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Abstract  In this paper we present a methodology and
techniques for generating cycle-accurate macro-models for RT-
level power analysis. The proposed macro-model predicts not
only the cycle-by-cycle power consumption of a module, but
also the moving average of power consumption and the power
profile of the module over time. We propose an exact power
function and approximation steps to generate our power
macro-model. First order temporal correlations and spatial
correlations of up to order 3 are considered in order to improve
the estimation accuracy. A variable reduction algorithm is
designed to eliminate the “insignificant” variables using a
statistical sensitivity test. Population stratification is employed
to increase the model fidelity. Experimental results show our
macro-models with 15 or fewer variables, exhibit <5% error
for average power and <20% errors for cycle-by-cycle power
estimation compared to circuit simulation results using
Powermill.

Keywords  cycle-accurate, macro-model, power estimation,
VLSI, CMOS, low power, statistical, regression

I. INTRODUCTION

Due to rapid progress in the semiconductor manufacturing, the
device density and operating frequency have greatly increased,
making power consumption a major design concern. High power
consumption exacerbates the reliability problem by raising the die
temperature and by increasing current density on the supply rails. It
also reduces the battery life which is a key concern in portable
devices. Therefore, low power design requirements are driving a
new breed of computer aided design methodologies and tools
which in turn rely on accurate and efficient estimation tools at
various design abstraction levels.
Power estimation at RT level is crucial in achieving a short design
cycle. The standard hierarchical simulation approach to RT-level
power estimation consists of three steps: 1) functionally simulate
the RT-level description and collect the input sequences for each
circuit block. 2) simulate each block at gate or circuit-level using
the collected input sequences. 3) add the power consumption for all
blocks to produce the power consumption of the whole circuit. The
disadvantage of this approach is that it requires the interaction
between RT-level simulators and low-level simulators and that
power evaluation is actually done at gate-level or circuit-level
where the simulation speed is low.
Alternatively, one could use the macro-modeling technique for
power estimation at RT-level. In this technique, low-level
simulations of modules under their respective input sequence is
replaced by power macro-model equation evaluation (which can be
performed very fast).

Macro-modeling techniques use capacitance models for circuit
modules and activity profiles for data or control signals [1-5]. The
Power Factor Approximation (PFA) technique [1] uses an
experimentally determined weighting factor, called the power
factor, to model the average power consumed by a given module
over a range of designs. To improve the accuracy, more
sophisticated macro-model equations have been proposed. Dual Bit
Type model, proposed in [2], exploits the fact that, in the data path
or memory modules, switching activities of high order bits depend
on the temporal correlation of data while lower order bits behave
similarly to white noise data. Thus a module is completely
characterized by its capacitance models in the MSB and LSB
regions. The break-point between the two regions is determined
based on the signal statistics collected from simulation runs. The
Activity-Based Control (ABC) model [4] is proposed to estimate
the power consumption of random-logic controllers. An Input-
Output model has been proposed in [5] to capture the relation
between power and input signal probability, input transition
density, and output transition density. By introducing variables
related to output activity, the Input-Output model improves the
estimation accuracy compared to the models which do not make
use of the output information. One common feature of the above
macro-model techniques is that, they only provide information
about average power consumption over a relatively large number of
clock cycles.
The above techniques, which are suitable for estimating the
average-power dissipation, are referred to as cumulative power
macro-models. In some applications, however, estimation of
average power only is not sufficient. Other important tasks include
the estimation of the k-cycle moving average of the power, power
profiling on a cycle-by-cycle basis, and estimation of the rate of
current change from one cycle to next. This information is crucial
for circuit reliability (maximum current limits, heat dissipation and
temperature gradient calculation, latch-up conditions) analysis,
DC/AC noise analysis (DC drop and inductive bounce on power
and ground lines), and design optimization (power/ground net
topology, construction and sizing, number and placement of
decoupling capacitors, buffer insertion, etc.). For example, the k-
cycle average power can provide power consumption information
for any given window of time. To perform these tasks requires
knowing the power consumption value for every clock cycle. If the
macro-modeling technique does not provide such information, the
circuit designers will have to resort to gate-level or circuit-level
simulation again. Consequently, cumulative macro-models are
considered to have limited use.
The notions of a pattern-dependent macro-model [6][7] and a
cycle-accurate macro-model [8] are related. In the following, we
describe cycle-accurate macro-models as initially described in [8].
Let Pk denote the power consumption of some module in clock
cycle k, then we can write:

