed to cal culate the regression parameters
of the macro-model. Power estimation for the training set is done
using Eqn.(2.7). Modd eva uation should be carried out before the
macro-model is used in red applications. The standards for
evaluating the quality of a macro-model were discussed in the
previous section.

In our approach, to improve the fidelity of macro-model, we build
different macro-models for different ranges of variable values. We
call this procedure the population stratification approach (cf.
Section 3.2) and the resulting macro-model the piecewise linear
macro-model.

In the remainder of this section, we will focus on discussng
variable selection and variable reduction steps which are the key
procedures for building a good macro-model. Other steps either
will be discussed briefly, or have been addressed in previous

paragraphs.

A. Variablesdection

1) The exact functional relation between the cycle power and
the input vector pair
If we ignore the influence of states of the floating nodes within
gates (which isrelatively small) on the circuit power, we can write:
P=f(ty,t, 1) (3.9
where k is the number of primary inputs (notice tha this “K” is
different from the “K’ that was used in Section Il) and ,t,--, i

are the so called trangdition variables which are encoded by a bit
vector as follows:

ti=la b d, =12,k

a=0,b=0,c=0 if inputi:0- 0
a=1b=0,c=0 if inputi:0-1 3.2
a=0b=1c=0 if inputi:1-0
a=0b=0,c=1 if inputi:1-1

Note that only 3 of these transitions are independent. Also we use a
3-bit encoding scheme instead of a 2-bit encoding (which is the



minimum length encoding) because the 3-bit encoding is more
suitable for expressing the exact power function.

Define the 0 operation and + operation (normal addition) between
two vectors as follows:

[ug,up, -, um] O [vg, Vo, - v ] = [ugvg, Ugvp, -, LqVj , UV, UVp,
Uy, UV, UV, Uunv ] (3:3)
[ug, U, -+ um] +[Vv1, V2, -, V] = [Ug + vy, Up + Vo, -+, Um + V]

We give the exact functional relation between the cycle power and
the input vector pair (thetransition variables) as:

0-10-1
0-1 81]
8 k 0-11-0
1* ot s
P= 80+Zt +Z Z i Ot ! .
i=1 a}*l i=lj=i+1 o
aﬁ -t
0-10-1---0-10-1
&2,k
I _ 0-10-1---0-11-0
++f 0500 X2k ) (3.9
1-,11-1,--1-5211-1
&2,k
—80+Zt| +Z Ztlljtjl-_ﬁlj +t1|]t2|] Dtnl-_ﬁl,Z .....
i=1 i=lj=i+l

where t; is called order 1 trangtion variable of input i, § Ot; is
caled order 2 joint transition variable of inputsi and j, etc., and
ELI ..k arevectors of real numbers representing the variable
coefﬁcnents Entries of the vector variables are either 0 or 1 and the
sum of entries in each vector adds up to 1. Notice that each vector
variable includes multiple scalar variables, when we are taking
about the “number of variables” in the function, we refer to the
number of scalar variables. Notice that an order i joint transition
variable describes the absence (value = 0) or presence (value = 1)
of the corresponding bit-level trandtions a the inputs of the
module.

Example: Given an input vector pair (101 - 011) with bit 1 to bit 3
listed from left to right, § ={010}, ©,={100, f53={00%},

t, 0, ={oo010000q , T, Ot; ={000001004 , t, Ot3 ={00100000¢ ,
t; Ot, O t3 ={00000000000100000000000000G .
The power consumption calculated by Egn.(3.4) is:

pP= ao_'_alﬂo 0ﬂ1+alﬂl+ ]]-.IHO,Oal
1-01-1 0 11-1 lﬂ0,0al,lal
+apg +a +a53

Theorem 1 Equatlon (3.4) gives the exact power consumption for
any vector pair applied to the inputs of any combinational module
with k inputs. Furthermore, coefficients in the equation are unique
for a given module. *
Note that Theorem 1 does not mean that two different modules
cannot have the same coefficients.