),( 1 kkk VVFP −= (1.1)

where Vk and Vk-1 denote the input vectors applying to the module
at cycles k and k-1, and F is some function of the input vector pairs.
Note that the above definition for cycle-accurate macro-model is
based on the assumptions that there is no glitching at the inputs of
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the module and that all input transitions arrive at the same time.
These assumptions are valid in synchronous designs. In addition,
(1.1) assumes that the influence of the states of the floating nodes
within gates can be ignored, that is, the power dissipation of a
combinational module only depends on a pair of consecutive
vectors. This assumption holds in most cases of interest.
The goal of power macro-modeling is to find function F, given an
input vector sequence V (the so called training set) for the module
and given the corresponding power consumption values.
In this paper, we propose the methodology of building cycle-
accurate macro-models for circuit modules. Compared to previous
work, our approach makes the following tangible contributions:
1. The macro-model generated by our approach can predict the

cycle-based power consumption, as well as the average power.
Our cycle-accurate macro-model equation can be easily
transformed into a cumulative macro-model equation.

2. We present an exact power consumption function which
captures the relation between the circuit power consumption
and the spatial-temporal correlations of primary inputs. This is
used as the starting point for our macro-model generation. It
can be a useful guide for generating macro-models for other
purpose.

3. We introduce piecewise linear power macro-model equations
to increase the fidelity of the macro-model.

4. A statistical significance test is proposed to eliminate
“insignificant variables” and therefore simplify the macro-
model equation.

5. Because of the statistical nature of our macro-model, it can be
validated and improved by statistical methods. The estimation
error can be predicted for given confidence level.

Experimental results show that, our cycle-accurate macro-models
having 15 or fewer variables, exhibit <5% error in average power,
and <20% error in cycle power compared to circuit simulation
results using Powermill [9].
This paper is organized as follows. Section II gives the theoretical
background for regression analysis. Section III discusses a
procedure of building the macro-model whereas Section IV
presents the experimental results. Section V is the conclusion of our
work.

II. BACKGROUND

A. Introduction to linear regression analysis

We define a cycle-accurate power macro-model as a linear function
between estimated power dissipation of a vector pair and the
characteristic values of the vector pair, that is, we write:

kk XXXP ββββ ++++= L22110 (2.1)

where P̂ is the predicted power dissipation, kβββ ,,, 10 L are

constants called the regression coefficients or parameters of the
macro-model, and kXXX ,,, 21 L are characteristic variables

extracted from the input vector pair. The methods for extracting
values of kXXX ,,, 21 L will be discussed in Section 3.1. The

regression parameters are calculated by doing least-squares-fit
during the linear regression analysis.
Based on the theory of linear regression analysis [10], we can
define the relation between the actual power P (e.g. the power
value simulated by Powermill) and the estimated power as:

εββββε +++++=+= kk XXXPP L22110
ˆ (2.2)

where ε is called the residual term of the linear regression model
and follows a normal distribution with mean value 0 and variance

σ2. Equation (2.2) means that P is a random variable which follows

a normal distribution with mean value P̂ and variance σ2.
Assume that we have been given the equation form of the macro-
model as in Eqn.(2.1) and have performed Powermill simulations
(observations) on m randomly sampled vector pairs in the
population (this set of m vector pairs is referred to as the training
set) so that we have obtained m simulation results (observation
values) of power consumption. The linear regression model for
vector pairs from the training set can be written as:

mixxxP ikikiii ,,2,1,,2,21,10 LL =+++++= εββββ (2.3)

or in matrix form as:
εεεεββββ += XP (2.4)

where Pi’s are random variables corresponding to observations:
( kiii xxx ,2,1, ,,, L ) mi ,..,2,1= ; kβββ ,,, 10 L are the regression

coefficients; kiii xxx ,2,1, ,,, L are known values derived from the

input vector pair ( 2,1, , ii VV ); and εi’s are independent random

variates representing deviation from the mean value of power with

variance ,][ 2σε =iVAR and 0],[ =ji εεCov , for ji ≠ .