2) Trandtive fanout correlation between primary inputs
It is obvious that ag = 0 since power consumption for vector pair
(00...0) »(00...0) mugt be zero. All other coefficients in Eqn.(3.4)
can be uniquely determined from circuit-level smulaion on some
specific vector pairs.
For example, to compute coefficient al~*, we simulate the module
using the vector pair {(0,0...0), (1,0...0)} and obtain the power
consumption value of R%~1. From equation (3. 4) we know:

PO-1 = £ @190, 100y = g0~1

L an proofs are omitted for the sake of brevity. Please refer to [11] for
detailed proofs.

To compute a ;" , we simulate the module using the vector pair
{(0,0...0), (1,1,0...0)} and obtain the power consumption value of
P 0~1. Again from Eqn.(3.4) we know:

POy 101 0-0) 2 401, 50-1,

0- 1

f(t ,t3 ol _al +82
0-1,0-1 _ 041,041_ 0-1_p0-1

3al2 'Pl,z P1 P2

0-10-1
a2

and so on.

Definition Inputs iy,iy,... i; are transitive fanout correlated when
their transitive fanout cones in the circuit have at least one common
node, that is, there exists at least one node (internal node or output)
of the module whose logic function includes al inputsiy,iy,... ij. j is
called the order of the correlation.

For the sake of simplicity, we use “correlation” to stand for
“trangtive fanout correlation” in the remainder of this paper.

i1
i :D- order 1 corr.| order 2 corr. order 3 corr.
2
_ :)_ i i i3 (i1, 12); (i 3) None
I3
@ (b)

Figure 2 Example of Transitive Fanout Correation

Figure 2(a) shows a smple 3-input 2-gate circuit. Since it has only
3 inputs, the highest possible order of correlation between inputsis
3. The table in (b) shows the correlated inputs for different orders.
Notice that the input pair (i3, i3) is not on the list of order 2
correlations and triplet (iyiziz) is not in the list of order 3
correlations because the corresponding inputs have no common
nodes among their transitive fanout cones.

The coefficients in Eqn.(3.4) essentialy reflect the correlaion
between the corresponding (joint) transition probabilities and the
power consumption in a circuit.

Proposition 1 If iyip...i; are not correlated, all entries of
éilyizr",ij arezero.

Corallary If Jisthe highest order of correlation among inputs of a
module, the first J+1 terms of Eqn.(3.4) are sufficient to modd the
exact power for any input vector pair applied to the module.

3) Function order reduction

Eqgn.(3.4) gives an exact representation of the relation between
power and input transition. However, this form is too complicated
for practical use. In this section, we will discuss the first step to
simplify the macro-model function, which is order reduction.

From Eqn.(3.4), we know that the complexity of the macro-model
increases exponentialy with the order of the input correlation we
which consider. Evidently, ignoring the high order term leads to
some estimation error. The first question, is how much error will be
introduced if we drop certain high order terms. The second question
is what the cost will be if we keep more terms in the origina
function. Table 1 shows some examples of the percentage error
caused by ignoring the high order input correlations. Column 1
gives the circuit name. Circuit A is a 4-bit multiplier, B is a 4-bit
ripple carry adder without carry in, and C is an 8-input random
logic circuit. In the experiment, al the coefficients of the exact
power function in Eqn.(3.4) are calculated in the way discussed in
section 3.1.2. Then we do power calculation on the population of
all possible (4%, k is the number of inputs) input vector pairs to the
modul e using the reduced-order functions of Eqn(3.4), i.e., ignoring
the high order terms (by assuming that the coefficients of high
order transition variables to be al zero). The power values
calculated by the reduced-order functions are compared with the
actual power values. The average relative errors are then reported



in Table 1 from the 1% data column to the 8" data column. The
integer number i on top of each column indicates the maximum
order to which the function terms are kept. For example, in the 4™
data column, number “4” means that, the reduced-order function is
the same as Eqn.(3.4) except that trandgition variables (and their
coefficients) with order higher that 4 are ignored. The last row of
the table shows the total number of variables in the reduced-order
functions for each of the circuits.