Consequently, the random vector P has an expected value of

E[P]=Xββββ and the variance-covariance matrix of P is IPCov 2][ σ=
where I is the identity matrix.
The ββββ coefficients are estimated using the least squares estimator
by substituting the actual power values for P:

PXXXb ⋅⋅⋅= − T1T )( (2.5)
where

[ ]T10
1)1(

,,, k
k

bbb L=
×+

b (2.6)

It has been proven in [10] that the least squares estimator is an
unbiased estimator for ββββ, i.e., E[b]= ββββ.The estimated (fitted) power
from macro-model is given by the multiplication of input variables
and the estimated coefficients:

[ ] XbP == mPPP ˆ,,ˆ,ˆˆ
21 L (2.7)

In the following, we define some relevant terms for regression
analysis:
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B. Evaluating the quality of a macro-model

The quality of the macro-models can be evaluated in terms of the
following criteria:
1. Correlation factor: From the coefficient of multiple correlation

R, we derive a similar quantity r as:

SSESSRRr +=−= 1)1(1 2 (2.8)
We call r the correlation factor of the macro-model. r is a
monotonic-increasing function of R. In many applications of linear
regression, r is a general measure of the quality of a regression
model since it represents linearity of the model and the magnitude
of the error. It also reflects the stability or fidelity of a macro-
model. The higher the r value, the better the quality of the
regression model. The r value may differ from one population to
next for the same macro-model. Therefore, the r values of different



macro-models should be compared only when they are subjected to
the same input population.
2. Errors: Error in cycle power (ECP) gives the average error

when estimating power on cycle by cycle basis while error in
average power (EAP) gives the average error when estimating
the average power. More precisely, we can write:
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In most cases the training set only represents a small portion of the
target population, and in some extreme cases, the training set will
be totally different from the population. Designed based on such
training sets, the macro-models can exhibit good quality on the
training set and on populations which have similar characteristics
as the training set, but not on other populations. To assess the
quality of macro-model, accuracy comparison of macro-models
should be carried out on populations (the set of input vector pairs
and corresponding Powermill power values) whose behavior is
different from that of the training set. On the other hand, the design
of training set is very important. The more closely the training set
represents the target population, the more accurate the resulting
macro-model will be. In addition, it is very difficult to predict in
advance what type of population that macro-model will be
subjected to. Therefore, careful design of a good macro-model
equation form is the key to reducing the estimation error. Last, but
not least, extracting the kXXX ,,, 21 L variables in Eqn.(2.1) from

the input vector pair is important in designing a good macro-model.

III. MACRO-MODEL CONSTRUCTION

The overall macro-model generation procedure is described in
Figure 1. The macro-model generation procedure consists of four
major steps: variable selection, training set design, variable
reduction, and least squares fit. Notice that the macro-model
equation design refers to not only the form of the equation (linear
function, values of coefficients), but also the procedure for
extracting variable values from the input vector pair.

Figure 1 The workflow of generating a cycle-accurate macro-
model

In the variable selection step, we start with an exact function that
relates the cycle power and the input vector pair. The function
terms are organized according to the order of spatial correlations

between bits of the input vector pair. During order reduction, high
order terms are dropped based on a performance-cost trade-off
consideration. Variable grouping is performed to collapse the
variables which have similar influence on power into the same
groups. At the end of this step, we obtain an initial macro-model
equation which is a reduced form of the original exact function and
define the procedure for extracting variable values from the input
vector pair.
The training set design step is simple and straight forward
compared to other parts. It starts from a very large set of vector
pairs, which is in turn obtained either from real application or is
synthetically generated. Stratified random sampling is performed to
obtain a much smaller sub-set of vector pairs which is
representative of the original set. Finally, the module under analysis
is simulated using Powermill and by applying the vector pairs in
the sub-set. The vector pairs in the sub-set and their power values
form the so called training set.
In the third step of the flow, a statistical variable reduction
algorithm is applied on the initial macro-model equation using the
training set. The goal of this algorithm is to eliminate the variables
which have the least impact on the circuit power dissipation, and
therefore, limit the number of variables in the final macro-model
equation. Subsequently, we obtain a final macro-model equation
consisting of the most power-significant variables, that is, we
obtain the final macro-model equation in the form of Eqn.(2.1) with
a relatively small number of variables (k≤15).
In the fourth step of the flow, the training set is used once again to
form the linear regression model in Eqn.(2.2). By using Eqn.(2.5),
least-squares fit is performed to calculate the regression parameters
of the macro-model. Power estimation for the training set is done
using Eqn.(2.7). Model evaluation should be carried out before the
macro-model is used in real applications. The standards for
evaluating the quality of a macro-model were discussed in the
previous section.
In our approach, to improve the fidelity of macro-model, we build
different macro-models for different ranges of variable values. We
call this procedure the population stratification approach (cf.
Section 3.2) and the resulting macro-model the piecewise linear
macro-model.
In the remainder of this section, we will focus on discussing
variable selection and variable reduction steps which are the key
procedures for building a good macro-model. Other steps either
will be discussed briefly, or have been addressed in previous
paragraphs.