Table 1 Average percentage error in power dissipation when
using reduced-order functions

Circuitf 1 2 3 4 5 6 7 8

A 199.8%(42.6%|31.7%(23.9%|13.7%| 4.1% | 0.8% | 0.0%

B 140.3%| 9.2% |11.9%| 9.6% | 8.4% | 4.3% | 1.3% | 0.0%

C |37.6%(13.1%| 8.9% | 7.7% | 5.1% | 4.3% | 1.0% | 0.0%

24 | 276 | 1788 | 7458 | 21066 (4147858974 65535

Table 1 shows that keeping higher order terms tends to, although
not monotonically, to provide more accurate power estimation
results. One significant improvement shown in the table is from the
1% data column (keeping only order 1 terms) to the 3 data column
(keeping order 1, 2 and 3 terms). From this point on, the
complexity of the reduced-order function increases much faster
than the percentage error decreases. This observation is aso
supported by the experimental results which is presented in Section
IV. We therefore approximate Eqn.(3.4) by ignoring terms with
order higher than 3. The reduced-order function is written as:

0-10-1
0-1 g
a‘l o 11-0
P= a0+zt -0 +zzt,m, &
i=1 a}*l i=1j=i+1 1 il 1
i
0-.10-10-1
&5
k 0-10-11-0
zz Zt,IIItJIIIq &g +e (3.5)
i=1j=i+ll=j+1 1 ll. 1
i -t
ko ook ko
=g+ Y i+ D0t &
i=1 i=1j=i+l
ko kokoo
+z z ztiDtthllji,j,l"'f
i=lj=i+ll=j+1

where gisthe error caused by approximation.

We can minimize error £ by re-computing the coefficient values by
doing least-squares fit for Eqn.(3.5). However Eqgn.(3.5) is too
complicated to be our macro-model equation since the number of

variables in it is3k+9ICZ+27[C3, which is too high!

Furthermore, the use of 0-1 variablesin (3.5) makes it very difficult
to significantly reduce the number of variables using a regression
approach.

4) Variablegrouping
To further reduce the function complexity in Eqn.(3.5), we use a
variable grouping approach as will be described next. This
approach offers two advantages: 1) uses integer variables which are
easer to work with and offer more flexibility compared to 0-1
variables, 2) has a constant number of variables which is
independent of number of primary inputs, k.
We define G; as the set of all inputs, G, as the set of al possible
combinations of two inputs, Gz as the set of al possble
combinations of three inputs:

Gy ={12,---,K},

Ga ={(12),(13),---,(Lk),(23), -, (k=L Kk)},

Gz ={(123),(1,2,4),--,(1,2,k),(1,34),---,(k -2, k=L k)}
Note that G; consists of indices for order i transition variables. The
variable grouping technique forms N; subsets of G;, N, subsets of
Gz, and N3 subsets of G3 such that:

ﬂelg @, UGlgDG1 ﬂGZQ @, UGZQDGZ
g=1 g=1 » g=1 g=1

|Gl,g| <Kjp |G2’g| <Ky

N3 N3

NG3g =0 UGsg UGs

g=1 g=1 (3.6)
|G3’g| <Ksz

where Kj, K, Kz bounds are given. The sze constraints are

specified to manage the complexity of macro-model equation

characterization and evaluation.
We approximate equation (3.5) by assuming that:

Moo 01

ad~? brg

a0 bfg Oi0GLg,  g=12-+Ng
1-1 1

_a, 3x1 b""g 3x1

[.0-10-1 0-10-1

g b2g

0-11-0 0-11-0

ar = bz,g: 06, ))0G,g, 9 =12, N,
1-.11-1 0-11-1

L8] 9x1 bz’g 9x1.