A. Variable selection

1) The exact functional relation between the cycle power and
the input vector pair

If we ignore the influence of states of the floating nodes within
gates (which is relatively small) on the circuit power, we can write:
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where k is the number of primary inputs (notice that this “k” is
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Note that only 3 of these transitions are independent. Also we use a
3-bit encoding scheme instead of a 2-bit encoding (which is the
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minimum length encoding) because the 3-bit encoding is more
suitable for expressing the exact power function.
Define the ⊗ operation and + operation (normal addition) between
two vectors as follows:
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We give the exact functional relation between the cycle power and
the input vector pair (the transition variables) as:
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where it
v

is called order 1 transition variable of input i, ji tt
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called order 2 joint transition variable of inputs i and j, etc., and
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are vectors of real numbers representing the variable

coefficients. Entries of the vector variables are either 0 or 1 and the
sum of entries in each vector adds up to 1. Notice that each vector
variable includes multiple scalar variables, when we are talking
about the “number of variables” in the function, we refer to the
number of scalar variables. Notice that an order i joint transition
variable describes the absence (value = 0) or presence (value = 1)
of the corresponding bit-level transitions at the inputs of the
module.
Example: Given an input vector pair (101→011) with bit 1 to bit 3
listed from left to right, }010{1 =t

v
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The power consumption calculated by Eqn.(3.4) is:
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Theorem 1 Equation (3.4) gives the exact power consumption for
any vector pair applied to the inputs of any combinational module
with k inputs. Furthermore, coefficients in the equation are unique
for a given module. 1

Note that Theorem 1 does not mean that two different modules
cannot have the same coefficients.

2) Transitive fanout correlation between primary inputs
It is obvious that a0 = 0 since power consumption for vector pair
(00…0)→(00…0) must be zero. All other coefficients in Eqn.(3.4)
can be uniquely determined from circuit-level simulation on some
specific vector pairs.

For example, to compute coefficient 10
1

→a , we simulate the module
using the vector pair {(0,0…0), (1,0…0)} and obtain the power

consumption value of 10
1

→P . From equation (3.4) we know:
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1
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All proofs are omitted for the sake of brevity. Please refer to [11] for

detailed proofs.
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and so on.
Definition Inputs i1,i2,…,ij are transitive fanout correlated when
their transitive fanout cones in the circuit have at least one common
node, that is, there exists at least one node (internal node or output)
of the module whose logic function includes all inputs i1,i2,…,ij. j is
called the order of the correlation.
For the sake of simplicity, we use “correlation” to stand for
“transitive fanout correlation” in the remainder of this paper.

Figure 2 Example of Transitive Fanout Correlation

Figure 2(a) shows a simple 3-input 2-gate circuit. Since it has only
3 inputs, the highest possible order of correlation between inputs is
3. The table in (b) shows the correlated inputs for different orders.
Notice that the input pair (i1, i3) is not on the list of order 2
correlations and triplet (i1,i2,i3) is not in the list of order 3
correlations because the corresponding inputs have no common
nodes among their transitive fanout cones.
The coefficients in Eqn.(3.4) essentially reflect the correlation
between the corresponding (joint) transition probabilities and the
power consumption in a circuit.
Proposition 1 If i1,i2,…,ij are not correlated, all entries of

jiiia ,,, 21 L

v

are zero.

Corollary If J is the highest order of correlation among inputs of a
module, the first J+1 terms of Eqn.(3.4) are sufficient to model the
exact power for any input vector pair applied to the module.

3) Function order reduction
Eqn.(3.4) gives an exact representation of the relation between
power and input transition. However, this form is too complicated
for practical use. In this section, we will discuss the first step to
simplify the macro-model function, which is order reduction.
From Eqn.(3.4), we know that the complexity of the macro-model
increases exponentially with the order of the input correlation we
which consider. Evidently, ignoring the high order term leads to
some estimation error. The first question, is how much error will be
introduced if we drop certain high order terms. The second question
is what the cost will be if we keep more terms in the original
function. Table 1 shows some examples of the percentage error
caused by ignoring the high order input correlations. Column 1
gives the circuit name. Circuit A is a 4-bit multiplier, B is a 4-bit
ripple carry adder without carry in, and C is an 8-input random
logic circuit. In the experiment, all the coefficients of the exact
power function in Eqn.(3.4) are calculated in the way discussed in
section 3.1.2. Then we do power calculation on the population of
all possible (4k, k is the number of inputs) input vector pairs to the
module using the reduced-order functions of Eqn(3.4), i.e., ignoring
the high order terms (by assuming that the coefficients of high
order transition variables to be all zero). The power values
calculated by the reduced-order functions are compared with the
actual power values. The average relative errors are then reported

i1

i2

i3

order 1 corr. order 2 corr. order 3 corr.

Nonei1; i2; i3 (i1, i2); (i2, i3)

(a) (b)



in Table 1 from the 1st data column to the 8th data column. The
integer number i on top of each column indicates the maximum
order to which the function terms are kept. For example, in the 4th

data column, number “4” means that, the reduced-order function is
the same as Eqn.(3.4) except that transition variables (and their
coefficients) with order higher that 4 are ignored. The last row of
the table shows the total number of variables in the reduced-order
functions for each of the circuits.

Table 1 Average percentage error in power dissipation when
using reduced-order functions

Circuit 1 2 3 4 5 6 7 8
A 99.8% 42.6% 31.7% 23.9% 13.7% 4.1% 0.8% 0.0%
B 40.3% 9.2% 11.9% 9.6% 8.4% 4.3% 1.3% 0.0%
C 37.6% 13.1% 8.9% 7.7% 5.1% 4.3% 1.0% 0.0%

24 276 1788 7458 21066 41478 58974 65535

Table 1 shows that keeping higher order terms tends to, although
not monotonically, to provide more accurate power estimation
results. One significant improvement shown in the table is from the
1st data column (keeping only order 1 terms) to the 3rd data column
(keeping order 1, 2 and 3 terms). From this point on, the
complexity of the reduced-order function increases much faster
than the percentage error decreases. This observation is also
supported by the experimental results which is presented in Section
IV. We therefore approximate Eqn.(3.4) by ignoring terms with
order higher than 3. The reduced-order function is written as:
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where ε is the error caused by approximation.
We can minimize error ε  by re-computing the coefficient values by
doing least-squares fit for Eqn.(3.5). However Eqn.(3.5) is too
complicated to be our macro-model equation since the number of

variables in it is 32 2793 kk CCk ⋅+⋅+⋅ , which is too high!

Furthermore, the use of 0-1 variables in (3.5) makes it very difficult
to significantly reduce the number of variables using a regression
approach.

4) Variable grouping
To further reduce the function complexity in Eqn.(3.5), we use a
variable grouping approach as will be described next. This
approach offers two advantages: 1) uses integer variables which are
easier to work with and offer more flexibility compared to 0-1
variables, 2) has a constant number of variables which is
independent of number of primary inputs, k.
We define G1 as the set of all inputs, G2 as the set of all possible
combinations of two inputs, G3 as the set of all possible
combinations of three inputs:
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Note that Gi consists of indices for order i transition variables. The
variable grouping technique forms N1 subsets of G1, N2 subsets of
G2, and N3 subsets of G3 such that:
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where K1, K2, K3 bounds are given. The size constraints are
specified to manage the complexity of macro-model equation
characterization and evaluation.
We approximate equation (3.5) by assuming that:
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where L

},3,2,1{ gb are constant real numbers. To minimize the error

introduced by the above approximation, we should do a careful
variable grouping. We first calculate the coefficients for terms of
orders 1,2 and 3 in Eqn.(3.4) by using the method discussed in
Section 3.1.2. Next, we calculate a set of order 1, 2 and 3 c-values
as shown below:
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Transition variables of order i are sorted in increasing order of the
corresponding c-values for order i. The domain of the c-values is
divided into several sub-domains such that the number of transition
variables with c-values in different sub-domains is approximately
equal, but is less than the corresponding Ki values. The indices of
transition variables with c-values in different sub-domains define
the groups. The first N1 groups with the largest absolute c-values
are used to form G1,g (g=1,2,…,N1) as defined in Eqn.(3.6). Other
groups with smaller c-values are abandoned. Similarly, the first N2

or N3 groups with the largest absolute c-values are adopted as G2,g

or G3,g (g=1,2,…,N2 or N3). Notice that this is a heuristic grouping
algorithm and other techniques may be used as well.