[,0-10-10-1 0.10-10-1

&) b3g

0-10-11-0 bgﬂj,oﬂnﬂo

Al =g 0G,j.)) DGz g, g =12+, Ng
14,1%1,1% 0-11-11-1

L& 27x1 b3g 27x1

where ky1>3 g are constant read numbers. To minimize the error

introduced by the above approximation, we should do a careful
variable grouping. We first calculate the coefficients for terms of
orders 1,2 and 3 in Egn.(3.4) by using the method discussed in
Section 3.1.2. Next, we calculate a set of order 1, 2 and 3 c-values
asshown bel ow:

2@ vl =12k
=@M gl T O gl ), 2120k, <]
11-0 1-11-11-1
G.jl :2_(a1OJ -10-10-1 810 -10- a] l. 1 ), .
i =12k, i< <

Transition variables of order i are sorted in increasing order of the
corresponding c-values for order i. The domain of the c-values is
divided into several sub-domains such that the number of transition
variables with c-values in different sub-domains is approximately
equd, but is less than the corresponding K; values. The indices of
trangition variables with c-values in different sub-domains define
the groups. The first N; groups with the largest absolute c-values
are used to form G4 (9=1,2,...,N;) as defined in Eqn.(3.6). Other
groups with smaller c-values are abandoned. Similarly, the first N,
or N; groups with the largest absolute c-values are adopted as G,4
or Gzg (0=1,2,...,N, or Ng). Notice that this is a heuristic grouping
algorithm and other techniques may be used as well.



Example Let N; = 3, N, = 4, N3 = 2. Assume we want to do
variable grouping for a macro-model equation corresponding to a
6-input circuit. The group size constraints are set as: K;= K,= K3 =
3. Firgly we calculate ¢ (i = 1,2,...,6) values. Assume, they are
given by:
C = 0, Co =0.5, C3 =1.9, Cyq = 2.0, Cg = 0, Ce =0

We divide the domain of c-values, [0, 2.0], into 3 sub-domains: [0,
0.5), [0.5, 1.5), and [1.5, 2.0].
The grouping for single inputs is:
Gl.l 2{115,6},61'2 2{2},61,3 2{3,4} . We keep Gl,l through leg.
Then we compute the value of ¢ ; (i,j = 1,2,....k i <]). Again,
Suppose:

€2=10¢3=03 ¢4=-02 ¢5=-04, ¢ 6=16 cp3=16

4= 0.8, G5 =14, C6 = 0.7, C34 = -1.1, C35 = 0.2, C36 = 0.2,

Ca5 =1.6, Ca6 = -0.7, C56 = 0.9
Thedivison of c-valuesis: [-1.1, -0.5), [-0.5, 0), [0, 0.5), [0.5, 1.0),
[1.0, 1.5), and [1.5, 1.6]
The grouping for input pairsis:
G21 ={(16).(2.3), (49}, Gz2 ={(25),(12)}
Gz,3={(24),(26),(56)}, G4 ={(13).(35).(36)},
Go5 ={(14),(1L9}, Gz ={(34).(46)}
We only keep G, 1, Gy, Gy3, and Gy,

The case for grouping variables of order 3 is solved smilarly.

Let’ sintroduce some notation:

Tig | : thetotal number of transitions of typei —j in group Gy g

Tjg =" - thetotal number of pair-wise joint transitions of type
(i ] k=1) ingroup Gyg
Tgygj'k“"m“” : the total number of joint transitions of type (i -,
k-1, m-n)ingroup Gsgq
Tig= 2= lTJ?gﬁl Tig? Tfallm
i0Gy g

= A7 -[+0-10-1 $0-11-0  +1.11-1
Tog= 260 —[Tz’g Tog T Lxg
(.06 g
Tag= 2§06 0%
(i,J.1)0Gz g
_H0-10-20-1 +0-10-11-0 1HJ,1H1,1H1]
B [T3,Q T3g T3 hx27

We can thus write our initia cycle-accurate macro-model as in
equation (3.7).