Example Let N1 = 3, N2 = 4, N3 = 2. Assume we want to do
variable grouping for a macro-model equation corresponding to a
6-input circuit. The group size constraints are set as: K1= K2= K3 =
3. Firstly we calculate ic (i = 1,2,…,6) values. Assume, they are

given by:
0,0,0.2,9.1,5.0,0 654321 ====== cccccc

We divide the domain of c-values, [0, 2.0], into 3 sub-domains: [0,
0.5), [0.5, 1.5), and [1.5, 2.0].
The grouping for single inputs is:

}4,3{},2{},6,5,1{ 3,12,11,1 === GGG . We keep G1,1 through G1,3.

Then we compute the value of jic , (i,j = 1,2,…,k, i < j). Again,

suppose:

9.0,7.0,6.1

,2.0,2.0,1.1,7.0,4.1,8.0

,6.1,6.1,4.0,2.0,3.0,0.1

5,64,64,5

3,63,53,42,62,52,4

2,31,61,51,41,32,1

=−==

==−====

==−=−===

ccc

cccccc

cccccc

The division of c-values is: [-1.1, -0.5), [-0.5, 0), [0, 0.5), [0.5, 1.0),
[1.0, 1.5), and [1.5, 1.6]
The grouping for input pairs is:
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We only keep G2,1, G2,2, G2,3, and G2,6,
The case for grouping variables of order 3 is solved similarly.

Let’s introduce some notation:
ji

gT →
,1 : the total number of transitions of type i→j in group G1,g

lkji
gT →→ ,

,2 : the total number of pair-wise joint transitions of type

(i→j k→l) in group G2,g
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gT →→→ ,,

,3 : the total number of joint transitions of type (i→j,

k→l, m→n) in group G3,g
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We can thus write our initial cycle-accurate macro-model as in
equation (3.7).
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In terms of N1, N2, N3, values, the number of variables in the
macro-model is 3N1+9N2+27N3, which is independent of the
number of circuit inputs k.

Table 2 shows the experimental results for three macro-models
using different number of groups and using different grouping
strategies. For Macro-model 1, N1 = 1, N2 = 1, N3 = 1; For Macro-
model 2, N1 = 8, N2 = 8, N3 = 2, and the single inputs, input pairs,
and input triplets are grouped randomly; For Macro-model 3, N1 =
8, N2 = 8, N3 = 2, and our variable grouping heuristic is used. The
input sequence is randomly generated.

Table 2 Experimental results for variable grouping

Macro-model 1 Macro-model 2 Macro-model 3Module
R ECP (%) r ECP (%) r ECP (%)

C1355 1.98 8.07 1.57 9.19 2.54 7.76
C1908 1.41 15.36 1.42 15.04 2.76 11.16
C2670 1.18 11.66 1.19 11.64 1.63 10.38
C3540 1.42 17.47 1.76 15.48 2.37 12.19
C432 1.11 29.07 1.12 29.00 2.46 20.15

C5315 1.21 9.87 1.30 9.4 2.79 8.1
C6288 2.15 8.10 2.47 7.6 2.79 6.82
C7552 1.04 33.00 1.11 30.94 6.39 9.24
C880 1.42 19.82 1.31 20.78 1.95 16.34

Mul16 2.34 8.90 2.57 8.32 2.96 7.04
Adder16 2.05 8.63 2.12 8.44 4.08 6.15

Results show that macro-models 1 and 2 have similar correlation
factors and ECP errors, while the quality of macro-model 3 is
clearly better than the other two.
From Table 2, we can draw the following conclusions:
• Using more groups in variable grouping improves the quality

of macro-models.
• A good variable grouping technique is very important to

obtain a high quality macro-model.