0.1
Nl o1 1.0 —a.a]h 100
P=bp+>[g” Tig TLE] bLg
=1 1.1
g bi.g
0.10-1
N bcz)'g01 0 (3.1
2 . -
0.10-1 —0-11-0 1-11-1 :
+Zh2,g T2,g T2,g ] bz'g;
= ;
1,111
b2g
0-10-10-1
by
Ng 0-00-11-0
0-.10-10-1 0-10-11-0 1-11-11-1]
+Zb’3'g T3,g T3,g ] b3,g .
=1 :
g 1.11-.11-1
bsg

In terms of Ny, N, Ns;, values, the number of varigbles in the
macro-model is 3N;+9N,+27N;, which is independent of the
number of circuit inputs k.

Table 2 shows the experimentad results for three macro-models
using different number of groups and using different grouping
strategies. For Macro-model 1, N; =1, N, = 1, N3 = 1; For Macro-
model 2, N; =8, N, = 8, N; = 2, and the single inputs, input pairs,
and input triplets are grouped randomly; For Macro-model 3, N; =
8, N, = 8, N3 = 2, and our variable grouping heuristic is used. The
input sequence is randomly generated.

Table 2 Experimental resultsfor variable grouping

Macro-model 1 | Macro-model 2 | Macro-model 3
R [ECP()]| r [ECP(®%) | r | ECP (%)

Module

C1355 198 807 |157| 919 |254| 7.76

C1908 141 1536 |142| 1504 |276| 11.16

C2670 118 1166 |1.19| 1164 |1.63| 10.38

C3540 142 | 1747 |1.76| 1548 [237| 1219

C432 111 | 29.07 |112| 29.00 |246| 20.15

C5315 121 987 |130 9.4 2.79 8.1

C6288 215| 810 |247 7.6 279 6.82

C7552 104 3300 |111] 3094 [639 924

C880 142 1982 |131| 20.78 |195| 16.34

Mul16 234 | 890 |[257| 832 29| 7.04

Adderl6 | 205| 863 |212| 844 |4.08[ 6.15

Results show that macro-models 1 and 2 have similar correlation

factors and ECP errors, while the quality of macro-model 3 is

clearly better than the other two.

From Table 2, we can draw the following conclusions:

e Using more groups in variable grouping improves the qudity
of macro-models.

e A good variable grouping technique is very important to
obtain a high quality macro-model.

B. Population gratification

From our experiments we found that the regresson factor r
between the estimated power and the actuad power is different for
different ranges of power disspation. This means that the
regression model is not strictly linear over the range of al possible
power values. This phenomenon occurs in many practica
situations. One reason for the lack of linearity is that the macro-
model eguation is only an approximation to the power-transition
function. During the variable selection, we discard the high order
terms in the power-transition function and group subsets of
variables of given order together. The approximation introduces
some non-linearity into the macro-model eguation. This effect is
more pronounced when the number of variablesis small.

To improve the quality of our macro-model, we refine the macro-
model to a piece-wise linear regression model. At the first step, we
stratify the training set into severa digoint subsets (strata) based on
the switching activity of the vector pairs in the training set. A
vector pair will fall into exact one of these strata. Then the macro-
model istrained separately for each subset of the training set. When
we apply this piece-wise linear macro-model to estimate the power
for a given vector pair, we first examine the switching activity
range of the vector pair, and then invoke the macro-model equation
which was trained using vector pairs with a smilar switching
activity.

Theorem 2 The correlaion measure rq, Of the macro-model
obtained by the population stratification is no worse than that
without population stratification rygy, i.€.,

Tstr 2 Mostr

Experimenta results in Table 3 shows the improvement on the
regression factor r of the macro-model with the population
stratification approach (Macro-model 1) and without it (Macro-



model 2). We use Eqn.(3.7) as the macro-model equation, and the
input sequence contains both biased (non-random, wider range of
switching activity and power) and random vectors.

Table 3 Experimental resultsfor the stratification approach

Module Macro-model (w/ gtr.) | Macro-model (w/ostr.)
r ECP (%) r ECP (%)

C1355 26.0 7.86 16.4 8.76
C1908 12.8 9.34 10.4 11.19
C2670 23.6 8.77 20.0 10.22
C3540 19.7 11.45 11.8 12.88
C432 6.5 19.07 5.3 22.96
C5315 27.9 7.64 26.8 8.72
C6288 46.5 6.03 37.0 7.16
C7552 43.7 6.58 39.0 7.36
C880 104 14.19 10.4 15.32
Mul16 30.0 6.32 27.9 6.90
ADDER16 38.1 5.64 18.4 6.73

Notice that population stratification can be done not only according
to the switching activity of the input vector pair, but aso according
to the transition behavior of some special inputs such as clock,
mode control, etc. However, thisis not the subject of this paper.

C. Variablereduction

In the initial macro-model equation (3.7), the number of variables
is about 150. Although the large number of variables improves the
quality of the macro-model, we would like to avoid evaluating a
large macro-model equation for every clock cycle. Therefore, we
must reduce the number of variables in the equation without
incurring alarge error.
In our approach, the modified forward stepwise regresson
procedure [10] is used to reduce the number of variables. The
search method devel ops a sequence of regression models. At each
step, one X variable is added to or deleted from the fina macro-
model equation. The criterion used for adding or deleting variables
is the F~ dtatistics of the regression theory. The agorithm is
described next:
Input of the algorithm: Given are a set of candidate variables {
X1, X, ..., Xy } which is in the initial macro-model, a training set
(values of variables for input vector pair and corresponding
Powermill power value), alow threshold t, for deleting avariable, a
high threshold t; for adding a variable, an upper bound of number
of variables MAX 4, Sisthe set of selected variables.
Step O (Initialization) : Set S=@and C={ Xy, X5, ..., Xn }
Step 1 (Find thefirst variable) : Fit a one-variable linear regression
model for each variable X in C. The F test for each model is given
by:
£ = MSR(X))

'OMSE(X)]
where MSR and MSE were defined in Section II. Assume that X is
the variable with the maximum F~ value. If F| 2t, then move X;

:]_‘2'...’N

from C to Sand denote it as X; . Otherwise, no macro-model can
be found for the given t; value (t; must be reduced). The dgorithm
terminates. X
This step finds the first variable for the final macro-model. The F

test is used to find the “most significant” variable (as far as power
dissipation in the modul e is concerned).

Step 2 (Add avariable) : Assume S= {}, for each X remaining in
C, fit the regression model with a+1 variables X, X5,---, X, and X;
. For each of them, the partial F test statigticsis:

MR X1, X5 Xa) B
MSE(X;, X1, X5, X5)  sb}
where by is the estimated vdue of [3; coefficient and s{b} is the
standard deviation of by. Let X be the variable with the maximum
F~ value If F| 2t then move X form C to S and denote it as

F )?

X1, increase a by 1, and go to Step 3; Otherwise the algorithm
terminates.

This step adds one more variable into the find macro-model. The
F test is used to find the “most significant” variable to add to the
set of exigting (dready selected) variables.

Step 3 (delete avariable) : Assume S={ X7, X5, X4}, and X; is
the latest variable added in Step 2. Compute the partid F test
statistics for all other variablesin S

e MSROK 1X5, X5 X, Xy Xa)

:( bi

2
MSE(X], X1, X5, X5) S{h})

Let X} be the variable with minimum F* value. If F] <t, then

remove X; formS

After adding a new variable into the macro-model, the
“significance” of some old variable may be reduced due to the joint
effect of the newly added variable and other old variables. In such a
case, we have to remove the old variable from the macro-model.
The F* test is used to find the “most insignificant” variable to
delete from the set of existing (already selected) variables.