B. Population stratification

From our experiments we found that the regression factor r
between the estimated power and the actual power is different for
different ranges of power dissipation. This means that the
regression model is not strictly linear over the range of all possible
power values. This phenomenon occurs in many practical
situations. One reason for the lack of linearity is that the macro-
model equation is only an approximation to the power-transition
function. During the variable selection, we discard the high order
terms in the power-transition function and group subsets of
variables of given order together. The approximation introduces
some non-linearity into the macro-model equation. This effect is
more pronounced when the number of variables is small.
To improve the quality of our macro-model, we refine the macro-
model to a piece-wise linear regression model. At the first step, we
stratify the training set into several disjoint subsets (strata) based on
the switching activity of the vector pairs in the training set. A
vector pair will fall into exact one of these strata. Then the macro-
model is trained separately for each subset of the training set. When
we apply this piece-wise linear macro-model to estimate the power
for a given vector pair, we first examine the switching activity
range of the vector pair, and then invoke the macro-model equation
which was trained using vector pairs with a similar switching
activity.
Theorem 2 The correlation measure rstr of the macro-model
obtained by the population stratification is no worse than that
without population stratification rnostr, i.e.,

nostrstr rr ≥

Experimental results in Table 3 shows the improvement on the
regression factor r of the macro-model with the population
stratification approach (Macro-model 1) and without it (Macro-



model 2). We use Eqn.(3.7) as the macro-model equation, and the
input sequence contains both biased (non-random, wider range of
switching activity and power) and random vectors.

Table 3 Experimental results for the stratification approach

Module Macro-model (w/ str.) Macro-model (w/o str.)
r ECP (%) r ECP (%)

C1355 26.0 7.86 16.4 8.76
C1908 12.8 9.34 10.4 11.19
C2670 23.6 8.77 20.0 10.22
C3540 19.7 11.45 11.8 12.88
C432 6.5 19.07 5.3 22.96
C5315 27.9 7.64 26.8 8.72
C6288 46.5 6.03 37.0 7.16
C7552 43.7 6.58 39.0 7.36
C880 10.4 14.19 10.4 15.32
Mul16 30.0 6.32 27.9 6.90

ADDER16 38.1 5.64 18.4 6.73

Notice that population stratification can be done not only according
to the switching activity of the input vector pair, but also according
to the transition behavior of some special inputs such as clock,
mode control, etc. However, this is not the subject of this paper.

C. Variable reduction

In the initial macro-model equation (3.7), the number of variables
is about 150. Although the large number of variables improves the
quality of the macro-model, we would like to avoid evaluating a
large macro-model equation for every clock cycle. Therefore, we
must reduce the number of variables in the equation without
incurring a large error.
In our approach, the modified forward stepwise regression
procedure [10] is used to reduce the number of variables. The
search method develops a sequence of regression models. At each
step, one X variable is added to or deleted from the final macro-
model equation. The criterion used for adding or deleting variables
is the F* statistics of the regression theory. The algorithm is
described next:
Input of the algorithm: Given are a set of candidate variables {
X1, X2, …, Xn } which is in the initial macro-model, a training set
(values of variables for input vector pair and corresponding
Powermill power value), a low threshold t0 for deleting a variable, a
high threshold t1 for adding a variable, an upper bound of number
of variables MAXvar, S is the set of selected variables.
Step 0 (Initialization) : Set S = φand C = { X1, X2, …, Xn }
Step 1 (Find the first variable) : Fit a one-variable linear regression
model for each variable Xi in C. The F* test for each model is given
by:
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where MSR and MSE were defined in Section II. Assume that Xj is

the variable with the maximum F* value. If 1
* tF j ≥ then move Xj

from C to S and denote it as *
1X . Otherwise, no macro-model can

be found for the given t1 value (t1 must be reduced). The algorithm
terminates.
This step finds the first variable for the final macro-model. The F*

test is used to find the “most significant” variable (as far as power
dissipation in the module is concerned).
Step 2 (Add a variable) : Assume S = {}, for each Xi remaining in

C, fit the regression model with a+1 variables **
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where bi is the estimated value of βi coefficient and s{bi} is the
standard deviation of bi. Let Xj be the variable with the maximum

*
iF value. If 1

* tF j ≥ then move Xj form C to S and denote it as

*
1+aX , increase a by 1, and go to Step 3; Otherwise the algorithm

terminates.
This step adds one more variable into the final macro-model. The
F* test is used to find the “most significant” variable to add to the
set of existing (already selected) variables.