Step 4 : Repeat Steps 2 and 3 until one of following conditions is
true:

1. Algorithm terminatesin Step 2.

2. C=aq

3. Thenumber of variablesin Sequalsto MAX 4.

In our approach, the number of variablesin the candidate set is 162
at the beginning (since we set N;=8, N,=8, and N;=2). We choose ty
=t; = 10.0, MAX,y = 15. For most macro-models, the dgorithm
terminated a the 3 condition a step 4 when the number of
variables equals to MAX,4. Only for one of the macro-models the

algorithm terminated at step 2 when F; <t .

Iv. ExPERIMENTAL RESULTS

We have built our cycle-accurate macro-models for severa
modules, including the ISCAS-89 benchmarks. In our macro-
models, we also included variables representing transitions on
circuit outputs, but only for two of the circuits (C432 and C880)
variables related to outputs survived the variabl e reduction phase.
The experimental setup is as follows. For each circuit, the
population sizeis set to 80,000 vector pairs (including both random
and non-random sub-sequences). We first simulate each circuit for
the entire sequence using Powermill and record the cycle-by-cycle
power. Size of the training set is set to 3,000 . The macro-model is
then trained using the training set. After the macro-model is built,
we apply it to different subsets of the popul ation. These subsets are
selected such that their power behaviors are different from that of
the training set. Average ECP and EAP are computed by averaging
the ECP's and EAP's of al sub-sets. The correlation factor r is
computed based on the fitted results on the entire population.
Experimental results for our cycle-accurate macro-models is
summarized in Table 4.

Experimenta results shows that our macro-model technique are
very accurate when estimating power consumption at RT-level. The
average ECP and EAP are 10.2% and 2.0%, respectively.
Meanwhile, if we compare the results with those of macro-model 1



in Table 3, which is the full-length macro-mode! before variable [10] J. Neter, W. Wasseman, and M. H. Kutner, Applied Linear Regression

reduction, we see that our variable reduction agorithm is Models, Second Edition, Richard D. Irwin, Inc, 1989.
significantly reducing the number of variables without incurring [11] Q Wu, Q. Qiu, M. Pedram and C. Ding, “Cycle-Accurate Macro-
large error. Modeling: Algorithm and Implementation”, University of Southern

California, CENG Technical Report No. 98-11, May 1998.
Table 4 Experimental resultsfor cycle-accurate macro-models

Circuit No. of r ECP (%) EAP (%)
Variables

C1355 15 13.2 9.3 2.7
C1908 15 7.9 11.6 2.0
C2670 15 19.8 9.6 2.0
C3540 15 9.7 12.5 2.0
C432 14 5.1 19.3 3.1
C5315 15 274 7.8 1.6
C6288 15 45.9 6.2 1.9
C7552 15 6.58 6.9 11
C880 15 8.7 14.3 3.2
Mul16 15 34.3 6.5 1.6
ADDER16 15 28.8 6.4 11
Average Error 10.2 2.0

V. CONCLUSI ON

In conclusion of our work, we present a method for generating
cycle-accurate macro-models for RT-level power analysis. The
proposed macro-model predicts not only the cycle-by-cycle power
consumption of a module, but also the moving average of power
consumption and the power profile of the module over time. We
present an exact power consumption function to derive our final
macro-model equation. A variable reduction agorithm has been
proposed to eliminate the “insignificant” variables based on
stetistical senditivity test. First order temporal correlations and
spatial correlations of up to order 3 are considered in order to
improve the estimation accuracy. Population stratification has been
used to increase the fidelity of the macro-model. Experimental
results show that, the macro-models have 15 or fewer variables and
exhibit <5% error in average power, and <20% errors in cycle-by-
cycle power compared to circuit simulaion results using
Powermill.
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