Step 3 (delete a variable) : Assume S={ **
2

*
1 ,,, aXXX L }, and X a

* is

the latest variable added in Step 2. Compute the partial F test
statistics for all other variables in S:

2
**

2
*
1

*

**
1

*
1

*
2

*
1

*
* )

}{
(

),,,,(

),,,,,,|(

i

i

ai

aiii
i

bs

b

XXXXMSE

XXXXXXMSR
F == +−

L

LL

Let *
jX be the variable with minimum F* value. If 0

* tF j < then

remove *
jX form S.

After adding a new variable into the macro-model, the
“significance” of some old variable may be reduced due to the joint
effect of the newly added variable and other old variables. In such a
case, we have to remove the old variable from the macro-model.
The F* test is used to find the “most insignificant” variable to
delete from the set of existing (already selected) variables.
Step 4 : Repeat Steps 2 and 3 until one of following conditions is
true:
1. Algorithm terminates in Step 2.
2. C=φ.
3. The number of variables in S equals to MAXvar.

In our approach, the number of variables in the candidate set is 162
at the beginning (since we set N1=8, N2=8, and N3=2). We choose t0

= t1 = 10.0, MAXvar = 15. For most macro-models, the algorithm
terminated at the 3rd condition at step 4 when the number of
variables equals to MAXvar. Only for one of the macro-models the

algorithm terminated at step 2 when 1
* tFj < .

IV. EXPERIMENTAL RESULTS

We have built our cycle-accurate macro-models for several
modules, including the ISCAS-89 benchmarks. In our macro-
models, we also included variables representing transitions on
circuit outputs, but only for two of the circuits (C432 and C880)
variables related to outputs survived the variable reduction phase.
The experimental setup is as follows. For each circuit, the
population size is set to 80,000 vector pairs (including both random
and non-random sub-sequences). We first simulate each circuit for
the entire sequence using Powermill and record the cycle-by-cycle
power. Size of the training set is set to 3,000 . The macro-model is
then trained using the training set. After the macro-model is built,
we apply it to different subsets of the population. These subsets are
selected such that their power behaviors are different from that of
the training set. Average ECP and EAP are computed by averaging
the ECP’s and EAP’s of all sub-sets. The correlation factor r is
computed based on the fitted results on the entire population.
Experimental results for our cycle-accurate macro-models is
summarized in Table 4.
Experimental results shows that our macro-model technique are
very accurate when estimating power consumption at RT-level. The
average ECP and EAP are 10.2% and 2.0%, respectively.
Meanwhile, if we compare the results with those of macro–model 1



in Table 3, which is the full-length macro-model before variable
reduction, we see that our variable reduction algorithm is
significantly reducing the number of variables without incurring
large error.

Table 4 Experimental results for cycle-accurate macro-models

Circuit No. of
Variables

r ECP (%) EAP (%)

C1355 15 13.2 9.3 2.7
C1908 15 7.9 11.6 2.0
C2670 15 19.8 9.6 2.0
C3540 15 9.7 12.5 2.0
C432 14 5.1 19.3 3.1

C5315 15 27.4 7.8 1.6
C6288 15 45.9 6.2 1.9
C7552 15 6.58 6.9 1.1
C880 15 8.7 14.3 3.2

Mul16 15 34.3 6.5 1.6
ADDER16 15 28.8 6.4 1.1

Average Error 10.2 2.0

V. CONCLUSION

In conclusion of our work, we present a method for generating
cycle-accurate macro-models for RT-level power analysis. The
proposed macro-model predicts not only the cycle-by-cycle power
consumption of a module, but also the moving average of power
consumption and the power profile of the module over time. We
present an exact power consumption function to derive our final
macro-model equation. A variable reduction algorithm has been
proposed to eliminate the “insignificant” variables based on
statistical sensitivity test. First order temporal correlations and
spatial correlations of up to order 3 are considered in order to
improve the estimation accuracy. Population stratification has been
used to increase the fidelity of the macro-model. Experimental
results show that, the macro-models have 15 or fewer variables and
exhibit <5% error in average power, and <20% errors in cycle-by-
cycle power compared to circuit simulation results using
Powermill.
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